SpeechBrain Emotion Recognition with OpenVINO#
This Jupyter notebook can be launched after a local installation only.
Warning
Important note: This notebook requires python >= 3.9. Please make sure that your environment fulfill to this requirement before running it
SpeechBrain is an open-source PyTorch toolkit that accelerates Conversational AI development, i.e., the technology behind speech assistants, chatbots, and large language models.
Lear more in GitHub repo and paper
This notebook tutorial demonstrates optimization and inference of speechbrain emotion recognition model with OpenVINO.
Table of contents:
Installation Instructions#
This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.
Installations#
%pip install -q "speechbrain>=1.0.0" --extra-index-url https://download.pytorch.org/whl/cpu
%pip install -q --upgrade --force-reinstall torch torchaudio --index-url https://download.pytorch.org/whl/cpu
%pip install -q "transformers>=4.30.0" "huggingface_hub>=0.8.0" "SoundFile"
%pip install -q "openvino>=2024.1.0"
Imports#
import torch
import torchaudio
from speechbrain.inference.interfaces import foreign_class
import openvino as ov
torchvision is not available - cannot save figures
Prepare base model#
The foreign_class function in SpeechBrain is a utility that allows you to load and use custom PyTorch models within the SpeechBrain ecosystem. It provides a convenient way to integrate external or custom-built models into SpeechBrain’s inference pipeline without modifying the core SpeechBrain codebase.
source: This argument specifies the source or location of the pre-trained model checkpoint. In this case, “speechbrain/emotion-recognition-wav2vec2-IEMOCAP” refers to a pre-trained model checkpoint available on the Hugging Face Hub.
pymodule_file: This argument is the path to a Python file containing the definition of your custom PyTorch model class. In this example, “custom_interface.py” is the name of the Python file that defines the CustomEncoderWav2vec2Classifier class.
classname: This argument specifies the name of the custom PyTorch model class defined in the pymodule_file. In this case, “CustomEncoderWav2vec2Classifier” is the name of the class that extends SpeechBrain’s Pretrained class and implements the necessary methods for inference.
classifier = foreign_class(
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier"
)
Initialize model#
# wav2vec2 torch model
torch_model = classifier.mods["wav2vec2"].model
PyTorch inference#
Perform emotion recognition on the sample audio file.
out_prob: Tensor or list containing the predicted probabilities or log probabilities for each emotion class.
score: Scalar value representing the predicted probability or log probability of the most likely emotion class.
index: Integer value representing the index of the most likely emotion class in the out_prob tensor or list.
text_lab: String or list of strings containing the textual labels corresponding to the predicted emotion classes ([“anger”, “happiness”, “sadness”, “neutrality”]).
out_prob, score, index, text_lab = classifier.classify_file("speechbrain/emotion-recognition-wav2vec2-IEMOCAP/anger.wav")
print(f"Emotion Recognition with SpeechBrain PyTorch model: {text_lab}")
Emotion Recognition with SpeechBrain PyTorch model: ['ang']
SpeechBrain model optimization with Intel OpenVINO#
Step 1: Prepare input tensor#
# Using sample audio file
signals = []
batch_size = 1
signal, sr = torchaudio.load(str("./anger.wav"), channels_first=False)
norm_audio = classifier.audio_normalizer(signal, sr)
signals.append(norm_audio)
sequence_length = norm_audio.shape[-1]
wavs = torch.stack(signals, dim=0)
wav_len = torch.tensor([sequence_length] * batch_size).unsqueeze(0)
Step 2: Convert model to OpenVINO IR#
# Model optimization process
input_tensor = wavs.float()
ov_model = ov.convert_model(torch_model, example_input=input_tensor)
Step 3: OpenVINO model inference#
import ipywidgets as widgets
core = ov.Core()
# Device selection
device = widgets.Dropdown(
options=core.available_devices + ["AUTO"],
value="AUTO",
description="Device:",
disabled=False,
)
device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
# OpenVINO Compiled model
compiled_model = core.compile_model(ov_model, device.value)
# Perform model inference
output_tensor = compiled_model(wavs)[0]
output_tensor = torch.from_numpy(output_tensor)
# output post-processing
outputs = classifier.mods.avg_pool(output_tensor, wav_len)
outputs = outputs.view(outputs.shape[0], -1)
outputs = classifier.mods.output_mlp(outputs).squeeze(1)
ov_out_prob = classifier.hparams.softmax(outputs)
score, index = torch.max(ov_out_prob, dim=-1)
text_lab = classifier.hparams.label_encoder.decode_torch(index)
print(f"Emotion Recognition with OpenVINO Model: {text_lab}")
Emotion Recognition with OpenVINO Model: ['ang']