Shape Calculation Rules for Pooling Operators#

Mathematical Formulation

Output shape calculation based on auto_pad and rounding_type:

  • auto_pad = explicit and rounding_type = floor

    H_out = floor((H + pads_begin[0] + pads_end[0] - ((kernel[0] - 1) * dilations[0] + 1)) / strides[0] + 1) W_out = floor((W + pads_begin[1] + pads_end[1] - ((kernel[1] - 1) * dilations[1] + 1)) / strides[1] + 1) D_out = floor((D + pads_begin[2] + pads_end[2] - ((kernel[2] - 1) * dilations[2] + 1)) / strides[2] + 1)

  • auto_pad = explicit and rounding_type = ceil

    H_out = ceil((H + pads_begin[0] + pads_end[0] - ((kernel[0] - 1) * dilations[0] + 1)) / strides[0] + 1) W_out = ceil((W + pads_begin[1] + pads_end[1] - ((kernel[1] - 1) * dilations[1] + 1)) / strides[1] + 1) D_out = ceil((D + pads_begin[2] + pads_end[2] - ((kernel[2] - 1) * dilations[2] + 1)) / strides[2] + 1)

  • auto_pad = valid
    Please note that AvgPool does not support dilations attribute, in wchich case its value should be replaced with 1.

    H_out = ceil((H - ((kernel[0] - 1) * dilations[0] + 1) + 1) / strides[0]) W_out = ceil((W - ((kernel[1] - 1) * dilations[1] + 1) + 1) / strides[1]) D_out = ceil((D - ((kernel[2] - 1) * dilations[2] + 1) + 1) / strides[2])

  • auto_pad = same_upper / same_lower

    H_out = H W_out = W D_out = D

If H + pads_begin[i] + pads_end[i] - kernel[i] is not divisible by strides[i] evenly, the result is rounded with respect to the rounding_type attribute. If rounding_type is set to ceil_torch, the last pooling operation within a dimension cannot start in the padding area. If this is the case, the respective dimension is reduced by 1. More context can be found in the PyTorch issue discussion.

Examples

  1. Example 1 shows how MaxPool operates with 4D input using 2D kernel and auto_pad = explicit.

    input = [[[[-1, 2, 3],
               [4, 5, -6],
               [-7, 8, 9]]]]   # shape: (1, 1, 3, 3)
    strides = [1, 1]
    pads_begin = [1, 1]
    pads_end = [1, 1]
    kernel = [2, 2]
    rounding_type = "floor"
    auto_pad = "explicit"
    output0 = [[[[-1, 2, 3, 3],
                 [4, 5, 5, -6],
                 [4, 8, 9, 9],
                 [-7, 8, 9, 9]]]]   # shape: (1, 1, 4, 4)
    output1 = [[[[0, 1, 2, 2],
                 [3, 4, 4, 5],
                 [3, 7, 8, 8],
                 [6, 7, 8, 8]]]]   # shape: (1, 1, 4, 4)
    
  2. Example 2 shows how MaxPool operates with 3D input using 1D kernel and auto_pad = valid.

    input = [[[-1, 2, 3, 5, -7, 9, 1]]]   # shape: (1, 1, 7)
    strides = [1]
    kernel = [3]
    rounding_type = "floor"
    auto_pad = "valid"
    output0 = [[[3, 5, 5, 9, 9]]]   # shape: (1, 1, 5)
    output1 = [[[2, 3, 3, 5, 5]]]   # shape: (1, 1, 5)
    
  3. Example 3 shows how MaxPool operates with 4D input using 2D kernel and auto_pad = same_lower.

    input = [[[[-1, 2, 3],
             [4, 5, -6],
             [-7, 8, 9]]]]   # shape: (1, 1, 3, 3)
    strides = [1, 1]
    kernel = [2, 2]
    rounding_type = "floor"
    auto_pad = "same_lower"
    output0 = [[[[-1, 2, 3],
                [4, 5, 5]
                [4, 8, 9]]]]   # shape: (1, 1, 3, 3)
    output1 = [[[[0, 1, 2],
                [3, 4, 4],
                [3, 7, 8]]]]   # shape: (1, 1, 3, 3)
    
  4. Example 4 shows how MaxPool operates with 4D input using 2D kernel and auto_pad = same_upper.

    input = [[[[-1, 2, 3],
               [4, 5, -6],
               [-7, 8, 9]],
              [[2, -1, 5],
               [6, -7, 1],
               [8, 2, -3]]]]   # shape: (1, 2, 3, 3)
    strides = [1, 1]
    kernel = [2, 2]
    rounding_type = "floor"
    auto_pad = "same_upper"
    output0 = [[[[5, 5, 3],
                 [8, 9, 9]
                 [8, 9, 9]],
                [[6, 5, 5],
                 [8, 2, 1],
                 [8, 2, -3]]]]   # shape: (1, 2, 3, 3)
    output1 = [[[[4, 4, 2],
                 [7, 8, 8],
                 [7, 8, 8]],
                [[12, 11, 11],
                 [15, 16, 14],
                 [15, 16, 17]]]]   # shape: (1, 2, 3, 3)
    
  5. Example 5 shows how MaxPool operates with 4D input using 2D kernel and rounding_type = ceil_torch.

    input = [[[[1, 2, 3],
               [4, 5, 6],
               [7, 8, 9]]]]   # shape: (1, 1, 3, 3)
    strides = [2, 2]
    kernel = [2, 2]
    pads_begin = [1, 1]
    pads_end = [1, 1]
    rounding_type = "ceil_torch"
    output0 = [[[[1, 3],
                 [7, 9]]]]   # shape: (1, 1, 2, 2)
    output1 = [[[[0, 2],
                 [6, 8]]]]   # shape: (1, 1, 2, 2)
    
  6. Example 6 shows how MaxPool operates with 4D input using 2D kernel, auto_pad = valid and rounding_type = ceil.

    input = [[[[-1, 2, 3],
               [4, 5, -6],
               [-7, 8, 9]]]]   # shape: (1, 1, 3, 3)
    strides = [2, 2]
    kernel = [2, 2]
    rounding_type = "ceil"
    auto_pad = "valid"
    output0 = [[[[5, 3],
                 [8, 9]]]]   # shape: (1, 1, 2, 2)
    output1 = [[[[4, 2],
                 [7, 8]]]]   # shape: (1, 1, 2, 2)
    
  7. Example 7 shows how MaxPool operates on 4D input using dilated 2D kernel, auto_pad = explicit and rounding_type = floor.

    input = [[[[1, 2, 3],
               [4, 5, 6],
               [7, 8, 9]]]]   # shape: (1, 1, 3, 3)
    strides = [1, 1]
    kernel = [2, 2]
    dilations = [2, 2]
    rounding_type = "floor"
    auto_pad = "explicit"
    pads_begin = [1, 1]
    pads_end = [1, 1]
    output0 = [[[[5, 6, 5],
                 [8, 9, 8],
                 [5, 6, 5]]]]   # shape: (1, 1, 3, 3)
    output1 = [[[[4, 5, 4],
                 [7, 8, 7],
                 [4, 5, 4]]]]   # shape: (1, 1, 3, 3)
    
  8. Example 8 shows how MaxPool operates on 4D input using 2D kernel, with non-default axis value.

Input shape: (1, 2, 3, 3) Output shape: (1, 2, 2, 2)

input = [[[[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]],
          [[10, 11, 12],
           [13, 14, 15],
           [16, 17, 18]]]]   # shape: (1, 2, 3, 3)
strides = [1, 1]
kernel = [2, 2]
dilations = [1, 1]
rounding_type = "floor"
auto_pad = "explicit"
pads_begin = [0, 0]
pads_end = [0, 0]
axis = 2
output0 = [[[[5, 6],
             [8, 9]],
            [[14, 15],
             [17, 18]]]]   # shape: (1, 2, 2, 2)
output1 = [[[[4, 5],
             [7, 8]],
            [[4, 5],
             [7, 8]]]]   # shape: (1, 2, 2, 2)