Class ov::op::util::RNNCellBase#
-
class RNNCellBase : public ov::op::Op#
Base class for all recurrent network cells.
Note
It holds all common attributes.
Subclassed by ov::op::internal::AUGRUCell, ov::op::internal::AUGRUSequence, ov::op::v0::LSTMCell, ov::op::v0::LSTMSequence, ov::op::v0::RNNCell, ov::op::v3::GRUCell, ov::op::v4::LSTMCell, ov::op::v5::GRUSequence, ov::op::v5::LSTMSequence, ov::op::v5::RNNSequence
Public Functions
-
RNNCellBase(const OutputVector &args, std::size_t hidden_size, float clip, const std::vector<std::string> &activations, const std::vector<float> &activations_alpha, const std::vector<float> &activations_beta)#
Constructs a RNNCellBase class.
- Parameters:
hidden_size – [in] The number of hidden units for recurrent cell.
clip – [in] The value defining clipping range [-clip, clip] on input of activation functions.
activations – [in] The vector of activation functions used inside recurrent cell.
activations_alpha – [in] The vector of alpha parameters for activation functions in order respective to activation list.
activations_beta – [in] The vector of beta parameters for activation functions in order respective to activation list.
-
void validate_input_rank_dimension(const std::vector<PartialShape> &input)#
Validates static rank and dimension for provided input parameters. Additionally input_size dimension is checked for X and W inputs.
- Parameters:
input – [in] Vector with RNN-Cell op inputs in following order: X, initial_hidden_state, W, R and B.
-
RNNCellBase(const OutputVector &args, std::size_t hidden_size, float clip, const std::vector<std::string> &activations, const std::vector<float> &activations_alpha, const std::vector<float> &activations_beta)#