Quantization Aware Training with NNCF, using TensorFlow Framework#
This Jupyter notebook can be launched on-line, opening an interactive environment in a browser window. You can also make a local installation. Choose one of the following options:
The goal of this notebook to demonstrate how to use the Neural Network Compression Framework NNCF 8-bit quantization to optimize a TensorFlow model for inference with OpenVINO™ Toolkit. The optimization process contains the following steps:
Transforming the original
FP32
model toINT8
Using fine-tuning to restore the accuracy.
Exporting optimized and original models to Frozen Graph and then to OpenVINO.
Measuring and comparing the performance of models.
For more advanced usage, refer to these examples.
This tutorial uses the ResNet-18 model with Imagenette dataset. Imagenette is a subset of 10 easily classified classes from the ImageNet dataset. Using the smaller model and dataset will speed up training and download time.
Table of contents:
Installation Instructions#
This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.
Imports and Settings#
Import NNCF and all auxiliary packages from your Python code. Set a name for the model, input image size, used batch size, and the learning rate. Also, define paths where Frozen Graph and OpenVINO IR versions of the models will be stored.
NOTE: All NNCF logging messages below ERROR level (INFO and WARNING) are disabled to simplify the tutorial. For production use, it is recommended to enable logging by removing
set_log_level(logging.ERROR)
.
%pip install -q "openvino>=2024.0.0" "nncf>=2.9.0"
%pip install -q "tensorflow-macos>=2.5,<=2.12.0; sys_platform == 'darwin' and platform_machine == 'arm64'"
%pip install -q "tensorflow>=2.5,<=2.12.0; sys_platform == 'darwin' and platform_machine != 'arm64'" # macOS x86
%pip install -q "tensorflow>=2.5,<=2.12.0; sys_platform != 'darwin'"
%pip install -q "tensorflow-datasets>=4.9.0,<4.9.3; platform_system=='Windows'"
%pip install -q "tensorflow-datasets>=4.9.0"
from pathlib import Path
import logging
import tensorflow as tf
import tensorflow_datasets as tfds
from nncf import NNCFConfig
from nncf.tensorflow.helpers.model_creation import create_compressed_model
from nncf.tensorflow.initialization import register_default_init_args
from nncf.common.logging.logger import set_log_level
import openvino as ov
set_log_level(logging.ERROR)
MODEL_DIR = Path("model")
OUTPUT_DIR = Path("output")
MODEL_DIR.mkdir(exist_ok=True)
OUTPUT_DIR.mkdir(exist_ok=True)
BASE_MODEL_NAME = "ResNet-18"
fp32_h5_path = Path(MODEL_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".h5")
fp32_ir_path = Path(OUTPUT_DIR / "saved_model").with_suffix(".xml")
int8_pb_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_int8")).with_suffix(".pb")
int8_ir_path = int8_pb_path.with_suffix(".xml")
BATCH_SIZE = 128
IMG_SIZE = (64, 64) # Default Imagenet image size
NUM_CLASSES = 10 # For Imagenette dataset
LR = 1e-5
MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255) # From Imagenet dataset
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255) # From Imagenet dataset
fp32_pth_url = "https://storage.openvinotoolkit.org/repositories/nncf/openvino_notebook_ckpts/305_resnet18_imagenette_fp32_v1.h5"
_ = tf.keras.utils.get_file(fp32_h5_path.resolve(), fp32_pth_url)
print(f"Absolute path where the model weights are saved:\n {fp32_h5_path.resolve()}")
Dataset Preprocessing#
Download and prepare Imagenette 160px dataset.
Number of classes: 10
Download size: 94.18 MiB
| Split | Examples |
|--------------|----------|
| 'train' | 12,894 |
| 'validation' | 500 |
datasets, datasets_info = tfds.load(
"imagenette/160px",
shuffle_files=True,
as_supervised=True,
with_info=True,
read_config=tfds.ReadConfig(shuffle_seed=0),
)
train_dataset, validation_dataset = datasets["train"], datasets["validation"]
fig = tfds.show_examples(train_dataset, datasets_info)
2024-03-25 10:42:57.451466: W tensorflow/core/common_runtime/gpu/gpu_device.cc:2211] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... 2024-03-25 10:42:57.665497: W tensorflow/core/kernels/data/cache_dataset_ops.cc:854] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to dataset.cache().take(k).repeat(). You should use dataset.take(k).cache().repeat() instead.
def preprocessing(image, label):
image = tf.image.resize(image, IMG_SIZE)
image = image - MEAN_RGB
image = image / STDDEV_RGB
label = tf.one_hot(label, NUM_CLASSES)
return image, label
train_dataset = train_dataset.map(preprocessing, num_parallel_calls=tf.data.experimental.AUTOTUNE).batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE)
validation_dataset = (
validation_dataset.map(preprocessing, num_parallel_calls=tf.data.experimental.AUTOTUNE).batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE)
)
Define a Floating-Point Model#
def residual_conv_block(filters, stage, block, strides=(1, 1), cut="pre"):
def layer(input_tensor):
x = tf.keras.layers.BatchNormalization(epsilon=2e-5)(input_tensor)
x = tf.keras.layers.Activation("relu")(x)
# Defining shortcut connection.
if cut == "pre":
shortcut = input_tensor
elif cut == "post":
shortcut = tf.keras.layers.Conv2D(
filters,
(1, 1),
strides=strides,
kernel_initializer="he_uniform",
use_bias=False,
)(x)
# Continue with convolution layers.
x = tf.keras.layers.ZeroPadding2D(padding=(1, 1))(x)
x = tf.keras.layers.Conv2D(
filters,
(3, 3),
strides=strides,
kernel_initializer="he_uniform",
use_bias=False,
)(x)
x = tf.keras.layers.BatchNormalization(epsilon=2e-5)(x)
x = tf.keras.layers.Activation("relu")(x)
x = tf.keras.layers.ZeroPadding2D(padding=(1, 1))(x)
x = tf.keras.layers.Conv2D(filters, (3, 3), kernel_initializer="he_uniform", use_bias=False)(x)
# Add residual connection.
x = tf.keras.layers.Add()([x, shortcut])
return x
return layer
def ResNet18(input_shape=None):
"""Instantiates the ResNet18 architecture."""
img_input = tf.keras.layers.Input(shape=input_shape, name="data")
# ResNet18 bottom
x = tf.keras.layers.BatchNormalization(epsilon=2e-5, scale=False)(img_input)
x = tf.keras.layers.ZeroPadding2D(padding=(3, 3))(x)
x = tf.keras.layers.Conv2D(64, (7, 7), strides=(2, 2), kernel_initializer="he_uniform", use_bias=False)(x)
x = tf.keras.layers.BatchNormalization(epsilon=2e-5)(x)
x = tf.keras.layers.Activation("relu")(x)
x = tf.keras.layers.ZeroPadding2D(padding=(1, 1))(x)
x = tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding="valid")(x)
# ResNet18 body
repetitions = (2, 2, 2, 2)
for stage, rep in enumerate(repetitions):
for block in range(rep):
filters = 64 * (2**stage)
if block == 0 and stage == 0:
x = residual_conv_block(filters, stage, block, strides=(1, 1), cut="post")(x)
elif block == 0:
x = residual_conv_block(filters, stage, block, strides=(2, 2), cut="post")(x)
else:
x = residual_conv_block(filters, stage, block, strides=(1, 1), cut="pre")(x)
x = tf.keras.layers.BatchNormalization(epsilon=2e-5)(x)
x = tf.keras.layers.Activation("relu")(x)
# ResNet18 top
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dense(NUM_CLASSES)(x)
x = tf.keras.layers.Activation("softmax")(x)
# Create the model.
model = tf.keras.models.Model(img_input, x)
return model
IMG_SHAPE = IMG_SIZE + (3,)
fp32_model = ResNet18(input_shape=IMG_SHAPE)
Pre-train a Floating-Point Model#
Using NNCF for model compression assumes that the user has a pre-trained model and a training pipeline.
NOTE For the sake of simplicity of the tutorial, it is recommended to skip
FP32
model training and load the weights that are provided.
# Load the floating-point weights.
fp32_model.load_weights(fp32_h5_path)
# Compile the floating-point model.
fp32_model.compile(
loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1),
metrics=[tf.keras.metrics.CategoricalAccuracy(name="acc@1")],
)
# Validate the floating-point model.
test_loss, acc_fp32 = fp32_model.evaluate(
validation_dataset,
callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=["acc@1"]),
)
print(f"\nAccuracy of FP32 model: {acc_fp32:.3f}")
4/4 [==============================] - 1s 187ms/sample - loss: 0.9807 - acc@1: 0.8220
Accuracy of FP32 model: 0.822
Create and Initialize Quantization#
NNCF enables compression-aware training by integrating into regular training pipelines. The framework is designed so that modifications to your original training code are minor. Quantization is the simplest scenario and requires only 3 modifications.
Configure NNCF parameters to specify compression
nncf_config_dict = {
"input_info": {"sample_size": [1, 3] + list(IMG_SIZE)},
"log_dir": str(OUTPUT_DIR), # The log directory for NNCF-specific logging outputs.
"compression": {
"algorithm": "quantization", # Specify the algorithm here.
},
}
nncf_config = NNCFConfig.from_dict(nncf_config_dict)
Provide a data loader to initialize the values of quantization ranges and determine which activation should be signed or unsigned from the collected statistics, using a given number of samples.
nncf_config = register_default_init_args(nncf_config=nncf_config, data_loader=train_dataset, batch_size=BATCH_SIZE)
Create a wrapped model ready for compression fine-tuning from a pre-trained
FP32
model and a configuration object.
compression_ctrl, int8_model = create_compressed_model(fp32_model, nncf_config)
Evaluate the new model on the validation set after initialization of
quantization. The accuracy should be not far from the accuracy of the
floating-point FP32
model for a simple case like the one being
demonstrated here.
# Compile the INT8 model.
int8_model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=LR),
loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1),
metrics=[tf.keras.metrics.CategoricalAccuracy(name="acc@1")],
)
# Validate the INT8 model.
test_loss, test_acc = int8_model.evaluate(
validation_dataset,
callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=["acc@1"]),
)
4/4 [==============================] - 1s 332ms/sample - loss: 0.9771 - acc@1: 0.8060
Fine-tune the Compressed Model#
At this step, a regular fine-tuning process is applied to further improve quantized model accuracy. Normally, several epochs of tuning are required with a small learning rate, the same that is usually used at the end of the training of the original model. No other changes in the training pipeline are required. Here is a simple example.
print(f"\nAccuracy of INT8 model after initialization: {test_acc:.3f}")
# Train the INT8 model.
int8_model.fit(train_dataset, epochs=2)
# Validate the INT8 model.
test_loss, acc_int8 = int8_model.evaluate(
validation_dataset,
callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=["acc@1"]),
)
print(f"\nAccuracy of INT8 model after fine-tuning: {acc_int8:.3f}")
print(f"\nAccuracy drop of tuned INT8 model over pre-trained FP32 model: {acc_fp32 - acc_int8:.3f}")
Accuracy of INT8 model after initialization: 0.806
Epoch 1/2
101/101 [==============================] - 40s 292ms/step - loss: 0.7138 - acc@1: 0.9302
Epoch 2/2
101/101 [==============================] - 27s 269ms/step - loss: 0.6803 - acc@1: 0.9499
4/4 [==============================] - 0s 78ms/sample - loss: 0.9757 - acc@1: 0.8100
Accuracy of INT8 model after fine-tuning: 0.810
Accuracy drop of tuned INT8 model over pre-trained FP32 model: 0.012
Export Models to OpenVINO Intermediate Representation (IR)#
Use model conversion Python API to convert the models to OpenVINO IR.
For more information about model conversion, see this page.
Executing this command may take a while.
model_ir_fp32 = ov.convert_model(fp32_model)
model_ir_int8 = ov.convert_model(int8_model)
ov.save_model(model_ir_fp32, fp32_ir_path, compress_to_fp16=False)
ov.save_model(model_ir_int8, int8_ir_path, compress_to_fp16=False)
Benchmark Model Performance by Computing Inference Time#
Finally, measure the inference performance of the FP32
and INT8
models, using Benchmark
Tool
- an inference performance measurement tool in OpenVINO. By default,
Benchmark Tool runs inference for 60 seconds in asynchronous mode on
CPU. It returns inference speed as latency (milliseconds per image) and
throughput (frames per second) values.
NOTE: This notebook runs
benchmark_app
for 15 seconds to give a quick indication of performance. For more accurate performance, it is recommended to runbenchmark_app
in a terminal/command prompt after closing other applications. Runbenchmark_app -m model.xml -d CPU
to benchmark async inference on CPU for one minute. Change CPU to GPU to benchmark on GPU. Runbenchmark_app --help
to see an overview of all command-line options.
Please select a benchmarking device using the dropdown list:
import requests
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
open("notebook_utils.py", "w").write(r.text)
from notebook_utils import device_widget
device = device_widget()
device
Dropdown(description='Device:', options=('CPU', 'GPU.0', 'GPU.1'), value='CPU')
def parse_benchmark_output(benchmark_output):
parsed_output = [line for line in benchmark_output if "FPS" in line]
print(*parsed_output, sep="\n")
print("Benchmark FP32 model (IR)")
benchmark_output = ! benchmark_app -m $fp32_ir_path -d $device.value -api async -t 15 -shape [1,64,64,3]
parse_benchmark_output(benchmark_output)
print("\nBenchmark INT8 model (IR)")
benchmark_output = ! benchmark_app -m $int8_ir_path -d $device.value -api async -t 15 -shape [1,64,64,3]
parse_benchmark_output(benchmark_output)
Benchmark FP32 model (IR)
[ INFO ] Throughput: 3091.93 FPS
Benchmark INT8 model (IR)
[ INFO ] Throughput: 12826.50 FPS
Show Device Information for reference.
import openvino.properties as props
core = ov.Core()
core.get_property(device.value, props.device.full_name)
'Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz'