Classification with ConvNeXt and OpenVINO#
This Jupyter notebook can be launched after a local installation only.
The torchvision.models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection, video classification, and optical flow. Throughout this notebook we will show how to use one of them.
The ConvNeXt model is based on the A ConvNet for the
2020s paper. The outcome of this
exploration is a family of pure ConvNet models dubbed ConvNeXt.
Constructed entirely from standard ConvNet modules, ConvNeXts compete
favorably with Transformers in terms of accuracy and scalability,
achieving 87.8% ImageNet top-1 accuracy and outperforming Swin
Transformers on COCO detection and ADE20K segmentation, while
maintaining the simplicity and efficiency of standard ConvNets. The
torchvision.models
subpackage
contains
several pretrained ConvNeXt model. In this tutorial we will use ConvNeXt
Tiny model.
Table of contents:
Installation Instructions#
This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.
Prerequisites#
%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu torch torchvision
%pip install -q "openvino>=2023.1.0"
Note: you may need to restart the kernel to use updated packages.
Note: you may need to restart the kernel to use updated packages.
Get a test image#
First of all lets get a test image from an open dataset.
import requests
from torchvision.io import read_image
import torchvision.transforms as transforms
img_path = "cats_image.jpeg"
r = requests.get("https://huggingface.co/datasets/huggingface/cats-image/resolve/main/cats_image.jpeg")
with open(img_path, "wb") as f:
f.write(r.content)
image = read_image(img_path)
display(transforms.ToPILImage()(image))
Get a pretrained model#
Torchvision provides a mechanism of listing and retrieving available models.
import torchvision.models as models
# List available models
all_models = models.list_models()
# List of models by type. Classification models are in the parent module.
classification_models = models.list_models(module=models)
print(classification_models)
['alexnet', 'convnext_base', 'convnext_large', 'convnext_small', 'convnext_tiny', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'efficientnet_v2_l', 'efficientnet_v2_m', 'efficientnet_v2_s', 'googlenet', 'inception_v3', 'maxvit_t', 'mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0', 'mnasnet1_3', 'mobilenet_v2', 'mobilenet_v3_large', 'mobilenet_v3_small', 'regnet_x_16gf', 'regnet_x_1_6gf', 'regnet_x_32gf', 'regnet_x_3_2gf', 'regnet_x_400mf', 'regnet_x_800mf', 'regnet_x_8gf', 'regnet_y_128gf', 'regnet_y_16gf', 'regnet_y_1_6gf', 'regnet_y_32gf', 'regnet_y_3_2gf', 'regnet_y_400mf', 'regnet_y_800mf', 'regnet_y_8gf', 'resnet101', 'resnet152', 'resnet18', 'resnet34', 'resnet50', 'resnext101_32x8d', 'resnext101_64x4d', 'resnext50_32x4d', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0', 'squeezenet1_0', 'squeezenet1_1', 'swin_b', 'swin_s', 'swin_t', 'swin_v2_b', 'swin_v2_s', 'swin_v2_t', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn', 'vit_b_16', 'vit_b_32', 'vit_h_14', 'vit_l_16', 'vit_l_32', 'wide_resnet101_2', 'wide_resnet50_2']
We will use convnext_tiny
. To get a pretrained model just use
models.get_model("convnext_tiny", weights='DEFAULT')
or a specific
method of torchvision.models
for this model using default
weights
that is equivalent to ConvNeXt_Tiny_Weights.IMAGENET1K_V1
. If you
don’t specify weight
or specify weights=None
it will be a random
initialization. To get all available weights for the model you can call
weights_enum = models.get_model_weights("convnext_tiny")
, but there
is only one for this model. You can find more information how to
initialize pre-trained models
here.
model = models.convnext_tiny(weights=models.ConvNeXt_Tiny_Weights.DEFAULT)
Define a preprocessing and prepare an input data#
You can use
torchvision.transforms
to make a preprocessing or
usepreprocessing transforms from the model
wight.
import torch
preprocess = models.ConvNeXt_Tiny_Weights.DEFAULT.transforms()
input_data = preprocess(image)
input_data = torch.stack([input_data], dim=0)
Use the original model to run an inference#
outputs = model(input_data)
And print results
# download class number to class label mapping
imagenet_classes_file_path = "imagenet_2012.txt"
r = requests.get(
url="https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/datasets/imagenet/imagenet_2012.txt",
)
with open(imagenet_classes_file_path, "w") as f:
f.write(r.text)
imagenet_classes = open(imagenet_classes_file_path).read().splitlines()
def print_results(outputs: torch.Tensor):
_, predicted_class = outputs.max(1)
predicted_probability = torch.softmax(outputs, dim=1)[0, predicted_class].item()
print(f"Predicted Class: {predicted_class.item()}")
print(f"Predicted Label: {imagenet_classes[predicted_class.item()]}")
print(f"Predicted Probability: {predicted_probability}")
print_results(outputs)
Predicted Class: 281
Predicted Label: n02123045 tabby, tabby cat
Predicted Probability: 0.5351971983909607
Convert the model to OpenVINO Intermediate representation format#
OpenVINO supports PyTorch through conversion to OpenVINO Intermediate
Representation (IR) format. To take the advantage of OpenVINO
optimization tools and features, the model should be converted using the
OpenVINO Converter tool (OVC). The openvino.convert_model
function
provides Python API for OVC usage. The function returns the instance of
the OpenVINO Model class, which is ready for use in the Python
interface. However, it can also be saved on disk using
openvino.save_model
for future execution.
from pathlib import Path
import openvino as ov
ov_model_xml_path = Path("models/ov_convnext_model.xml")
if not ov_model_xml_path.exists():
ov_model_xml_path.parent.mkdir(parents=True, exist_ok=True)
converted_model = ov.convert_model(model, example_input=torch.randn(1, 3, 224, 224))
# add transform to OpenVINO preprocessing converting
ov.save_model(converted_model, ov_model_xml_path)
else:
print(f"IR model {ov_model_xml_path} already exists.")
When the openvino.save_model
function is used, an OpenVINO model is
serialized in the file system as two files with .xml
and .bin
extensions. This pair of files is called OpenVINO Intermediate
Representation format (OpenVINO IR, or just IR) and useful for efficient
model deployment. OpenVINO IR can be loaded into another application for
inference using the openvino.Core.read_model
function.
Select device from dropdown list for running inference using OpenVINO
import requests
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
open("notebook_utils.py", "w").write(r.text)
from notebook_utils import device_widget
device = device_widget()
device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
core = ov.Core()
compiled_model = core.compile_model(ov_model_xml_path, device_name=device.value)
Use the OpenVINO IR model to run an inference#
outputs = compiled_model(input_data)[0]
print_results(torch.from_numpy(outputs))
Predicted Class: 281
Predicted Label: n02123045 tabby, tabby cat
Predicted Probability: 0.5664422512054443