DFT¶
Versioned name: DFT-7
Category: Signal processing
Short description: DFT operation performs the discrete complex-to-complex Fourier transformation of input tensor by specified dimensions.
Attributes:
No attributes available.
Inputs
1:
data
- Input tensor of type T with data for the DFT transformation. Type of elements is any supported floating-point type. The last dimension of the input tensor must be equal to 2, that is the input tensor shape must have the form[D_0, D_1, ..., D_{N-1}, 2]
, representing the real and imaginary components of complex numbers in[:, ..., :, 0]
and in[:, ..., :, 1]
correspondingly. Required.2:
axes
- 1D tensor of type T_IND specifying dimension indices where DFT is applied, andaxes
is any unordered list of indices of different dimensions of input tensor, for example,[0, 4]
,[4, 0]
,[4, 2, 1]
,[1, 2, 3]
,[-3, 0, -2]
. These indices should be integers from-(r - 1)
to(r - 2)
inclusively, wherer = rank(data)
. A negative axisa
is interpreted as an axisr - 1 + a
. Other dimensions do not change. The order of elements inaxes
attribute matters, and is mapped directly to elements in the third inputsignal_size
. Required.Note
The following constraint must be satisfied:
rank(data) >= len(axes) + 1 and input_shape[-1] == 2 and (rank(data) - 1) not in axes and (-1) not in axes
.3:
signal_size
- 1D tensor of type T_SIZE describing signal size with respect to axes from the inputaxes
. Ifsignal_size[i] == -1
, then DFT is calculated for full size of the axisaxes[i]
. Ifsignal_size[i] > input_shape[: r - 1][axes[i]]
, then input data are zero-padded with respect to the axisaxes[i]
at the end. Finally,signal_size[i] < input_shape[: r - 1][axes[i]]
, then input data are trimmed with respect to the axisaxes[i]
. More precisely, ifsignal_size[i] < input_shape[: r - 1][axes[i]]
, the slice0: signal_size[i]
of the axisaxes[i]
is considered. Optional, with default value`[input_shape[: r - 1][a] for a in axes]`
.Note
If the input
signal_size
is specified, the size ofsignal_size
must be the same as the size ofaxes
.
Outputs
1: Resulting tensor with elements of the same type as input
data
tensor. The shape of the output is calculated as follows: if the inputsignal_size
is not specified, the shape of output is the same as the shape ofdata
. Otherwise,output_shape[axis] = input_shape[axis]
foraxis not in axes
, and ifsignal_size[i] == -1
, thenoutput_shape[: r - 1][axes[i]] = input_shape[: r - 1][axes[i]]
, elseoutput_shape[: r - 1][axes[i]] = signal_size[i]
.
Types
T: floating-point type.
T_IND:
int64
orint32
.T_SIZE:
int64
orint32
.
Detailed description: DFT performs the discrete Fourier transformation of input tensor with respect to specified axes. Calculations are performed according to the following rules.
For simplicity, assume that an input tensor A
has the shape [B_0, ..., B_{k-1}, M_0, ..., M_{r-1}, 2]
, axes=[k,...,k+r-1]
, and signal_size=[S_0,...,S_{r-1}]
.
Let D
be an input tensor A
, taking into account the signal_size
, and, hence, D
has the shape [B_0, ..., B_{k-1}, S_0, ..., S_{r-1}, 2]
.
Next, put
for all indices j_0,...,j_{k+r-1}
, where i
is an imaginary unit, that is X
is a complex tensor.
Then the discrete Fourier transform is the tensor \(Y\) of the same shape as the tensor \(X\), such that
for all indices n_0,...,n_{k-1}
, m_0,...,m_{r-1}
, and the result of the operation is the real tensor Z
with the shape [B_0, ..., B_{k-1}, S_0, ..., S_{r-1}, 2]
and such that
Calculations for the generic case of axes and signal sizes are similar.
Example:
There is no signal_size
input (4D input tensor):
<layer ... type="DFT" ... >
<input>
<port id="0">
<dim>1</dim>
<dim>320</dim>
<dim>320</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>2</dim> <!-- axes input contains [1, 2] -->
</port>
<output>
<port id="2">
<dim>1</dim>
<dim>320</dim>
<dim>320</dim>
<dim>2</dim>
</port>
</output>
</layer>
There is no signal_size
input (3D input tensor):
<layer ... type="DFT" ... >
<input>
<port id="0">
<dim>320</dim>
<dim>320</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>2</dim> <!-- axes input contains [0, 1] -->
</port>
<output>
<port id="2">
<dim>320</dim>
<dim>320</dim>
<dim>2</dim>
</port>
</output>
</layer>
There is signal_size
input (4D input tensor):
<layer ... type="DFT" ... >
<input>
<port id="0">
<dim>1</dim>
<dim>320</dim>
<dim>320</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>2</dim> <!-- axes input contains [1, 2] -->
</port>
<port id="2">
<dim>2</dim> <!-- signal_size input contains [512, 100] -->
</port>
<output>
<port id="3">
<dim>1</dim>
<dim>512</dim>
<dim>100</dim>
<dim>2</dim>
</port>
</output>
</layer>
There is signal_size
input (3D input tensor):
<layer ... type="DFT" ... >
<input>
<port id="0">
<dim>320</dim>
<dim>320</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>2</dim> <!-- axes input contains [0, 1] -->
</port>
<port id="2">
<dim>2</dim> <!-- signal_size input contains [512, 100] -->
</port>
<output>
<port id="3">
<dim>512</dim>
<dim>100</dim>
<dim>2</dim>
</port>
</output>
</layer>
There is signal_size
input (5D input tensor, -1
in signal_size
, unsorted axes):
<layer ... type="DFT" ... >
<input>
<port id="0">
<dim>16</dim>
<dim>768</dim>
<dim>580</dim>
<dim>320</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>3</dim> <!-- axes input contains [3, 1, 2] -->
</port>
<port id="2">
<dim>3</dim> <!-- signal_size input contains [170, -1, 1024] -->
</port>
<output>
<port id="3">
<dim>16</dim>
<dim>768</dim>
<dim>1024</dim>
<dim>170</dim>
<dim>2</dim>
</port>
</output>
</layer>
There is signal_size
input (5D input tensor, -1
in signal_size
, unsorted axes, the second example):
<layer ... type="DFT" ... >
<input>
<port id="0">
<dim>16</dim>
<dim>768</dim>
<dim>580</dim>
<dim>320</dim>
<dim>2</dim>
</port>
<port id="1">
<dim>3</dim> <!-- axes input contains [3, 0, 2] -->
</port>
<port id="2">
<dim>3</dim> <!-- signal_size input contains [258, -1, 2056] -->
</port>
<output>
<port id="3">
<dim>16</dim>
<dim>768</dim>
<dim>2056</dim>
<dim>258</dim>
<dim>2</dim>
</port>
</output>
</layer>