Sentiment Analysis with OpenVINO™#

This Jupyter notebook can be launched on-line, opening an interactive environment in a browser window. You can also make a local installation. Choose one of the following options:

BinderGoogle ColabGithub

Sentiment analysis is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. This notebook demonstrates how to convert and run a sequence classification model using OpenVINO.

Table of contents:

Installation Instructions#

This is a self-contained example that relies solely on its own code.

We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.

Imports#

%pip install "openvino>=2023.1.0" transformers "torch>=2.1" tqdm --extra-index-url https://download.pytorch.org/whl/cpu
Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu
Requirement already satisfied: openvino>=2023.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2024.3.0)
Requirement already satisfied: transformers in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (4.44.0)
Requirement already satisfied: torch>=2.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2.4.0+cpu)
Requirement already satisfied: tqdm in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (4.66.5)
Requirement already satisfied: numpy<2.0.0,>=1.16.6 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (1.23.5)
Requirement already satisfied: openvino-telemetry>=2023.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (2024.1.0)
Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (24.1)
Requirement already satisfied: filelock in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (3.15.4)
Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.24.5)
Requirement already satisfied: pyyaml>=5.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (6.0.1)
Requirement already satisfied: regex!=2019.12.17 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (2024.7.24)
Requirement already satisfied: requests in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (2.32.3)
Requirement already satisfied: safetensors>=0.4.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.4.4)
Requirement already satisfied: tokenizers<0.20,>=0.19 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.19.1)
Requirement already satisfied: typing-extensions>=4.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (4.12.2)
Requirement already satisfied: sympy in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (1.13.1)
Requirement already satisfied: networkx in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (3.1)
Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (3.1.4)
Requirement already satisfied: fsspec in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (2024.5.0)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch>=2.1) (2.1.5)
Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (2.2.2)
Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (2024.7.4)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from sympy->torch>=2.1) (1.3.0)
Note: you may need to restart the kernel to use updated packages.
import warnings
from pathlib import Path
import time
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import numpy as np
import openvino as ov

Initializing the Model#

We will use the transformer-based DistilBERT base uncased finetuned SST-2 model from Hugging Face.

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=checkpoint)

Initializing the Tokenizer#

Text Preprocessing cleans the text-based input data so it can be fed into the model. Tokenization splits paragraphs and sentences into smaller units that can be more easily assigned meaning. It involves cleaning the data and assigning tokens or IDs to the words, so they are represented in a vector space where similar words have similar vectors. This helps the model understand the context of a sentence. Here, we will use AutoTokenizer - a pre-trained tokenizer from Hugging Face:

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=checkpoint)
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: clean_up_tokenization_spaces was not set. It will be set to True by default. This behavior will be depracted in transformers v4.45, and will be then set to False by default. For more details check this issue: huggingface/transformers#31884
  warnings.warn(

Convert Model to OpenVINO Intermediate Representation format#

Model conversion API facilitates the transition between training and deployment environments, performs static model analysis, and adjusts deep learning models for optimal execution on end-point target devices.

import torch

ir_xml_name = checkpoint + ".xml"
MODEL_DIR = "model/"
ir_xml_path = Path(MODEL_DIR) / ir_xml_name

MAX_SEQ_LENGTH = 128
input_info = [
    (ov.PartialShape([1, -1]), ov.Type.i64),
    (ov.PartialShape([1, -1]), ov.Type.i64),
]
default_input = torch.ones(1, MAX_SEQ_LENGTH, dtype=torch.int64)
inputs = {
    "input_ids": default_input,
    "attention_mask": default_input,
}

ov_model = ov.convert_model(model, input=input_info, example_input=inputs)
ov.save_model(ov_model, ir_xml_path)
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4689: FutureWarning: _is_quantized_training_enabled is going to be deprecated in transformers 4.39.0. Please use model.hf_quantizer.is_trainable instead
  warnings.warn(
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-744/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/distilbert/modeling_distilbert.py:215: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.
  mask, torch.tensor(torch.finfo(scores.dtype).min)

OpenVINO™ Runtime uses the Infer Request mechanism which enables running models on different devices in asynchronous or synchronous manners. The model graph is sent as an argument to the OpenVINO API and an inference request is created. The default inference mode is AUTO but it can be changed according to requirements and hardware available. You can explore the different inference modes and their usage in documentation.

core = ov.Core()

Select inference device#

select device from dropdown list for running inference using OpenVINO

import ipywidgets as widgets

device = widgets.Dropdown(
    options=core.available_devices + ["AUTO"],
    value="AUTO",
    description="Device:",
    disabled=False,
)

device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
warnings.filterwarnings("ignore")
compiled_model = core.compile_model(ov_model, device.value)
infer_request = compiled_model.create_infer_request()
def softmax(x):
    """
    Defining a softmax function to extract
    the prediction from the output of the IR format
    Parameters: Logits array
    Returns: Probabilities
    """

    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()

Inference#

def infer(input_text):
    """
    Creating a generic inference function
    to read the input and infer the result
    into 2 classes: Positive or Negative.
    Parameters: Text to be processed
    Returns: Label: Positive or Negative.
    """

    input_text = tokenizer(
        input_text,
        truncation=True,
        return_tensors="np",
    )
    inputs = dict(input_text)
    label = {0: "NEGATIVE", 1: "POSITIVE"}
    result = infer_request.infer(inputs=inputs)
    for i in result.values():
        probability = np.argmax(softmax(i))
    return label[probability]

For a single input sentence#

input_text = "I had a wonderful day"
start_time = time.perf_counter()
result = infer(input_text)
end_time = time.perf_counter()
total_time = end_time - start_time
print("Label: ", result)
print("Total Time: ", "%.2f" % total_time, " seconds")
Label:  POSITIVE
Total Time:  0.03  seconds

Read from a text file#

# Fetch `notebook_utils` module
import requests

r = requests.get(
    url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)

open("notebook_utils.py", "w").write(r.text)
from notebook_utils import download_file

# Download the text from the openvino_notebooks storage
vocab_file_path = download_file(
    "https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/text/food_reviews.txt",
    directory="data",
)
data/food_reviews.txt:   0%|          | 0.00/71.0 [00:00<?, ?B/s]
start_time = time.perf_counter()
with vocab_file_path.open(mode="r") as f:
    input_text = f.readlines()
    for lines in input_text:
        print("User Input: ", lines)
        result = infer(lines)
        print("Label: ", result, "\n")
end_time = time.perf_counter()
total_time = end_time - start_time
print("Total Time: ", "%.2f" % total_time, " seconds")
User Input:  The food was horrible.

Label:  NEGATIVE

User Input:  We went because the restaurant had good reviews.
Label:  POSITIVE

Total Time:  0.03  seconds