Live Human Pose Estimation with OpenVINO™#

This Jupyter notebook can be launched on-line, opening an interactive environment in a browser window. You can also make a local installation. Choose one of the following options:

BinderGithub

This notebook demonstrates live pose estimation with OpenVINO, using the OpenPose human-pose-estimation-0001 model from Open Model Zoo. Final part of this notebook shows live inference results from a webcam. Additionally, you can also upload a video file.

NOTE: To use a webcam, you must run this Jupyter notebook on a computer with a webcam. If you run on a server, the webcam will not work. However, you can still do inference on a video in the final step.

Table of contents:

Installation Instructions#

This is a self-contained example that relies solely on its own code.

We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.

%pip install -q "openvino>=2023.1.0" opencv-python tqdm
Note: you may need to restart the kernel to use updated packages.

Imports#

import collections
import time
from pathlib import Path

import cv2
import numpy as np
from IPython import display
from numpy.lib.stride_tricks import as_strided
import openvino as ov

# Fetch `notebook_utils` module
import requests

r = requests.get(
    url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)

open("notebook_utils.py", "w").write(r.text)
import notebook_utils as utils

The model#

Download the model#

Use the download_file, a function from the notebook_utils file. It automatically creates a directory structure and downloads the selected model.

If you want to download another model, replace the name of the model and precision in the code below.

NOTE: This may require a different pose decoder.

# A directory where the model will be downloaded.
base_model_dir = Path("model")

# The name of the model from Open Model Zoo.
model_name = "human-pose-estimation-0001"
# Selected precision (FP32, FP16, FP16-INT8).
precision = "FP16-INT8"

model_path = base_model_dir / "intel" / model_name / precision / f"{model_name}.xml"

if not model_path.exists():
    model_url_dir = f"https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/3/{model_name}/{precision}/"
    utils.download_file(model_url_dir + model_name + ".xml", model_path.name, model_path.parent)
    utils.download_file(
        model_url_dir + model_name + ".bin",
        model_path.with_suffix(".bin").name,
        model_path.parent,
    )
model/intel/human-pose-estimation-0001/FP16-INT8/human-pose-estimation-0001.xml:   0%|          | 0.00/474k [0…
model/intel/human-pose-estimation-0001/FP16-INT8/human-pose-estimation-0001.bin:   0%|          | 0.00/4.03M […

Load the model#

Downloaded models are located in a fixed structure, which indicates a vendor, the name of the model and a precision.

Only a few lines of code are required to run the model. First, initialize OpenVINO Runtime. Then, read the network architecture and model weights from the .bin and .xml files to compile it for the desired device. Select device from dropdown list for running inference using OpenVINO.

import ipywidgets as widgets

core = ov.Core()

device = widgets.Dropdown(
    options=core.available_devices + ["AUTO"],
    value="AUTO",
    description="Device:",
    disabled=False,
)

device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
# Initialize OpenVINO Runtime
core = ov.Core()
# Read the network from a file.
model = core.read_model(model_path)
# Let the AUTO device decide where to load the model (you can use CPU, GPU as well).
compiled_model = core.compile_model(model=model, device_name=device.value, config={"PERFORMANCE_HINT": "LATENCY"})

# Get the input and output names of nodes.
input_layer = compiled_model.input(0)
output_layers = compiled_model.outputs

# Get the input size.
height, width = list(input_layer.shape)[2:]

Input layer has the name of the input node and output layers contain names of output nodes of the network. In the case of OpenPose Model, there is 1 input and 2 outputs: PAFs and keypoints heatmap.

input_layer.any_name, [o.any_name for o in output_layers]
('data', ['Mconv7_stage2_L1', 'Mconv7_stage2_L2'])

OpenPose Decoder#

To transform the raw results from the neural network into pose estimations, you need OpenPose Decoder. It is provided in the Open Model Zoo and compatible with the human-pose-estimation-0001 model.

If you choose a model other than human-pose-estimation-0001 you will need another decoder (for example, AssociativeEmbeddingDecoder), which is available in the demos section of Open Model Zoo.

# code from https://github.com/openvinotoolkit/open_model_zoo/blob/9296a3712069e688fe64ea02367466122c8e8a3b/demos/common/python/models/open_pose.py#L135
class OpenPoseDecoder:
    BODY_PARTS_KPT_IDS = (
        (1, 2),
        (1, 5),
        (2, 3),
        (3, 4),
        (5, 6),
        (6, 7),
        (1, 8),
        (8, 9),
        (9, 10),
        (1, 11),
        (11, 12),
        (12, 13),
        (1, 0),
        (0, 14),
        (14, 16),
        (0, 15),
        (15, 17),
        (2, 16),
        (5, 17),
    )
    BODY_PARTS_PAF_IDS = (
        12,
        20,
        14,
        16,
        22,
        24,
        0,
        2,
        4,
        6,
        8,
        10,
        28,
        30,
        34,
        32,
        36,
        18,
        26,
    )

    def __init__(
        self,
        num_joints=18,
        skeleton=BODY_PARTS_KPT_IDS,
        paf_indices=BODY_PARTS_PAF_IDS,
        max_points=100,
        score_threshold=0.1,
        min_paf_alignment_score=0.05,
        delta=0.5,
    ):
        self.num_joints = num_joints
        self.skeleton = skeleton
        self.paf_indices = paf_indices
        self.max_points = max_points
        self.score_threshold = score_threshold
        self.min_paf_alignment_score = min_paf_alignment_score
        self.delta = delta

        self.points_per_limb = 10
        self.grid = np.arange(self.points_per_limb, dtype=np.float32).reshape(1, -1, 1)

    def __call__(self, heatmaps, nms_heatmaps, pafs):
        batch_size, _, h, w = heatmaps.shape
        assert batch_size == 1, "Batch size of 1 only supported"

        keypoints = self.extract_points(heatmaps, nms_heatmaps)
        pafs = np.transpose(pafs, (0, 2, 3, 1))

        if self.delta > 0:
            for kpts in keypoints:
                kpts[:, :2] += self.delta
                np.clip(kpts[:, 0], 0, w - 1, out=kpts[:, 0])
                np.clip(kpts[:, 1], 0, h - 1, out=kpts[:, 1])

        pose_entries, keypoints = self.group_keypoints(keypoints, pafs, pose_entry_size=self.num_joints + 2)
        poses, scores = self.convert_to_coco_format(pose_entries, keypoints)
        if len(poses) > 0:
            poses = np.asarray(poses, dtype=np.float32)
            poses = poses.reshape((poses.shape[0], -1, 3))
        else:
            poses = np.empty((0, 17, 3), dtype=np.float32)
            scores = np.empty(0, dtype=np.float32)

        return poses, scores

    def extract_points(self, heatmaps, nms_heatmaps):
        batch_size, channels_num, h, w = heatmaps.shape
        assert batch_size == 1, "Batch size of 1 only supported"
        assert channels_num >= self.num_joints

        xs, ys, scores = self.top_k(nms_heatmaps)
        masks = scores > self.score_threshold
        all_keypoints = []
        keypoint_id = 0
        for k in range(self.num_joints):
            # Filter low-score points.
            mask = masks[0, k]
            x = xs[0, k][mask].ravel()
            y = ys[0, k][mask].ravel()
            score = scores[0, k][mask].ravel()
            n = len(x)
            if n == 0:
                all_keypoints.append(np.empty((0, 4), dtype=np.float32))
                continue
            # Apply quarter offset to improve localization accuracy.
            x, y = self.refine(heatmaps[0, k], x, y)
            np.clip(x, 0, w - 1, out=x)
            np.clip(y, 0, h - 1, out=y)
            # Pack resulting points.
            keypoints = np.empty((n, 4), dtype=np.float32)
            keypoints[:, 0] = x
            keypoints[:, 1] = y
            keypoints[:, 2] = score
            keypoints[:, 3] = np.arange(keypoint_id, keypoint_id + n)
            keypoint_id += n
            all_keypoints.append(keypoints)
        return all_keypoints

    def top_k(self, heatmaps):
        N, K, _, W = heatmaps.shape
        heatmaps = heatmaps.reshape(N, K, -1)
        # Get positions with top scores.
        ind = heatmaps.argpartition(-self.max_points, axis=2)[:, :, -self.max_points :]
        scores = np.take_along_axis(heatmaps, ind, axis=2)
        # Keep top scores sorted.
        subind = np.argsort(-scores, axis=2)
        ind = np.take_along_axis(ind, subind, axis=2)
        scores = np.take_along_axis(scores, subind, axis=2)
        y, x = np.divmod(ind, W)
        return x, y, scores

    @staticmethod
    def refine(heatmap, x, y):
        h, w = heatmap.shape[-2:]
        valid = np.logical_and(np.logical_and(x > 0, x < w - 1), np.logical_and(y > 0, y < h - 1))
        xx = x[valid]
        yy = y[valid]
        dx = np.sign(heatmap[yy, xx + 1] - heatmap[yy, xx - 1], dtype=np.float32) * 0.25
        dy = np.sign(heatmap[yy + 1, xx] - heatmap[yy - 1, xx], dtype=np.float32) * 0.25
        x = x.astype(np.float32)
        y = y.astype(np.float32)
        x[valid] += dx
        y[valid] += dy
        return x, y

    @staticmethod
    def is_disjoint(pose_a, pose_b):
        pose_a = pose_a[:-2]
        pose_b = pose_b[:-2]
        return np.all(np.logical_or.reduce((pose_a == pose_b, pose_a < 0, pose_b < 0)))

    def update_poses(
        self,
        kpt_a_id,
        kpt_b_id,
        all_keypoints,
        connections,
        pose_entries,
        pose_entry_size,
    ):
        for connection in connections:
            pose_a_idx = -1
            pose_b_idx = -1
            for j, pose in enumerate(pose_entries):
                if pose[kpt_a_id] == connection[0]:
                    pose_a_idx = j
                if pose[kpt_b_id] == connection[1]:
                    pose_b_idx = j
            if pose_a_idx < 0 and pose_b_idx < 0:
                # Create new pose entry.
                pose_entry = np.full(pose_entry_size, -1, dtype=np.float32)
                pose_entry[kpt_a_id] = connection[0]
                pose_entry[kpt_b_id] = connection[1]
                pose_entry[-1] = 2
                pose_entry[-2] = np.sum(all_keypoints[connection[0:2], 2]) + connection[2]
                pose_entries.append(pose_entry)
            elif pose_a_idx >= 0 and pose_b_idx >= 0 and pose_a_idx != pose_b_idx:
                # Merge two poses are disjoint merge them, otherwise ignore connection.
                pose_a = pose_entries[pose_a_idx]
                pose_b = pose_entries[pose_b_idx]
                if self.is_disjoint(pose_a, pose_b):
                    pose_a += pose_b
                    pose_a[:-2] += 1
                    pose_a[-2] += connection[2]
                    del pose_entries[pose_b_idx]
            elif pose_a_idx >= 0 and pose_b_idx >= 0:
                # Adjust score of a pose.
                pose_entries[pose_a_idx][-2] += connection[2]
            elif pose_a_idx >= 0:
                # Add a new limb into pose.
                pose = pose_entries[pose_a_idx]
                if pose[kpt_b_id] < 0:
                    pose[-2] += all_keypoints[connection[1], 2]
                pose[kpt_b_id] = connection[1]
                pose[-2] += connection[2]
                pose[-1] += 1
            elif pose_b_idx >= 0:
                # Add a new limb into pose.
                pose = pose_entries[pose_b_idx]
                if pose[kpt_a_id] < 0:
                    pose[-2] += all_keypoints[connection[0], 2]
                pose[kpt_a_id] = connection[0]
                pose[-2] += connection[2]
                pose[-1] += 1
        return pose_entries

    @staticmethod
    def connections_nms(a_idx, b_idx, affinity_scores):
        # From all retrieved connections that share starting/ending keypoints leave only the top-scoring ones.
        order = affinity_scores.argsort()[::-1]
        affinity_scores = affinity_scores[order]
        a_idx = a_idx[order]
        b_idx = b_idx[order]
        idx = []
        has_kpt_a = set()
        has_kpt_b = set()
        for t, (i, j) in enumerate(zip(a_idx, b_idx)):
            if i not in has_kpt_a and j not in has_kpt_b:
                idx.append(t)
                has_kpt_a.add(i)
                has_kpt_b.add(j)
        idx = np.asarray(idx, dtype=np.int32)
        return a_idx[idx], b_idx[idx], affinity_scores[idx]

    def group_keypoints(self, all_keypoints_by_type, pafs, pose_entry_size=20):
        all_keypoints = np.concatenate(all_keypoints_by_type, axis=0)
        pose_entries = []
        # For every limb.
        for part_id, paf_channel in enumerate(self.paf_indices):
            kpt_a_id, kpt_b_id = self.skeleton[part_id]
            kpts_a = all_keypoints_by_type[kpt_a_id]
            kpts_b = all_keypoints_by_type[kpt_b_id]
            n = len(kpts_a)
            m = len(kpts_b)
            if n == 0 or m == 0:
                continue

            # Get vectors between all pairs of keypoints, i.e. candidate limb vectors.
            a = kpts_a[:, :2]
            a = np.broadcast_to(a[None], (m, n, 2))
            b = kpts_b[:, :2]
            vec_raw = (b[:, None, :] - a).reshape(-1, 1, 2)

            # Sample points along every candidate limb vector.
            steps = 1 / (self.points_per_limb - 1) * vec_raw
            points = steps * self.grid + a.reshape(-1, 1, 2)
            points = points.round().astype(dtype=np.int32)
            x = points[..., 0].ravel()
            y = points[..., 1].ravel()

            # Compute affinity score between candidate limb vectors and part affinity field.
            part_pafs = pafs[0, :, :, paf_channel : paf_channel + 2]
            field = part_pafs[y, x].reshape(-1, self.points_per_limb, 2)
            vec_norm = np.linalg.norm(vec_raw, ord=2, axis=-1, keepdims=True)
            vec = vec_raw / (vec_norm + 1e-6)
            affinity_scores = (field * vec).sum(-1).reshape(-1, self.points_per_limb)
            valid_affinity_scores = affinity_scores > self.min_paf_alignment_score
            valid_num = valid_affinity_scores.sum(1)
            affinity_scores = (affinity_scores * valid_affinity_scores).sum(1) / (valid_num + 1e-6)
            success_ratio = valid_num / self.points_per_limb

            # Get a list of limbs according to the obtained affinity score.
            valid_limbs = np.where(np.logical_and(affinity_scores > 0, success_ratio > 0.8))[0]
            if len(valid_limbs) == 0:
                continue
            b_idx, a_idx = np.divmod(valid_limbs, n)
            affinity_scores = affinity_scores[valid_limbs]

            # Suppress incompatible connections.
            a_idx, b_idx, affinity_scores = self.connections_nms(a_idx, b_idx, affinity_scores)
            connections = list(
                zip(
                    kpts_a[a_idx, 3].astype(np.int32),
                    kpts_b[b_idx, 3].astype(np.int32),
                    affinity_scores,
                )
            )
            if len(connections) == 0:
                continue

            # Update poses with new connections.
            pose_entries = self.update_poses(
                kpt_a_id,
                kpt_b_id,
                all_keypoints,
                connections,
                pose_entries,
                pose_entry_size,
            )

        # Remove poses with not enough points.
        pose_entries = np.asarray(pose_entries, dtype=np.float32).reshape(-1, pose_entry_size)
        pose_entries = pose_entries[pose_entries[:, -1] >= 3]
        return pose_entries, all_keypoints

    @staticmethod
    def convert_to_coco_format(pose_entries, all_keypoints):
        num_joints = 17
        coco_keypoints = []
        scores = []
        for pose in pose_entries:
            if len(pose) == 0:
                continue
            keypoints = np.zeros(num_joints * 3)
            reorder_map = [0, -1, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
            person_score = pose[-2]
            for keypoint_id, target_id in zip(pose[:-2], reorder_map):
                if target_id < 0:
                    continue
                cx, cy, score = 0, 0, 0  # keypoint not found
                if keypoint_id != -1:
                    cx, cy, score = all_keypoints[int(keypoint_id), 0:3]
                keypoints[target_id * 3 + 0] = cx
                keypoints[target_id * 3 + 1] = cy
                keypoints[target_id * 3 + 2] = score
            coco_keypoints.append(keypoints)
            scores.append(person_score * max(0, (pose[-1] - 1)))  # -1 for 'neck'
        return np.asarray(coco_keypoints), np.asarray(scores)

Processing#

decoder = OpenPoseDecoder()

Process Results#

A bunch of useful functions to transform results into poses.

First, pool the heatmap. Since pooling is not available in numpy, use a simple method to do it directly with numpy. Then, use non-maximum suppression to get the keypoints from the heatmap. After that, decode poses by using the decoder. Since the input image is bigger than the network outputs, you need to multiply all pose coordinates by a scaling factor.

# 2D pooling in numpy (from: https://stackoverflow.com/a/54966908/1624463)
def pool2d(A, kernel_size, stride, padding, pool_mode="max"):
    """
    2D Pooling

    Parameters:
        A: input 2D array
        kernel_size: int, the size of the window
        stride: int, the stride of the window
        padding: int, implicit zero paddings on both sides of the input
        pool_mode: string, 'max' or 'avg'
    """
    # Padding
    A = np.pad(A, padding, mode="constant")

    # Window view of A
    output_shape = (
        (A.shape[0] - kernel_size) // stride + 1,
        (A.shape[1] - kernel_size) // stride + 1,
    )
    kernel_size = (kernel_size, kernel_size)
    A_w = as_strided(
        A,
        shape=output_shape + kernel_size,
        strides=(stride * A.strides[0], stride * A.strides[1]) + A.strides,
    )
    A_w = A_w.reshape(-1, *kernel_size)

    # Return the result of pooling.
    if pool_mode == "max":
        return A_w.max(axis=(1, 2)).reshape(output_shape)
    elif pool_mode == "avg":
        return A_w.mean(axis=(1, 2)).reshape(output_shape)


# non maximum suppression
def heatmap_nms(heatmaps, pooled_heatmaps):
    return heatmaps * (heatmaps == pooled_heatmaps)


# Get poses from results.
def process_results(img, pafs, heatmaps):
    # This processing comes from
    # https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/models/open_pose.py
    pooled_heatmaps = np.array([[pool2d(h, kernel_size=3, stride=1, padding=1, pool_mode="max") for h in heatmaps[0]]])
    nms_heatmaps = heatmap_nms(heatmaps, pooled_heatmaps)

    # Decode poses.
    poses, scores = decoder(heatmaps, nms_heatmaps, pafs)
    output_shape = list(compiled_model.output(index=0).partial_shape)
    output_scale = (
        img.shape[1] / output_shape[3].get_length(),
        img.shape[0] / output_shape[2].get_length(),
    )
    # Multiply coordinates by a scaling factor.
    poses[:, :, :2] *= output_scale
    return poses, scores

Draw Pose Overlays#

Draw pose overlays on the image to visualize estimated poses. Joints are drawn as circles and limbs are drawn as lines. The code is based on the Human Pose Estimation Demo from Open Model Zoo.

colors = (
    (255, 0, 0),
    (255, 0, 255),
    (170, 0, 255),
    (255, 0, 85),
    (255, 0, 170),
    (85, 255, 0),
    (255, 170, 0),
    (0, 255, 0),
    (255, 255, 0),
    (0, 255, 85),
    (170, 255, 0),
    (0, 85, 255),
    (0, 255, 170),
    (0, 0, 255),
    (0, 255, 255),
    (85, 0, 255),
    (0, 170, 255),
)

default_skeleton = (
    (15, 13),
    (13, 11),
    (16, 14),
    (14, 12),
    (11, 12),
    (5, 11),
    (6, 12),
    (5, 6),
    (5, 7),
    (6, 8),
    (7, 9),
    (8, 10),
    (1, 2),
    (0, 1),
    (0, 2),
    (1, 3),
    (2, 4),
    (3, 5),
    (4, 6),
)


def draw_poses(img, poses, point_score_threshold, skeleton=default_skeleton):
    if poses.size == 0:
        return img

    img_limbs = np.copy(img)
    for pose in poses:
        points = pose[:, :2].astype(np.int32)
        points_scores = pose[:, 2]
        # Draw joints.
        for i, (p, v) in enumerate(zip(points, points_scores)):
            if v > point_score_threshold:
                cv2.circle(img, tuple(p), 1, colors[i], 2)
        # Draw limbs.
        for i, j in skeleton:
            if points_scores[i] > point_score_threshold and points_scores[j] > point_score_threshold:
                cv2.line(
                    img_limbs,
                    tuple(points[i]),
                    tuple(points[j]),
                    color=colors[j],
                    thickness=4,
                )
    cv2.addWeighted(img, 0.4, img_limbs, 0.6, 0, dst=img)
    return img

Main Processing Function#

Run pose estimation on the specified source. Either a webcam or a video file.

# Main processing function to run pose estimation.
def run_pose_estimation(source=0, flip=False, use_popup=False, skip_first_frames=0):
    pafs_output_key = compiled_model.output("Mconv7_stage2_L1")
    heatmaps_output_key = compiled_model.output("Mconv7_stage2_L2")
    player = None
    try:
        # Create a video player to play with target fps.
        player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_first_frames)
        # Start capturing.
        player.start()
        if use_popup:
            title = "Press ESC to Exit"
            cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)

        processing_times = collections.deque()

        while True:
            # Grab the frame.
            frame = player.next()
            if frame is None:
                print("Source ended")
                break
            # If the frame is larger than full HD, reduce size to improve the performance.
            scale = 1280 / max(frame.shape)
            if scale < 1:
                frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

            # Resize the image and change dims to fit neural network input.
            # (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/human-pose-estimation-0001)
            input_img = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA)
            # Create a batch of images (size = 1).
            input_img = input_img.transpose((2, 0, 1))[np.newaxis, ...]

            # Measure processing time.
            start_time = time.time()
            # Get results.
            results = compiled_model([input_img])
            stop_time = time.time()

            pafs = results[pafs_output_key]
            heatmaps = results[heatmaps_output_key]
            # Get poses from network results.
            poses, scores = process_results(frame, pafs, heatmaps)

            # Draw poses on a frame.
            frame = draw_poses(frame, poses, 0.1)

            processing_times.append(stop_time - start_time)
            # Use processing times from last 200 frames.
            if len(processing_times) > 200:
                processing_times.popleft()

            _, f_width = frame.shape[:2]
            # mean processing time [ms]
            processing_time = np.mean(processing_times) * 1000
            fps = 1000 / processing_time
            cv2.putText(
                frame,
                f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)",
                (20, 40),
                cv2.FONT_HERSHEY_COMPLEX,
                f_width / 1000,
                (0, 0, 255),
                1,
                cv2.LINE_AA,
            )

            # Use this workaround if there is flickering.
            if use_popup:
                cv2.imshow(title, frame)
                key = cv2.waitKey(1)
                # escape = 27
                if key == 27:
                    break
            else:
                # Encode numpy array to jpg.
                _, encoded_img = cv2.imencode(".jpg", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])
                # Create an IPython image.
                i = display.Image(data=encoded_img)
                # Display the image in this notebook.
                display.clear_output(wait=True)
                display.display(i)
    # ctrl-c
    except KeyboardInterrupt:
        print("Interrupted")
    # any different error
    except RuntimeError as e:
        print(e)
    finally:
        if player is not None:
            # Stop capturing.
            player.stop()
        if use_popup:
            cv2.destroyAllWindows()

Run#

Run Live Pose Estimation#

Use a webcam as the video input. By default, the primary webcam is set with source=0. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set flip=True when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set use_popup=True.

NOTE: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server (for example, Binder), the webcam will not work. Popup mode may not work if you run this notebook on a remote computer (for example, Binder).

If you do not have a webcam, you can still run this demo with a video file. Any format supported by OpenCV will work. You can skip first N frames to fast forward video.

Run the pose estimation:

USE_WEBCAM = False
cam_id = 0
video_file = "https://github.com/intel-iot-devkit/sample-videos/blob/master/store-aisle-detection.mp4?raw=true"
source = cam_id if USE_WEBCAM else video_file

additional_options = {"skip_first_frames": 500} if not USE_WEBCAM else {}
run_pose_estimation(source=source, flip=isinstance(source, int), use_popup=False, **additional_options)
../_images/pose-estimation-with-output_22_0.png
Source ended