Class ov::preprocess::PrePostProcessor#
-
class PrePostProcessor#
Main class for adding pre- and post- processing steps to existing ov::Model.
This is a helper class for writing easy pre- and post- processing operations on ov::Model object assuming that any preprocess operation takes one input and produces one output.
For advanced preprocessing scenarios, like combining several functions with multiple inputs/outputs into one, client’s code can use transformation passes over ov::Model
Public Functions
Default constructor.
- Parameters:
function – Existing function representing loaded model
-
PrePostProcessor(PrePostProcessor&&) noexcept#
Default move constructor.
-
PrePostProcessor &operator=(PrePostProcessor&&) noexcept#
Default move assignment operator.
-
~PrePostProcessor()#
Default destructor.
-
InputInfo &input()#
Gets input pre-processing data structure. Should be used only if model/function has only one input Using returned structure application’s code is able to set user’s tensor data (e.g layout), preprocess steps, target model’s data.
- Returns:
Reference to model’s input information structure
-
InputInfo &input(const std::string &tensor_name)#
Gets input pre-processing data structure for input identified by it’s tensor name.
- Parameters:
tensor_name – Tensor name of specific input. Throws if tensor name is not associated with any input in a model
- Returns:
Reference to model’s input information structure
-
InputInfo &input(size_t input_index)#
Gets input pre-processing data structure for input identified by it’s order in a model.
- Parameters:
input_index – Input index of specific input. Throws if input index is out of range for associated function
- Returns:
Reference to model’s input information structure
-
OutputInfo &output()#
Gets output post-processing data structure. Should be used only if model/function has only one output Using returned structure application’s code is able to set model’s output data, post-process steps, user’s tensor data (e.g layout)
- Returns:
Reference to model’s output information structure
-
OutputInfo &output(const std::string &tensor_name)#
Gets output post-processing data structure for output identified by it’s tensor name.
- Parameters:
tensor_name – Tensor name of specific output. Throws if tensor name is not associated with any input in a model
- Returns:
Reference to model’s output information structure
-
OutputInfo &output(size_t output_index)#
Gets output post-processing data structure for output identified by it’s order in a model.
- Parameters:
output_index – Output index of specific output. Throws if output index is out of range for associated function
- Returns:
Reference to model’s output information structure