Visual-language assistant with nanoLLaVA and OpenVINO#
This Jupyter notebook can be launched on-line, opening an interactive environment in a browser window. You can also make a local installation. Choose one of the following options:
nanoLLaVA is a “small but mighty” 1B vision-language model designed to run efficiently on edge devices. It uses SigLIP-400m as Image Encoder and Qwen1.5-0.5B as LLM. In this tutorial, we consider how to convert and run nanoLLaVA model using OpenVINO. Additionally, we will optimize model using NNCF
Table of contents:
Installation Instructions#
This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.
Prerequisites#
%pip install -q "torch>=2.1" "transformers>=4.45" "accelerate" "pillow" "gradio>=4.26" "tqdm" --extra-index-url https://download.pytorch.org/whl/cpu
%pip install -q "nncf>=2.14"
%pip install -q -U "openvino-tokenizers[transformers]>=2024.5.0" "openvino>=2024.5.0"
%pip install -q "git+https://github.com/huggingface/optimum-intel.git"
Note: you may need to restart the kernel to use updated packages.
ERROR: Ignored the following versions that require a different python version: 2.14.0 Requires-Python >=3.9
ERROR: Could not find a version that satisfies the requirement nncf>=2.14 (from versions: 1.4, 1.4.1, 1.5.0, 1.6.0, 1.7.0, 1.7.1, 2.0.0, 2.0.1, 2.0.2, 2.1.0, 2.2.0, 2.3.0, 2.4.0, 2.5.0, 2.6.0, 2.7.0, 2.8.0, 2.8.1, 2.9.0, 2.10.0, 2.11.0, 2.12.0, 2.13.0)
ERROR: No matching distribution found for nncf>=2.14
Note: you may need to restart the kernel to use updated packages.
ERROR: Ignored the following versions that require a different python version: 2024.5.0.0 Requires-Python >=3.9
ERROR: Could not find a version that satisfies the requirement openvino-tokenizers>=2024.5.0 (from versions: 2023.3.0.0, 2024.0.0.0, 2024.1.0.0, 2024.1.0.2, 2024.2.0.0, 2024.3.0.0, 2024.4.0.0, 2024.4.1.0.dev20240926)
ERROR: No matching distribution found for openvino-tokenizers>=2024.5.0
Note: you may need to restart the kernel to use updated packages.
Note: you may need to restart the kernel to use updated packages.
from pathlib import Path
import requests
helper_file = Path("ov_nano_llava_helper.py")
cmd_helper_file = Path("cmd_helper.py")
if not helper_file.exists():
r = requests.get(
url=f"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/nano-llava-multimodal-chatbot/{helper_file.name}"
)
helper_file.open("w").write(r.text)
if not cmd_helper_file.exists():
r = requests.get(url=f"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/{cmd_helper_file.name}")
cmd_helper_file.open("w").write(r.text)
Select Model#
The tutorial supports the following models from Phi-3 model family:
You can select one from the provided options below.
import ipywidgets as widgets
model_ids = ["qnguyen3/nanoLLaVA", "qnguyen3/nanoLLaVA-1.5"]
model_dropdown = widgets.Dropdown(
options=model_ids,
value=model_ids[0],
description="Model:",
disabled=False,
)
model_dropdown
Dropdown(description='Model:', options=('qnguyen3/nanoLLaVA', 'qnguyen3/nanoLLaVA-1.5'), value='qnguyen3/nanoL…
Download PyTorch model#
from ov_nano_llava_helper import converted_model_exists, copy_model_files
model_id = model_dropdown.value
model_dir = Path(model_id.split("/")[-1])
ov_model_dir = Path("ov_" + model_dir.name) / "FP16"
Convert and Optimize model#
Our model conversion and optimization consist of following steps: 1. Convert model to OpenVINO format and save it on disk. 2. Compress model weights using NNCF
Let’s consider each step deeply.
Convert model to OpenVINO IR format#
NanoLLaVA implementation is based on HuggingFace Transformers library. For convenience, we will use OpenVINO integration with HuggingFace Optimum. Optimum Intel is the interface between the Transformers and Diffusers libraries and the different tools and libraries provided by Intel to accelerate end-to-end pipelines on Intel architectures.
Among other use cases, Optimum Intel provides a simple interface to
optimize your Transformers and Diffusers models, convert them to the
OpenVINO Intermediate Representation (IR) format and run inference using
OpenVINO Runtime. optimum-cli
provides command line interface for
model conversion and optimization.
General command format:
optimum-cli export openvino --model <model_id_or_path> --task <task> <output_dir>
where task is task to export the model for, if not specified, the task
will be auto-inferred based on the model. You can find a mapping between
tasks and model classes in Optimum TaskManager
documentation.
Additionally, you can specify weights compression using
--weight-format
argument with one of following options: fp32
,
fp16
, int8
and int4
. Fro int8 and int4
nncf will be used for
weight compression. More details about model export provided in Optimum
Intel
documentation.
from cmd_helper import optimum_cli
if not converted_model_exists(ov_model_dir):
optimum_cli(model_id, ov_model_dir, additional_args={"task": "image-text-to-text", "trust-remote-code": "", "weight-format": "fp16"})
Export command:
optimum-cli export openvino --model qnguyen3/nanoLLaVA ov_nanoLLaVA/FP16 --task image-text-to-text --trust-remote-code --weight-format fp16
2024-12-10 02:33:09.638027: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0. 2024-12-10 02:33:09.662588: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. Some weights of the model checkpoint at qnguyen3/nanoLLaVA were not used when initializing LlavaQwen2ForCausalLM: ['model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias', 'model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight', 'model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias', 'model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight', 'model.vision_tower.vision_tower.vision_model.head.attention.in_proj_bias', 'model.vision_tower.vision_tower.vision_model.head.attention.in_proj_weight', 'model.vision_tower.vision_tower.vision_model.head.attention.out_proj.bias', 'model.vision_tower.vision_tower.vision_model.head.attention.out_proj.weight', 'model.vision_tower.vision_tower.vision_model.head.layernorm.bias', 'model.vision_tower.vision_tower.vision_model.head.layernorm.weight', 'model.vision_tower.vision_tower.vision_model.head.mlp.fc1.bias', 'model.vision_tower.vision_tower.vision_model.head.mlp.fc1.weight', 'model.vision_tower.vision_tower.vision_model.head.mlp.fc2.bias', 'model.vision_tower.vision_tower.vision_model.head.mlp.fc2.weight', 'model.vision_tower.vision_tower.vision_model.head.probe', 'model.vision_tower.vision_tower.vision_model.post_layernorm.bias', 'model.vision_tower.vision_tower.vision_model.post_layernorm.weight'] - This IS expected if you are initializing LlavaQwen2ForCausalLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing LlavaQwen2ForCausalLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). loss_type=None was set in the config but it is unrecognised.Using the default loss: ForCausalLMLoss.
[ WARNING ] Unexpectedly found already patched module model.embed_tokens while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.0.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.0.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.0.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.0.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.0.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.0.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.0.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.1.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.1.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.1.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.1.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.1.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.1.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.1.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.2.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.2.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.2.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.2.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.2.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.2.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.2.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.3.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.3.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.3.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.3.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.3.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.3.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.3.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.4.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.4.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.4.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.4.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.4.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.4.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.4.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.5.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.5.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.5.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.5.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.5.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.5.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.5.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.6.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.6.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.6.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.6.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.6.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.6.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.6.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.7.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.7.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.7.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.7.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.7.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.7.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.7.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.8.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.8.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.8.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.8.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.8.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.8.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.8.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.9.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.9.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.9.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.9.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.9.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.9.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.9.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.10.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.10.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.10.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.10.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.10.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.10.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.10.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.11.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.11.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.11.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.11.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.11.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.11.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.11.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.12.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.12.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.12.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.12.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.12.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.12.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.12.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.13.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.13.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.13.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.13.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.13.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.13.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.13.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.14.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.14.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.14.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.14.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.14.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.14.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.14.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.15.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.15.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.15.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.15.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.15.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.15.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.15.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.16.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.16.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.16.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.16.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.16.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.16.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.16.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.17.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.17.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.17.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.17.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.17.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.17.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.17.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.18.self_attn.q_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.18.self_attn.k_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.18.self_attn.v_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.18.self_attn.o_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.18.mlp.gate_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.18.mlp.up_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[ WARNING ] Unexpectedly found already patched module model.layers.18.mlp.down_proj while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model.
[