EmbeddingBagPackedSum#
Versioned name: EmbeddingBagPackedSum-3
Category: Sparse
Short description: Computes sums of “bags” of embeddings, without instantiating the intermediate embeddings.
Detailed description:
Operation EmbeddingBagPackedSum is an implementation of torch.nn.EmbeddingBag in sum mode, which indices input being 2D tensor of shape [batch, indices_per_bag].
Operation is equivalent to ReduceSum(Multiply(Gather(emb_table, indices, axis=0), Unsqueeze(per_sample_weights, -1)), axis=1).
Attributes: EmbeddingBagPackedSum operation has no attributes.
Inputs:
1:
emb_tabletensor containing the embedding lookup table of the module of shape[num_emb, emb_dim1, emb_dim2, ...]and of type T. Required.2:
indicestensor of shape[batch, indices_per_bag]and of type T_IND. Required.3:
per_sample_weightstensor of the same shape asindicesand of type T. Each value in this tensor are multiplied with each value pooled from embedding table for each index. Optional, default is tensor of ones.
Outputs:
1: tensor of shape
[batch, emb_dim1, emb_dim2, ...]and of type T containing embeddings for each bag.
Types
T: any numeric type.
T_IND:
int32orint64.
Example
<layer ... type="EmbeddingBagPackedSum" ... >
<input>
<port id="0"> <!-- emb_table value is: [[-0.2, -0.6], [-0.1, -0.4], [-1.9, -1.8], [-1., 1.5], [ 0.8, -0.7]] -->
<dim>5</dim>
<dim>2</dim>
</port>
<port id="1"> <!-- indices value is: [[0, 2], [1, 2], [3, 4]] -->
<dim>3</dim>
<dim>2</dim>
</port>
<port id="2"/> <!-- per_sample_weights value is: [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]] -->
<dim>3</dim>
<dim>2</dim>
</port>
</input>
<output>
<port id="3"> <!-- output value is: [[-1.05, -1.2], [-1., -1.1], [-0.1, 0.4]] -->
<dim>3</dim>
<dim>2</dim>
</port>
</output>
</layer>