Data Readers#

Data Reader is a class for reading input data in a specific format. Readers may have parameters available for configuration. The reader and its parameters, if necessary, are set through the configuration file.

Describing how to set data reader in Configuration File#

Data readers can be provided in datasets section of configuration file to use specific reader. If reader is not specified, opencv_imread reader will be used by default.

You can use 2 ways to set data reader for dataset:

  • Define reader as a string.

reader: opencv_imread
  • Define reader as a dictionary, using type: for setting reader name. This approach gives opportunity to set additional parameters for reader if it is required.

  type: opencv_imread
  reading_flag: gray

In case, when you have model with several inputs which should use data stored in different format (e. g. images and json) you can use combine_reader. combine_reader allows specify reading scheme depends on file names. It use parameter scheme for describing reading approaches as dictionary where keys are regular expressions for file names, values are reader_name.

  type: combine_reader
    *.json: json_reader
    *.jpeg: opencv_imread

Supported Data Readers#

AccuracyChecker supports following list of data readers:

  • opencv_imread - read images using OpenCV library. Default color space is BGR.

    • reading_flag - (Optional) flag which specifies the way image should be read: color - default, loads color image, gray - loads image in grayscale mode, unchanged - loads image as such including alpha channel.

  • pillow_imread - read images using Pillow library. Default color space is RGB.

    • to_rgb - allow conversion image to RGB (Optional, default True).

  • scipy_imread - read images using similar approach as in scipy.misc.imread

Note: since 1.3.0 version the image processing module is not a part of scipy library. This reader does not use scipy anymore.
  • skimage_imread - read images using scikit-mage library. Default color space is RGB.

  • tf_imread- read images using TensorFlow. Default color space is RGB. Requires TensorFlow installation.

  • opencv_capture - read frames from video using OpenCV.

  • json_reader - read value from json file.

    • key - key for reading from stored in json dictionary.

  • annotation_features_extractor - read features from annotation.

    • features - list of features. All features should be fields of annotation representation.

  • numpy_reader - read numpy dumped files (npy or npz formats are supported for reading)

    • keys - comma-separated list of model input names

    • separator - separator symbol between input identifier and file identifier

    • id_sep - separator symbol between input name and record number in input identifier

    • block - block mode (batch - oriented). In this mode reader returns whole variable.

    • record_mode - allow get specific record from numpy array using id_sep as separator between field name and record id

  • numpy_txt_reader- read data stored in text format to numpy array.

  • numpy_dict_reader - read and unpack dictionaries saved in numpy files.

  • numpy_bin_reader - read binary file using numpy.

    • dtype - data type for array reading (Optional, default float32).

    • as_buffer - read binary file as buffer (Optional, default False).

    • offset - offest for staring decoding array if as_buffer enabled (Optional, default 0).

  • nifti_reader - read NifTI data format

    • channels_first - allows read nifti files and transpose in order where channels first (Optional, default False)

    • multi_frame - allows reading of 3D images as sequence of 2D frames (optional, default False)

    • frame_separator - string separator between file name and frame number in multi_frame mode (optional, default #)

    • frame_axis - number of frame axis in 3D Image (optional, default -1, last axis)

    • to_4D - controls expanding of read results to 4D dimension (optional, default True)

  • wav_reader - read WAV file into NumPy array. Also gets the samplerate.

    • mono - get mean along channels if multichannel audio loaded (Optional, default False).

    • to_float - converts audio signal to float (Optional, default False). Float data type can be selected using float_dtype parameter.

    • float_dtype - specifies data type for to_float conversion. Supported values: float16, float32, float64. Optional, default float32.

    • flattenize - make signal flatten (Optional, default False).

  • dicom_reader - read images stored in DICOM format.

  • pickle_reader - read data stored in pickle file. Supported formats of pickle content:

    1. numeric data array

    2. numeric data array + metadata stored in dictionary

  • rawpy - read raw image formats using rawpy library.

    • postprocess - allow image postprocessing and normalization (Optional, default True).

  • byte_reader - read raw binary data and wrap them to numpy-array.

  • lmdb_reader - extract image on a given index from LMDB database.

  • kaldi_ark_reader - read Kaldi* archive format (ark).

  • flac_reader - read FLAC file into NumPy array.

    • dtype - specifies precision of reading data. Supported values: float32, float64, int16, int32. Optional, default int32.

    • mono - get mean along channels if multichannel audio loaded (Optional, default False).