openvino.runtime.opset8.gru_cell#
- openvino.runtime.opset8.gru_cell(X: Node | int | float | ndarray, initial_hidden_state: Node | int | float | ndarray, W: Node | int | float | ndarray, R: Node | int | float | ndarray, B: Node | int | float | ndarray, hidden_size: int, activations: List[str] | None = None, activations_alpha: List[float] | None = None, activations_beta: List[float] | None = None, clip: float = 0.0, linear_before_reset: bool = False, name: str | None = None) Node#
- Perform GRUCell operation on the tensor from input node. - GRUCell represents a single GRU Cell that computes the output using the formula described in the paper: https://arxiv.org/abs/1406.1078 - Note this class represents only single cell and not whole layer. - Parameters:
- X – The input tensor with shape: [batch_size, input_size]. 
- initial_hidden_state – The hidden state tensor at current time step with shape: [batch_size, hidden_size]. 
- W – The weights for matrix multiplication, gate order: zrh. Shape: [3*hidden_size, input_size]. 
- R – The recurrence weights for matrix multiplication. Shape: [3*hidden_size, hidden_size]. 
- B – The sum of biases (weight and recurrence). For linear_before_reset set True the shape is [4*hidden_size]. Otherwise the shape is [3*hidden_size]. 
- hidden_size – The number of hidden units for recurrent cell. Specifies hidden state size. 
- activations – The vector of activation functions used inside recurrent cell. 
- activation_alpha – The vector of alpha parameters for activation functions in order respective to activation list. 
- activation_beta – The vector of beta parameters for activation functions in order respective to activation list. 
- clip – The value defining clipping range [-clip, clip] on input of activation functions. 
- linear_before_reset – Flag denotes if the layer behaves according to the modification of GRUCell described in the formula in the ONNX documentation. 
- name – Optional output node name. 
 
- Returns:
- The new node performing a GRUCell operation on tensor from input node.