Inverse Discrete complex-to-real Fourier Transformation (IRDFT)#
Versioned name: IRDFT-9
Category: Signal processing
Short description: IRDFT operation performs the inverse complex-to-real discrete Fourier transformation of the input tensor by specified dimensions.
Attributes:
No attributes available.
Inputs
1:
data- Input tensor of type T with data for the IRDFT transformation. The last dimension of the input tensor must be equal to 2, that is the input tensor shape must have the form[D_0, D_1, ..., D_{N-1}, 2], representing the real and imaginary components of complex numbers in[:, ..., :, 0]and in[:, ..., :, 1]correspondingly. Required.2:
axes- 1D tensor of type T_IND specifying dimension indices where IRDFT is applied, andaxesis any unordered list of indices of different dimensions of the input tensor, for example,[0, 4],[4, 0],[4, 2, 1],[1, 2, 3],[-3, 0, -2]. These indices should be integers from-(r - 1)to(r - 2)inclusively, wherer = rank(data). A negative axisais interpreted as an axisr - 1 + a. Other dimensions do not change. The order of elements in theaxesattribute matters, and is mapped directly to elements in the third inputsignal_size. Required.Note
The following constraint must be satisfied:
rank(data) >= len(axes) + 1 and (rank(data) - 1) not in axes and (-1) not in axes.3:
signal_size- 1D tensor of type T_SIZE describing signal size with respect to axes from the inputaxes. Ifsignal_size[i] == -1, then IRDFT is calculated for full size of the axisaxes[i]. Ifsignal_size[i] > data_shape[: r - 1][axes[i]], then input data is zero-padded with respect to the axisaxes[i]at the end. Finally, ifsignal_size[i] < data_shape[: r - 1][axes[i]], then input data is trimmed with respect to the axisaxes[i]. More precisely, ifsignal_size[i] < data_shape[: r - 1][axes[i]], the slice0: signal_size[i]of the axisaxes[i]is considered. Optionally, with default value[data_shape[: r - 1][a] for a in axes].Note
If the input
signal_sizeis specified, then the size ofsignal_sizemust be the same as the size ofaxes.
Outputs
1: Resulting tensor with elements of the same type as input
datatensor and with rankr - 1, wherer = rank(data). The shape of the output has the form[S_0, S_1, ..., S_{r-2}], where allS_aare calculated as follows:
Calculate
normalized_axes, where eachnormalized_axes[i] = axes[i], ifaxes[i] >= 0, andnormalized_axes[i] = axes[i] + r - 1otherwise.If
a not in normalized_axes, thenS_a = data_shape[a].If
a in normalized_axes, thena = normalized_axes[i]for somei. In such case,S_a = 2 * (data_shape[a] - 1)if thesignal_sizeinput is not specified, or, if it is specified,signal_size[i] = -1; andS_a = signal_size[a]otherwise. + Wheni != len(normalized_axes) - 1,S_ais calculated asS_a = data_shape[a]if thesignal_sizeinput is not specified, or, if it is specified,signal_size[i] = -1; andS_a = signal_size[a]otherwise. + Wheni = len(normalized_axes) - 1,S_ais calculated asS_a = 2 * (data_shape[a] - 1)if thesignal_sizeinput is not specified, or, if it is specified,signal_size[i] = -1; andS_a = signal_size[a]otherwise.
Types
T: any supported floating-point type.
T_IND:
int64orint32.T_SIZE:
int64orint32.
Detailed description: IRDFT performs the discrete Fourier transformation of the input tensor, according to the following rules.
For simplicity, assume that an input tensor A has the shape [B_0, ..., B_{k-1}, M_0, ..., M_{q-1}, 2], axes=[k,...,k + q - 1], and signal_size=[S_0,...,S_{q-1}].
Let D be a value of the input tensor A.
Next, put
for all indices j_0,...,j_{k+q-1}, where i is an imaginary unit, that is X is a complex tensor.
Define the complex tensor F with the shape [B_0, ..., B_{k-1}, 2 * (M_0 - 1), ..., 2 * (M_{q-1} - 1)] using the formula
Construct the complex tensor G with the shape [B_0, ..., B_{k-1}, S_0, ..., S_{q-1}] by the following way. If S_a > 2 * (M_a - 1), then the axis k + a of F will be padded by zeros; if S_a < 2 * (M_a - 1), then the axis k + a of F will be trimmed, that is, we will consider only the slice 0: S_a of this axis; finally, if S_a = 2 * (M_a - 1), then we consider the full axis k + a of F.
Let Y be a complex tensor with the shape [B_0, ..., B_{k-1}, S_0, ..., S_{q-1}] such that
for all indices n_0,...,n_{k-1}, m_0,...,m_{q-1}.
Finally, the result of the inverse discrete complex-to-real Fourier transform is a real part of the tensor Y.
Calculations for the generic case of axes and signal sizes are similar.
Example:
There is no signal_size input (4D input tensor):
<layer ... type="IRDFT" ... >
<input>
<port id="0">
<dim>1</dim>
<dim>161</dim>
<dim>161</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>2</dim> <!-- [1, 2] -->
</port>
<output>
<port id="2">
<dim>1</dim>
<dim>161</dim>
<dim>320</dim>
</port>
</output>
</layer>
There is no signal_size input (3D input tensor):
<layer ... type="IRDFT" ... >
<input>
<port id="0">
<dim>161</dim>
<dim>161</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>2</dim> <!-- [0, 1] -->
</port>
<output>
<port id="2">
<dim>161</dim>
<dim>320</dim>
</port>
</output>
</layer>
There is signal_size input (4D input tensor):
<layer ... type="IRDFT" ... >
<input>
<port id="0">
<dim>1</dim>
<dim>161</dim>
<dim>161</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>2</dim> <!-- [1, 2] -->
</port>
<port id="2">
<dim>2</dim> <!-- [512, 100] -->
</port>
<output>
<port id="3">
<dim>1</dim>
<dim>512</dim>
<dim>100</dim>
</port>
</output>
</layer>
There is signal_size input (3D input tensor):
<layer ... type="IRDFT" ... >
<input>
<port id="0">
<dim>161</dim>
<dim>161</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>2</dim> <!-- [0, 1] -->
</port>
<port id="2">
<dim>2</dim> <!-- [512, 100] -->
</port>
<output>
<port id="3">
<dim>512</dim>
<dim>100</dim>
</port>
</output>
</layer>
There is signal_size input (5D input tensor, -1 in signal_size, unsorted axes):
<layer ... type="IRDFT" ... >
<input>
<port id="0">
<dim>16</dim>
<dim>768</dim>
<dim>580</dim>
<dim>320</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>3</dim> <!-- axes input contains [3, 1, 2] -->
</port>
<port id="2">
<dim>3</dim> <!-- signal_size input contains [170, -1, 1024] -->
</port>
<output>
<port id="3">
<dim>16</dim>
<dim>768</dim>
<dim>1024</dim>
<dim>170</dim>
</port>
</output>
</layer>
There is signal_size input (5D input tensor, -1 in signal_size, unsorted axes, the second example):
<layer ... type="IRDFT" ... >
<input>
<port id="0">
<dim>16</dim>
<dim>768</dim>
<dim>580</dim>
<dim>320</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>3</dim> <!-- axes input contains [3, 0, 2] -->
</port>
<port id="2">
<dim>3</dim> <!-- signal_size input contains [258, -1, 2056] -->
</port>
<output>
<port id="3">
<dim>16</dim>
<dim>768</dim>
<dim>2056</dim>
<dim>258</dim>
</port>
</output>
</layer>