Create a RAG system using OpenVINO and LlamaIndex#
This Jupyter notebook can be launched after a local installation only.
Retrieval-augmented generation (RAG) is a technique for augmenting LLM knowledge with additional, often private or real-time, data. LLMs can reason about wide-ranging topics, but their knowledge is limited to the public data up to a specific point in time that they were trained on. If you want to build AI applications that can reason about private data or data introduced after a model’s cutoff date, you need to augment the knowledge of the model with the specific information it needs. The process of bringing the appropriate information and inserting it into the model prompt is known as Retrieval Augmented Generation (RAG).
LlamaIndex is a framework for building context-augmented generative AI applications with LLMs.LlamaIndex imposes no restriction on how you use LLMs. You can use LLMs as auto-complete, chatbots, semi-autonomous agents, and more. It just makes using them easier.
The tutorial consists of the following steps:
Install prerequisites
Download and convert the model from a public source using the OpenVINO integration with Hugging Face Optimum.
Compress model weights to 4-bit or 8-bit data types using NNCF
Create a RAG chain pipeline
Run Q&A pipeline
In this example, the customized RAG pipeline consists of following components in order, where embedding, rerank and LLM will be deployed with OpenVINO to optimize their inference performance.
Table of contents:
Installation Instructions#
This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.
Prerequisites#
Install required dependencies
import os
import requests
os.environ["GIT_CLONE_PROTECTION_ACTIVE"] = "false"
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
with open("notebook_utils.py", "w") as f:
f.write(r.text)
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/pip_helper.py",
)
open("pip_helper.py", "w").write(r.text)
from pip_helper import pip_install
pip_install(
"-q",
"--extra-index-url",
"https://download.pytorch.org/whl/cpu",
"llama-index",
"faiss-cpu",
"pymupdf",
"langchain",
"llama-index-readers-file",
"llama-index-vector-stores-faiss",
"llama-index-llms-langchain",
"llama-index-llms-huggingface>=0.3.0,<0.3.4",
"llama-index-embeddings-huggingface>=0.3.0",
)
pip_install("-q", "git+https://github.com/huggingface/optimum-intel.git", "git+https://github.com/openvinotoolkit/nncf.git", "datasets", "accelerate", "gradio")
pip_install("--pre", "-U", "openvino>=2024.2", "--extra-index-url", "https://storage.openvinotoolkit.org/simple/wheels/nightly")
pip_install("--pre", "-U", "openvino-tokenizers[transformers]>=2024.2", "--extra-index-url", "https://storage.openvinotoolkit.org/simple/wheels/nightly")
pip_install("-q", "--no-deps", "llama-index-llms-openvino>=0.3.1", "llama-index-embeddings-openvino>=0.2.1", "llama-index-postprocessor-openvino-rerank>=0.2.0")
Note: you may need to restart the kernel to use updated packages.
Note: you may need to restart the kernel to use updated packages.
Note: you may need to restart the kernel to use updated packages.
Note: you may need to restart the kernel to use updated packages.
import os
from pathlib import Path
import requests
import shutil
import io
# fetch model configuration
config_shared_path = Path("../../utils/llm_config.py")
config_dst_path = Path("llm_config.py")
text_example_en_path = Path("text_example_en.pdf")
text_example_cn_path = Path("text_example_cn.pdf")
text_example_en = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039728/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final.pdf"
text_example_cn = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039713/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final_CH.pdf"
if not config_dst_path.exists():
if config_shared_path.exists():
try:
os.symlink(config_shared_path, config_dst_path)
except Exception:
shutil.copy(config_shared_path, config_dst_path)
else:
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py")
with open("llm_config.py", "w", encoding="utf-8") as f:
f.write(r.text)
elif not os.path.islink(config_dst_path):
print("LLM config will be updated")
if config_shared_path.exists():
shutil.copy(config_shared_path, config_dst_path)
else:
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py")
with open("llm_config.py", "w", encoding="utf-8") as f:
f.write(r.text)
if not text_example_en_path.exists():
r = requests.get(url=text_example_en)
content = io.BytesIO(r.content)
with open("text_example_en.pdf", "wb") as f:
f.write(content.read())
if not text_example_cn_path.exists():
r = requests.get(url=text_example_cn)
content = io.BytesIO(r.content)
with open("text_example_cn.pdf", "wb") as f:
f.write(content.read())
LLM config will be updated
Select model for inference#
The tutorial supports different models, you can select one from the provided options to compare the quality of open source LLM solutions.
Note: conversion of some models can require additional actions from user side and at least 64GB RAM for conversion.
The available embedding model options are:
BGE embedding is a general Embedding Model. The model is pre-trained using RetroMAE and trained on large-scale pair data using contrastive learning.
The available rerank model options are:
Reranker model with cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model.
You can also find available LLM model options in llm-chatbot notebook.
from pathlib import Path
import ipywidgets as widgets
from notebook_utils import device_widget, optimize_bge_embedding
Convert model and compress model weights#
The Weights Compression algorithm is aimed at compressing the weights of the models and can be used to optimize the model footprint and performance of large models where the size of weights is relatively larger than the size of activations, for example, Large Language Models (LLM). Compared to INT8 compression, INT4 compression improves performance even more, but introduces a minor drop in prediction quality.
from llm_config import (
SUPPORTED_EMBEDDING_MODELS,
SUPPORTED_RERANK_MODELS,
SUPPORTED_LLM_MODELS,
)
model_languages = list(SUPPORTED_LLM_MODELS)
model_language = widgets.Dropdown(
options=model_languages,
value=model_languages[0],
description="Model Language:",
disabled=False,
)
model_language
Dropdown(description='Model Language:', options=('English', 'Chinese', 'Japanese'), value='English')
llm_model_ids = [model_id for model_id, model_config in SUPPORTED_LLM_MODELS[model_language.value].items() if model_config.get("rag_prompt_template")]
llm_model_id = widgets.Dropdown(
options=llm_model_ids,
value=llm_model_ids[-1],
description="Model:",
disabled=False,
)
llm_model_id
Dropdown(description='Model:', index=13, options=('tiny-llama-1b-chat', 'gemma-2b-it', 'red-pajama-3b-chat', '…
llm_model_configuration = SUPPORTED_LLM_MODELS[model_language.value][llm_model_id.value]
print(f"Selected LLM model {llm_model_id.value}")
Selected LLM model phi-3-mini-instruct
Optimum Intel is the interface between the Transformers and Diffusers libraries and OpenVINO to accelerate end-to-end pipelines on Intel architectures. It provides ease-to-use cli interface for exporting models to OpenVINO Intermediate Representation (IR) format.
The command bellow demonstrates basic command for model export with
optimum-cli
optimum-cli export openvino --model <model_id_or_path> --task <task> <out_dir>
where --model
argument is model id from HuggingFace Hub or local
directory with model (saved using .save_pretrained
method),
--task
is one of supported
task
that exported model should solve. For LLMs it will be
text-generation-with-past
. If model initialization requires to use
remote code, --trust-remote-code
flag additionally should be passed.
LLM conversion and Weights Compression using Optimum-CLI#
You can also apply fp16, 8-bit or 4-bit weight compression on the
Linear, Convolutional and Embedding layers when exporting your model
with the CLI by setting --weight-format
to respectively fp16, int8
or int4. This type of optimization allows to reduce the memory footprint
and inference latency. By default the quantization scheme for int8/int4
will be
asymmetric,
to make it
symmetric
you can add --sym
.
For INT4 quantization you can also specify the following arguments :
The
--group-size
parameter will define the group size to use for quantization, -1 it will results in per-column quantization.The
--ratio
parameter controls the ratio between 4-bit and 8-bit quantization. If set to 0.9, it means that 90% of the layers will be quantized to int4 while 10% will be quantized to int8.
Smaller group_size and ratio values usually improve accuracy at the sacrifice of the model size and inference latency.
Note: There may be no speedup for INT4/INT8 compressed models on dGPU.
from IPython.display import Markdown, display
prepare_int4_model = widgets.Checkbox(
value=True,
description="Prepare INT4 model",
disabled=False,
)
prepare_int8_model = widgets.Checkbox(
value=False,
description="Prepare INT8 model",
disabled=False,
)
prepare_fp16_model = widgets.Checkbox(
value=False,
description="Prepare FP16 model",
disabled=False,
)
display(prepare_int4_model)
display(prepare_int8_model)
display(prepare_fp16_model)
Checkbox(value=True, description='Prepare INT4 model')
Checkbox(value=False, description='Prepare INT8 model')
Checkbox(value=False, description='Prepare FP16 model')
Activation-aware Weight
Quantization (AWQ) is an algorithm
that tunes model weights for more accurate INT4 compression. It slightly
improves generation quality of compressed LLMs, but requires significant
additional time for tuning weights on a calibration dataset. We use
wikitext-2-raw-v1/train
subset of the
Wikitext
dataset for calibration.
Below you can enable AWQ to be additionally applied during model export with INT4 precision.
Note: Applying AWQ requires significant memory and time.
Note: It is possible that there will be no matching patterns in the model to apply AWQ, in such case it will be skipped.
enable_awq = widgets.Checkbox(
value=False,
description="Enable AWQ",
disabled=not prepare_int4_model.value,
)
display(enable_awq)
Checkbox(value=False, description='Enable AWQ')
pt_model_id = llm_model_configuration["model_id"]
pt_model_name = llm_model_id.value.split("-")[0]
fp16_model_dir = Path(llm_model_id.value) / "FP16"
int8_model_dir = Path(llm_model_id.value) / "INT8_compressed_weights"
int4_model_dir = Path(llm_model_id.value) / "INT4_compressed_weights"
def convert_to_fp16():
if (fp16_model_dir / "openvino_model.xml").exists():
return
remote_code = llm_model_configuration.get("remote_code", False)
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16".format(pt_model_id)
if remote_code:
export_command_base += " --trust-remote-code"
export_command = export_command_base + " " + str(fp16_model_dir)
display(Markdown("**Export command:**"))
display(Markdown(f"`{export_command}`"))
! $export_command
def convert_to_int8():
if (int8_model_dir / "openvino_model.xml").exists():
return
int8_model_dir.mkdir(parents=True, exist_ok=True)
remote_code = llm_model_configuration.get("remote_code", False)
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8".format(pt_model_id)
if remote_code:
export_command_base += " --trust-remote-code"
export_command = export_command_base + " " + str(int8_model_dir)
display(Markdown("**Export command:**"))
display(Markdown(f"`{export_command}`"))
! $export_command
def convert_to_int4():
compression_configs = {
"zephyr-7b-beta": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"mistral-7b": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"minicpm-2b-dpo": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"gemma-2b-it": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"notus-7b-v1": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"neural-chat-7b-v3-1": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"llama-2-chat-7b": {
"sym": True,
"group_size": 128,
"ratio": 0.8,
},
"llama-3-8b-instruct": {
"sym": True,
"group_size": 128,
"ratio": 0.8,
},
"gemma-7b-it": {
"sym": True,
"group_size": 128,
"ratio": 0.8,
},
"chatglm2-6b": {
"sym": True,
"group_size": 128,
"ratio": 0.72,
},
"qwen-7b-chat": {"sym": True, "group_size": 128, "ratio": 0.6},
"red-pajama-3b-chat": {
"sym": False,
"group_size": 128,
"ratio": 0.5,
},
"qwen2.5-7b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
"qwen2.5-3b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
"qwen2.5-14b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
"qwen2.5-1.5b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
"qwen2.5-0.5b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
"default": {
"sym": False,
"group_size": 128,
"ratio": 0.8,
},
}
model_compression_params = compression_configs.get(llm_model_id.value, compression_configs["default"])
if (int4_model_dir / "openvino_model.xml").exists():
return
remote_code = llm_model_configuration.get("remote_code", False)
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4".format(pt_model_id)
int4_compression_args = " --group-size {} --ratio {}".format(model_compression_params["group_size"], model_compression_params["ratio"])
if model_compression_params["sym"]:
int4_compression_args += " --sym"
if enable_awq.value:
int4_compression_args += " --awq --dataset wikitext2 --num-samples 128"
export_command_base += int4_compression_args
if remote_code:
export_command_base += " --trust-remote-code"
export_command = export_command_base + " " + str(int4_model_dir)
display(Markdown("**Export command:**"))
display(Markdown(f"`{export_command}`"))
! $export_command
if prepare_fp16_model.value:
convert_to_fp16()
if prepare_int8_model.value:
convert_to_int8()
if prepare_int4_model.value:
convert_to_int4()
Let’s compare model size for different compression types
fp16_weights = fp16_model_dir / "openvino_model.bin"
int8_weights = int8_model_dir / "openvino_model.bin"
int4_weights = int4_model_dir / "openvino_model.bin"
if fp16_weights.exists():
print(f"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB")
for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]):
if compressed_weights.exists():
print(f"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB")
if compressed_weights.exists() and fp16_weights.exists():
print(f"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}")
Size of model with INT4 compressed weights is 2319.41 MB
Convert embedding model using Optimum-CLI#
Since some embedding models can only support limited languages, we can filter them out according the LLM you selected.
embedding_model_id = list(SUPPORTED_EMBEDDING_MODELS[model_language.value])
embedding_model_id = widgets.Dropdown(
options=embedding_model_id,
value=embedding_model_id[0],
description="Embedding Model:",
disabled=False,
)
embedding_model_id
Dropdown(description='Embedding Model:', options=('bge-small-en-v1.5', 'bge-large-en-v1.5', 'bge-m3'), value='…
embedding_model_configuration = SUPPORTED_EMBEDDING_MODELS[model_language.value][embedding_model_id.value]
print(f"Selected {embedding_model_id.value} model")
Selected bge-small-en-v1.5 model
OpenVINO embedding model and tokenizer can be exported by
feature-extraction
task with optimum-cli
.
export_command_base = "optimum-cli export openvino --model {} --task feature-extraction".format(embedding_model_configuration["model_id"])
export_command = export_command_base + " " + str(embedding_model_id.value)
if not Path(embedding_model_id.value).exists():
! $export_command
Convert rerank model using Optimum-CLI#
rerank_model_id = list(SUPPORTED_RERANK_MODELS)
rerank_model_id = widgets.Dropdown(
options=rerank_model_id,
value=rerank_model_id[0],
description="Rerank Model:",
disabled=False,
)
rerank_model_id
Dropdown(description='Rerank Model:', options=('bge-reranker-v2-m3', 'bge-reranker-large', 'bge-reranker-base'…
rerank_model_configuration = SUPPORTED_RERANK_MODELS[rerank_model_id.value]
print(f"Selected {rerank_model_id.value} model")
Selected bge-reranker-v2-m3 model
Since rerank
model is sort of sentence classification task, its
OpenVINO IR and tokenizer can be exported by text-classification
task with optimum-cli
.
export_command_base = "optimum-cli export openvino --model {} --task text-classification".format(rerank_model_configuration["model_id"])
export_command = export_command_base + " " + str(rerank_model_id.value)
if not Path(rerank_model_id.value).exists():
! $export_command
Select device for inference and model variant#
Note: There may be no speedup for INT4/INT8 compressed models on dGPU.
Select device for embedding model inference#
embedding_device = device_widget()
embedding_device
Dropdown(description='Device:', options=('CPU', 'AUTO'), value='CPU')
print(f"Embedding model will be loaded to {embedding_device.value} device for text embedding")
Embedding model will be loaded to CPU device for text embedding
Optimize the BGE embedding model’s parameter precision when loading model to NPU device.
USING_NPU = embedding_device.value == "NPU"
npu_embedding_dir = embedding_model_id.value + "-npu"
npu_embedding_path = Path(npu_embedding_dir) / "openvino_model.xml"
if USING_NPU and not Path(npu_embedding_dir).exists():
shutil.copytree(embedding_model_id.value, npu_embedding_dir)
optimize_bge_embedding(Path(embedding_model_id.value) / "openvino_model.xml", npu_embedding_path)
Select device for rerank model inference#
rerank_device = device_widget()
rerank_device
Dropdown(description='Device:', options=('CPU', 'AUTO'), value='CPU')
print(f"Rerenk model will be loaded to {rerank_device.value} device for text reranking")
Rerenk model will be loaded to CPU device for text reranking
Select device for LLM model inference#
llm_device = device_widget("CPU", exclude=["NPU"])
llm_device
Dropdown(description='Device:', options=('CPU', 'AUTO'), value='CPU')
print(f"LLM model will be loaded to {llm_device.value} device for response generation")
LLM model will be loaded to CPU device for response generation
Load models#
Load embedding model#
Now a Hugging Face embedding model can be supported by OpenVINO through OpenVINOEmbeddings class of LlamaIndex.
from llama_index.embeddings.huggingface_openvino import OpenVINOEmbedding
embedding_model_name = npu_embedding_dir if USING_NPU else embedding_model_id.value
batch_size = 1 if USING_NPU else 4
embedding = OpenVINOEmbedding(
model_id_or_path=embedding_model_name, embed_batch_size=batch_size, device=embedding_device.value, model_kwargs={"compile": False}
)
if USING_NPU:
embedding._model.reshape(1, 512)
embedding._model.compile()
embeddings = embedding.get_text_embedding("Hello World!")
print(len(embeddings))
print(embeddings[:5])
Compiling the model to CPU ...
384
[-0.003275666618719697, -0.01169075071811676, 0.04155930131673813, -0.03814813867211342, 0.02418304793536663]
Load rerank model#
Now a Hugging Face embedding model can be supported by OpenVINO through OpenVINORerank class of LlamaIndex.
Note: Rerank can be skipped in RAG.
from llama_index.postprocessor.openvino_rerank import OpenVINORerank
reranker = OpenVINORerank(model_id_or_path=rerank_model_id.value, device=rerank_device.value, top_n=2)
Compiling the model to CPU ...
Load LLM model#
OpenVINO models can be run locally through the HuggingFacePipeline
class. To deploy a model with OpenVINO, you can specify the
backend="openvino"
parameter to trigger OpenVINO as backend
inference framework.
available_models = []
if int4_model_dir.exists():
available_models.append("INT4")
if int8_model_dir.exists():
available_models.append("INT8")
if fp16_model_dir.exists():
available_models.append("FP16")
model_to_run = widgets.Dropdown(
options=available_models,
value=available_models[0],
description="Model to run:",
disabled=False,
)
model_to_run
Dropdown(description='Model to run:', options=('INT4',), value='INT4')
OpenVINO models can be run locally through the OpenVINOLLM
class in
LlamaIndex.
If you have an Intel GPU, you can specify device_map="gpu"
to run
inference on it.
from llama_index.llms.openvino import OpenVINOLLM
import openvino.properties as props
import openvino.properties.hint as hints
import openvino.properties.streams as streams
if model_to_run.value == "INT4":
model_dir = int4_model_dir
elif model_to_run.value == "INT8":
model_dir = int8_model_dir
else:
model_dir = fp16_model_dir
print(f"Loading model from {model_dir}")
ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}
stop_tokens = llm_model_configuration.get("stop_tokens")
completion_to_prompt = llm_model_configuration.get("completion_to_prompt")
if "GPU" in llm_device.value and "qwen2-7b-instruct" in llm_model_id.value:
ov_config["GPU_ENABLE_SDPA_OPTIMIZATION"] = "NO"
# On a GPU device a model is executed in FP16 precision. For red-pajama-3b-chat model there known accuracy
# issues caused by this, which we avoid by setting precision hint to "f32".
if llm_model_id.value == "red-pajama-3b-chat" and "GPU" in core.available_devices and llm_device.value in ["GPU", "AUTO"]:
ov_config["INFERENCE_PRECISION_HINT"] = "f32"
llm = OpenVINOLLM(
model_id_or_path=str(model_dir),
context_window=3900,
max_new_tokens=2,
model_kwargs={"ov_config": ov_config, "trust_remote_code": True},
generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95},
completion_to_prompt=completion_to_prompt,
device_map=llm_device.value,
)
response = llm.complete("2 + 2 =")
print(str(response))
/home/ethan/intel/openvino_notebooks/openvino_env/lib/python3.11/site-packages/pydantic/_internal/_fields.py:161: UserWarning: Field "model_id" has conflict with protected namespace "model_". You may be able to resolve this warning by setting model_config['protected_namespaces'] = (). warnings.warn(
Loading model from phi-3-mini-instruct/INT4_compressed_weights
configuration_phi3.py: 0%| | 0.00/11.2k [00:00<?, ?B/s]
A new version of the following files was downloaded from https://huggingface.co/microsoft/Phi-3-mini-4k-instruct: - configuration_phi3.py . Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision. Compiling the model to CPU ... Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. /home/ethan/intel/openvino_notebooks/openvino_env/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:515: UserWarning: do_sample is set to False. However, temperature is set to 0.7 -- this flag is only used in sample-based generation modes. You should set do_sample=True or unset temperature. warnings.warn( /home/ethan/intel/openvino_notebooks/openvino_env/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:520: UserWarning: do_sample is set to False. However, top_p is set to 0.95 -- this flag is only used in sample-based generation modes. You should set do_sample=True or unset top_p. warnings.warn(
4
Run QA over Document#
A typical RAG application has two main components:
Indexing: a pipeline for ingesting data from a source and indexing it. This usually happen offline.
Retrieval and generation: the actual RAG chain, which takes the user query at run time and retrieves the relevant data from the index, then passes that to the model.
The most common full sequence from raw data to answer looks like:
Indexing
Load
: First we need to load our data. We’ll use DocumentLoaders for this.Split
: Text splitters break large Documents into smaller chunks. This is useful both for indexing data and for passing it in to a model, since large chunks are harder to search over and won’t in a model’s finite context window.Store
: We need somewhere to store and index our splits, so that they can later be searched over. This is often done using a VectorStore and Embeddings model.
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import Settings
from llama_index.readers.file import PyMuPDFReader
from llama_index.vector_stores.faiss import FaissVectorStore
from transformers import StoppingCriteria, StoppingCriteriaList
import faiss
import torch
if model_language.value == "English":
text_example_path = "text_example_en.pdf"
else:
text_example_path = "text_example_cn.pdf"
class StopOnTokens(StoppingCriteria):
def __init__(self, token_ids):
self.token_ids = token_ids
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_id in self.token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
if stop_tokens is not None:
if isinstance(stop_tokens[0], str):
stop_tokens = llm._tokenizer.convert_tokens_to_ids(stop_tokens)
stop_tokens = [StopOnTokens(stop_tokens)]
loader = PyMuPDFReader()
documents = loader.load(file_path=text_example_path)
# dimensions of embedding model
d = embedding._model.request.outputs[0].get_partial_shape()[2].get_length()
faiss_index = faiss.IndexFlatL2(d)
Settings.embed_model = embedding
llm.max_new_tokens = 2048
if stop_tokens is not None:
llm._stopping_criteria = StoppingCriteriaList(stop_tokens)
Settings.llm = llm
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
transformations=[SentenceSplitter(chunk_size=200, chunk_overlap=40)],
)
Retrieval and generation
Retrieve
: Given a user input, relevant splits are retrieved from storage using a Retriever.Generate
: A LLM produces an answer using a prompt that includes the question and the retrieved data.
query_engine = index.as_query_engine(streaming=True, similarity_top_k=10, node_postprocessors=[reranker])
if model_language.value == "English":
query = "What can Intel vPro® Enterprise systems offer?"
else:
query = "英特尔博锐® Enterprise系统提供哪些功能?"
streaming_response = query_engine.query(query)
streaming_response.print_response_stream()
/home/ethan/intel/openvino_notebooks/openvino_env/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:515: UserWarning: do_sample is set to False. However, temperature is set to 0.7 -- this flag is only used in sample-based generation modes. You should set do_sample=True or unset temperature. warnings.warn( /home/ethan/intel/openvino_notebooks/openvino_env/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:520: UserWarning: do_sample is set to False. However, top_p is set to 0.95 -- this flag is only used in sample-based generation modes. You should set do_sample=True or unset top_p. warnings.warn(
Intel vPro® Enterprise systems can offer a range of advanced security features to protect network infrastructure. These include network security appliances, secure access service edge (SASE), next-generation firewall (NGFW), real-time deep packet inspection, antivirus, intrusion prevention and detection, and SSL/TLS inspection. These systems support more devices, users, and key capabilities such as real-time threat detection while processing higher network throughput. They also drive advanced security features for growing network infrastructure with enhanced power efficiency and density.
Intel QuickAssist Technology (Intel QAT) accelerates and offloads key encryption/compression workloads from the CPU to free up CPU cycles. Trusted execution environments (TEEs) with Intel Software Guard Extensions (Intel SGX) and Intel Trust Domain Extensions (Intel TDX) help protect network workloads and encryption keys across edge-to-cloud infrastructure.
In industrial and energy sectors, Intel vPro® Enterprise systems improve manageability and help reduce the operational costs of automation and control systems. Hardened platforms ensure system reliability in extreme conditions, and high core density provides more dedicated resources to VMs.
Intel vPro® Enterprise systems also offer higher performance per watt, one-core density, and faster DDR5 memory bandwidth to enhance throughput and efficiency for edge security workloads. Intel QuickAssist Technology (Intel QAT) accelerates and offloads key encryption/compression workloads from the CPU to free up CPU cycles. Trusted execution environments (TEEs) with Intel Software Guard Extensions (Intel SGX) and Intel Trust Domain Extensions (Intel TDX) harden platforms from unauthorized access.
Cache Allocation Technology (CAT) within the Intel® Resource Director Technology (Intel® RDT) framework enables performance prioritization for key applications to help meet real-time deterministic requirements.
Gradio Demo#
Now, when model created, we can setup Chatbot interface using Gradio.
First we can check the default prompt template in LlamaIndex pipeline.
prompts_dict = query_engine.get_prompts()
def display_prompt_dict(prompts_dict):
for k, p in prompts_dict.items():
text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>"
display(Markdown(text_md))
print(p.get_template())
display(Markdown("<br><br>"))
display_prompt_dict(prompts_dict)
Prompt Key: response_synthesizer:text_qa_templateText:
Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the query.
Query: {query_str}
Answer:
Prompt Key: response_synthesizer:refine_templateText:
The original query is as follows: {query_str}
We have provided an existing answer: {existing_answer}
We have the opportunity to refine the existing answer (only if needed) with some more context below.
------------
{context_msg}
------------
Given the new context, refine the original answer to better answer the query. If the context isn't useful, return the original answer.
Refined Answer:
from langchain.text_splitter import RecursiveCharacterTextSplitter
from llama_index.core.node_parser import LangchainNodeParser
import gradio as gr
TEXT_SPLITERS = {
"SentenceSplitter": SentenceSplitter,
"RecursiveCharacter": RecursiveCharacterTextSplitter,
}
def default_partial_text_processor(partial_text: str, new_text: str):
"""
helper for updating partially generated answer, used by default
Params:
partial_text: text buffer for storing previosly generated text
new_text: text update for the current step
Returns:
updated text string
"""
partial_text += new_text
return partial_text
text_processor = llm_model_configuration.get("partial_text_processor", default_partial_text_processor)
def create_vectordb(doc, spliter_name, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, run_rerank):
"""
Initialize a vector database
Params:
doc: orignal documents provided by user
chunk_size: size of a single sentence chunk
chunk_overlap: overlap size between 2 chunks
vector_search_top_k: Vector search top k
vector_rerank_top_n: Rerrank top n
run_rerank: whether to run reranker
"""
global query_engine
global index
if vector_rerank_top_n > vector_search_top_k:
gr.Warning("Search top k must >= Rerank top n")
loader = PyMuPDFReader()
documents = loader.load(file_path=doc.name)
spliter = TEXT_SPLITERS[spliter_name](chunk_size=chunk_size, chunk_overlap=chunk_overlap)
if spliter_name == "RecursiveCharacter":
spliter = LangchainNodeParser(spliter)
faiss_index = faiss.IndexFlatL2(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
transformations=[spliter],
)
if run_rerank:
reranker.top_n = vector_rerank_top_n
query_engine = index.as_query_engine(streaming=True, similarity_top_k=vector_search_top_k, node_postprocessors=[reranker])
else:
query_engine = index.as_query_engine(streaming=True, similarity_top_k=vector_search_top_k)
return "Vector database is Ready"
def update_retriever(vector_search_top_k, vector_rerank_top_n, run_rerank):
"""
Update retriever
Params:
vector_search_top_k: size of searching results
vector_rerank_top_n: size of rerank results
run_rerank: whether run rerank step
"""
global query_engine
global index
if vector_rerank_top_n > vector_search_top_k:
gr.Warning("Search top k must >= Rerank top n")
if run_rerank:
reranker.top_n = vector_rerank_top_n
query_engine = index.as_query_engine(streaming=True, similarity_top_k=vector_search_top_k, node_postprocessors=[reranker])
else:
query_engine = index.as_query_engine(streaming=True, similarity_top_k=vector_search_top_k)
def bot(history, temperature, top_p, top_k, repetition_penalty, do_rag):
"""
callback function for running chatbot on submit button click
Params:
history: conversation history
temperature: parameter for control the level of creativity in AI-generated text.
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability.
top_k: parameter for control the range of tokens considered by the AI model based on their cumulative probability, selecting number of tokens with highest probability.
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text.
do_rag: whether do RAG when generating texts.
"""
llm.generate_kwargs = dict(
temperature=temperature,
do_sample=temperature > 0.0,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
)
partial_text = ""
if do_rag:
streaming_response = query_engine.query(history[-1][0])
for new_text in streaming_response.response_gen:
partial_text = text_processor(partial_text, new_text)
history[-1][1] = partial_text
yield history
else:
streaming_response = llm.stream_complete(history[-1][0])
for new_text in streaming_response:
partial_text = text_processor(partial_text, new_text.delta)
history[-1][1] = partial_text
yield history
def request_cancel():
llm._model.request.cancel()
if not Path("gradio_helper.py").exists():
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/llm-rag-llamaindex/gradio_helper.py")
open("gradio_helper.py", "w").write(r.text)
from gradio_helper import make_demo
demo = make_demo(
load_doc_fn=create_vectordb,
run_fn=bot,
stop_fn=request_cancel,
update_retriever_fn=update_retriever,
model_name=llm_model_id.value,
language=model_language.value,
)
try:
demo.queue().launch()
except Exception:
demo.queue().launch(share=True)
# If you are launching remotely, specify server_name and server_port
# EXAMPLE: `demo.launch(server_name='your server name', server_port='server port in int')`
# To learn more please refer to the Gradio docs: https://gradio.app/docs/
# please uncomment and run this cell for stopping gradio interface
# demo.close()