This Jupyter notebook can be launched on-line, opening an interactive environment in a browser window.
You can also make a local installation . Choose one of the following options:
This basic introduction to OpenVINO™ shows how to do inference with an
image classification model.
Table of contents:
# Install openvino package
% pip install -q "openvino>=2023.1.0"
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
Note : you may need to restart the kernel to use updated packages .
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
Imports
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import openvino as ov
# Fetch `notebook_utils` module
import urllib.request
urllib . request . urlretrieve (
url = 'https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/main/notebooks/utils/notebook_utils.py' ,
filename = 'notebook_utils.py'
)
from notebook_utils import download_file
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
Download the Model and data samples
base_artifacts_dir = Path ( './artifacts' ) . expanduser ()
model_name = "v3-small_224_1.0_float"
model_xml_name = f ' { model_name } .xml'
model_bin_name = f ' { model_name } .bin'
model_xml_path = base_artifacts_dir / model_xml_name
base_url = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/models/mobelinet-v3-tf/FP32/'
if not model_xml_path . exists ():
download_file ( base_url + model_xml_name , model_xml_name , base_artifacts_dir )
download_file ( base_url + model_bin_name , model_bin_name , base_artifacts_dir )
else :
print ( f ' { model_name } already downloaded to { base_artifacts_dir } ' )
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
artifacts/v3-small_224_1.0_float.xml: 0%| | 0.00/294k [00:00<?, ?B/s]
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
artifacts/v3-small_224_1.0_float.bin: 0%| | 0.00/4.84M [00:00<?, ?B/s]
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
Select inference device
select device from dropdown list for running inference using OpenVINO
import ipywidgets as widgets
core = ov . Core ()
device = widgets . Dropdown (
options = core . available_devices + [ "AUTO" ],
value = 'AUTO' ,
description = 'Device:' ,
disabled = False ,
)
device
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
Dropdown ( description = 'Device:' , index = 1 , options = ( 'CPU' , 'AUTO' ), value = 'AUTO' )
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
Load the Model
core = ov . Core ()
model = core . read_model ( model = model_xml_path )
compiled_model = core . compile_model ( model = model , device_name = device . value )
output_layer = compiled_model . output ( 0 )
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
Load an Image
# Download the image from the openvino_notebooks storage
image_filename = download_file (
"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/coco.jpg" ,
directory = "data"
)
# The MobileNet model expects images in RGB format.
image = cv2 . cvtColor ( cv2 . imread ( filename = str ( image_filename )), code = cv2 . COLOR_BGR2RGB )
# Resize to MobileNet image shape.
input_image = cv2 . resize ( src = image , dsize = ( 224 , 224 ))
# Reshape to model input shape.
input_image = np . expand_dims ( input_image , 0 )
plt . imshow ( image );
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
data/coco.jpg: 0%| | 0.00/202k [00:00<?, ?B/s]
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
Do Inference
result_infer = compiled_model ([ input_image ])[ output_layer ]
result_index = np . argmax ( result_infer )
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
imagenet_filename = download_file (
"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/datasets/imagenet/imagenet_2012.txt" ,
directory = "data"
)
imagenet_classes = imagenet_filename . read_text () . splitlines ()
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
data/imagenet_2012.txt: 0%| | 0.00/30.9k [00:00<?, ?B/s]
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
# The model description states that for this model, class 0 is a background.
# Therefore, a background must be added at the beginning of imagenet_classes.
imagenet_classes = [ 'background' ] + imagenet_classes
imagenet_classes [ result_index ]
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)
'n02099267 flat-coated retriever'
Hello Image Classification — OpenVINO™ documentationCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboardCopy to clipboard — Version(2023.3)