From Training to Deployment with TensorFlow and OpenVINO™

This Jupyter notebook can be launched after a local installation only.

Github

Table of contents:

# @title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright 2018 The TensorFlow Authors
#
# Modified for OpenVINO Notebooks

This tutorial demonstrates how to train, convert, and deploy an image classification model with TensorFlow and OpenVINO. This particular notebook shows the process where we perform the inference step on the freshly trained model that is converted to OpenVINO IR with model conversion API. For faster inference speed on the model created in this notebook, check out the Post-Training Quantization with TensorFlow Classification Model notebook.

This training code comprises the official TensorFlow Image Classification Tutorial in its entirety.

The flower_ir.bin and flower_ir.xml (pre-trained models) can be obtained by executing the code with ‘Runtime->Run All’ or the Ctrl+F9 command.

%pip install -q "openvino>=2023.1.0"
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
Note: you may need to restart the kernel to use updated packages.

TensorFlow Image Classification Training

The first part of the tutorial shows how to classify images of flowers (based on the TensorFlow’s official tutorial). It creates an image classifier using a keras.Sequential model, and loads data using preprocessing.image_dataset_from_directory. You will gain practical experience with the following concepts:

  • Efficiently loading a dataset off disk.

  • Identifying overfitting and applying techniques to mitigate it, including data augmentation and Dropout.

This tutorial follows a basic machine learning workflow:

  1. Examine and understand data

  2. Build an input pipeline

  3. Build the model

  4. Train the model

  5. Test the model

Import TensorFlow and Other Libraries

import os
import sys
from pathlib import Path

import PIL
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from PIL import Image
import openvino as ov
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential

sys.path.append("../utils")
from notebook_utils import download_file
2024-02-10 01:12:04.614496: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
2024-02-10 01:12:04.649325: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-02-10 01:12:05.161353: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT

Download and Explore the Dataset

This tutorial uses a dataset of about 3,700 photos of flowers. The dataset contains 5 sub-directories, one per class:

flower_photo/
  daisy/
  dandelion/
  roses/
  sunflowers/
  tulips/
import pathlib
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True)
data_dir = pathlib.Path(data_dir)

After downloading, you should now have a copy of the dataset available. There are 3,670 total images:

image_count = len(list(data_dir.glob('*/*.jpg')))
print(image_count)
3670

Here are some roses:

roses = list(data_dir.glob('roses/*'))
PIL.Image.open(str(roses[0]))
../_images/301-tensorflow-training-openvino-with-output_14_0.png
PIL.Image.open(str(roses[1]))
../_images/301-tensorflow-training-openvino-with-output_15_0.png

And some tulips:

tulips = list(data_dir.glob('tulips/*'))
PIL.Image.open(str(tulips[0]))
../_images/301-tensorflow-training-openvino-with-output_17_0.png
PIL.Image.open(str(tulips[1]))
../_images/301-tensorflow-training-openvino-with-output_18_0.png

Load Using keras.preprocessing

Let’s load these images off disk using the helpful image_dataset_from_directory utility. This will take you from a directory of images on disk to a tf.data.Dataset in just a couple lines of code. If you like, you can also write your own data loading code from scratch by visiting the load images tutorial.

Create a Dataset

Define some parameters for the loader:

batch_size = 32
img_height = 180
img_width = 180

It’s good practice to use a validation split when developing your model. Let’s use 80% of the images for training, and 20% for validation.

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)
Found 3670 files belonging to 5 classes.
Using 2936 files for training.
2024-02-10 01:12:08.217732: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:266] failed call to cuInit: CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE: forward compatibility was attempted on non supported HW
2024-02-10 01:12:08.217763: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:168] retrieving CUDA diagnostic information for host: iotg-dev-workstation-07
2024-02-10 01:12:08.217767: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:175] hostname: iotg-dev-workstation-07
2024-02-10 01:12:08.217894: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:199] libcuda reported version is: 470.223.2
2024-02-10 01:12:08.217909: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:203] kernel reported version is: 470.182.3
2024-02-10 01:12:08.217913: E tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:312] kernel version 470.182.3 does not match DSO version 470.223.2 -- cannot find working devices in this configuration
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="validation",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)
Found 3670 files belonging to 5 classes.
Using 734 files for validation.

You can find the class names in the class_names attribute on these datasets. These correspond to the directory names in alphabetical order.

class_names = train_ds.class_names
print(class_names)
['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']

Visualize the Data

Here are the first 9 images from the training dataset.

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
2024-02-10 01:12:08.550492: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
     [[{{node Placeholder/_0}}]]
2024-02-10 01:12:08.550818: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
     [[{{node Placeholder/_0}}]]
../_images/301-tensorflow-training-openvino-with-output_29_1.png

You will train a model using these datasets by passing them to model.fit in a moment. If you like, you can also manually iterate over the dataset and retrieve batches of images:

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 180, 180, 3)
(32,)
2024-02-10 01:12:09.380029: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
     [[{{node Placeholder/_4}}]]
2024-02-10 01:12:09.380404: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
     [[{{node Placeholder/_4}}]]

The image_batch is a tensor of the shape (32, 180, 180, 3). This is a batch of 32 images of shape 180x180x3 (the last dimension refers to color channels RGB). The label_batch is a tensor of the shape (32,), these are corresponding labels to the 32 images.

You can call .numpy() on the image_batch and labels_batch tensors to convert them to a numpy.ndarray.

Configure the Dataset for Performance

Let’s make sure to use buffered prefetching so you can yield data from disk without having I/O become blocking. These are two important methods you should use when loading data.

Dataset.cache() keeps the images in memory after they’re loaded off disk during the first epoch. This will ensure the dataset does not become a bottleneck while training your model. If your dataset is too large to fit into memory, you can also use this method to create a performant on-disk cache.

Dataset.prefetch() overlaps data preprocessing and model execution while training.

Interested readers can learn more about both methods, as well as how to cache data to disk in the data performance guide.

AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

Standardize the Data

The RGB channel values are in the [0, 255] range. This is not ideal for a neural network; in general you should seek to make your input values small. Here, you will standardize values to be in the [0, 1] range by using a Rescaling layer.

normalization_layer = layers.Rescaling(1./255)

Note: The Keras Preprocessing utilities and layers introduced in this section are currently experimental and may change.

There are two ways to use this layer. You can apply it to the dataset by calling map:

normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
# Notice the pixels values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image))
2024-02-10 01:12:09.568220: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
     [[{{node Placeholder/_4}}]]
2024-02-10 01:12:09.568598: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
     [[{{node Placeholder/_4}}]]
0.0 1.0

Or, you can include the layer inside your model definition, which can simplify deployment. Let’s use the second approach here.

Note: you previously resized images using the image_size argument of image_dataset_from_directory. If you want to include the resizing logic in your model as well, you can use the Resizing layer.

Create the Model

The model consists of three convolution blocks with a max pool layer in each of them. There’s a fully connected layer with 128 units on top of it that is activated by a relu activation function. This model has not been tuned for high accuracy, the goal of this tutorial is to show a standard approach.

num_classes = 5

model = Sequential([
  layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes)
])

Compile the Model

For this tutorial, choose the optimizers.Adam optimizer and losses.SparseCategoricalCrossentropy loss function. To view training and validation accuracy for each training epoch, pass the metrics argument.

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

Model Summary

View all the layers of the network using the model’s summary method.

NOTE: This section is commented out for performance reasons. Please feel free to uncomment these to compare the results.

# model.summary()

Train the Model

# epochs=10
# history = model.fit(
#   train_ds,
#   validation_data=val_ds,
#   epochs=epochs
# )

Visualize Training Results

Create plots of loss and accuracy on the training and validation sets.

# acc = history.history['accuracy']
# val_acc = history.history['val_accuracy']

# loss = history.history['loss']
# val_loss = history.history['val_loss']

# epochs_range = range(epochs)

# plt.figure(figsize=(8, 8))
# plt.subplot(1, 2, 1)
# plt.plot(epochs_range, acc, label='Training Accuracy')
# plt.plot(epochs_range, val_acc, label='Validation Accuracy')
# plt.legend(loc='lower right')
# plt.title('Training and Validation Accuracy')

# plt.subplot(1, 2, 2)
# plt.plot(epochs_range, loss, label='Training Loss')
# plt.plot(epochs_range, val_loss, label='Validation Loss')
# plt.legend(loc='upper right')
# plt.title('Training and Validation Loss')
# plt.show()

As you can see from the plots, training accuracy and validation accuracy are off by large margin and the model has achieved only around 60% accuracy on the validation set.

Let’s look at what went wrong and try to increase the overall performance of the model.

Overfitting

In the plots above, the training accuracy is increasing linearly over time, whereas validation accuracy stalls around 60% in the training process. Also, the difference in accuracy between training and validation accuracy is noticeable — a sign of overfitting.

When there are a small number of training examples, the model sometimes learns from noises or unwanted details from training examples—to an extent that it negatively impacts the performance of the model on new examples. This phenomenon is known as overfitting. It means that the model will have a difficult time generalizing on a new dataset.

There are multiple ways to fight overfitting in the training process. In this tutorial, you’ll use data augmentation and add Dropout to your model.

Data Augmentation

Overfitting generally occurs when there are a small number of training examples. Data augmentation takes the approach of generating additional training data from your existing examples by augmenting them using random transformations that yield believable-looking images. This helps expose the model to more aspects of the data and generalize better.

You will implement data augmentation using the layers from tf.keras.layers.experimental.preprocessing. These can be included inside your model like other layers, and run on the GPU.

data_augmentation = keras.Sequential(
  [
    layers.RandomFlip("horizontal",
                      input_shape=(img_height,
                                   img_width,
                                   3)),
    layers.RandomRotation(0.1),
    layers.RandomZoom(0.1),
  ]
)

Let’s visualize what a few augmented examples look like by applying data augmentation to the same image several times:

plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):
    for i in range(9):
        augmented_images = data_augmentation(images)
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(augmented_images[0].numpy().astype("uint8"))
        plt.axis("off")
2024-02-10 01:12:10.342151: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
     [[{{node Placeholder/_0}}]]
2024-02-10 01:12:10.342455: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
     [[{{node Placeholder/_0}}]]
../_images/301-tensorflow-training-openvino-with-output_57_1.png

You will use data augmentation to train a model in a moment.

Dropout

Another technique to reduce overfitting is to introduce Dropout to the network, a form of regularization.

When you apply Dropout to a layer it randomly drops out (by setting the activation to zero) a number of output units from the layer during the training process. Dropout takes a fractional number as its input value, in the form such as 0.1, 0.2, 0.4, etc. This means dropping out 10%, 20% or 40% of the output units randomly from the applied layer.

Let’s create a new neural network using layers.Dropout, then train it using augmented images.

model = Sequential([
    data_augmentation,
    layers.Rescaling(1./255),
    layers.Conv2D(16, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(32, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(64, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Dropout(0.2),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(num_classes, name="outputs")
])

Compile and Train the Model

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
model.summary()
Model: "sequential_2"
_________________________________________________________________
Layer (type)                Output Shape              Param #
=================================================================
sequential_1 (Sequential)   (None, 180, 180, 3)       0
rescaling_2 (Rescaling)     (None, 180, 180, 3)       0
conv2d_3 (Conv2D)           (None, 180, 180, 16)      448
max_pooling2d_3 (MaxPooling  (None, 90, 90, 16)       0
2D)
conv2d_4 (Conv2D)           (None, 90, 90, 32)        4640
max_pooling2d_4 (MaxPooling  (None, 45, 45, 32)       0
2D)
conv2d_5 (Conv2D)           (None, 45, 45, 64)        18496
max_pooling2d_5 (MaxPooling  (None, 22, 22, 64)       0
2D)
dropout (Dropout)           (None, 22, 22, 64)        0
flatten_1 (Flatten)         (None, 30976)             0
dense_2 (Dense)             (None, 128)               3965056
outputs (Dense)             (None, 5)                 645
=================================================================
Total params: 3,989,285
Trainable params: 3,989,285
Non-trainable params: 0
_________________________________________________________________
epochs = 15
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)
Epoch 1/15
2024-02-10 01:12:11.537227: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
     [[{{node Placeholder/_0}}]]
2024-02-10 01:12:11.537529: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
     [[{{node Placeholder/_4}}]]
1/92 [..............................] - ETA: 1:26 - loss: 1.6124 - accuracy: 0.2500
   
2/92 [..............................] - ETA: 5s - loss: 2.0113 - accuracy: 0.2344
   
3/92 [..............................] - ETA: 5s - loss: 2.0181 - accuracy: 0.1979
   
4/92 [>.............................] - ETA: 5s - loss: 1.9673 - accuracy: 0.1953
   
5/92 [>.............................] - ETA: 5s - loss: 1.8983 - accuracy: 0.2125
   
6/92 [>.............................] - ETA: 5s - loss: 1.8645 - accuracy: 0.2240
   
7/92 [=>............................] - ETA: 5s - loss: 1.8276 - accuracy: 0.2188
   
8/92 [=>............................] - ETA: 5s - loss: 1.8073 - accuracy: 0.2070
   
9/92 [=>............................] - ETA: 4s - loss: 1.7923 - accuracy: 0.1979


10/92 [==>………………………] - ETA: 4s - loss: 1.7763 - accuracy: 0.1969



11/92 [==>………………………] - ETA: 4s - loss: 1.7599 - accuracy: 0.1989



12/92 [==>………………………] - ETA: 4s - loss: 1.7465 - accuracy: 0.1953



13/92 [===>……………………..] - ETA: 4s - loss: 1.7323 - accuracy: 0.1995



14/92 [===>……………………..] - ETA: 4s - loss: 1.7228 - accuracy: 0.1964



15/92 [===>……………………..] - ETA: 4s - loss: 1.7165 - accuracy: 0.1937



16/92 [====>…………………….] - ETA: 4s - loss: 1.7071 - accuracy: 0.2012



17/92 [====>…………………….] - ETA: 4s - loss: 1.6996 - accuracy: 0.2022



18/92 [====>…………………….] - ETA: 4s - loss: 1.6922 - accuracy: 0.2031



19/92 [=====>……………………] - ETA: 4s - loss: 1.6856 - accuracy: 0.2039



20/92 [=====>……………………] - ETA: 4s - loss: 1.6816 - accuracy: 0.2109



21/92 [=====>……………………] - ETA: 4s - loss: 1.6764 - accuracy: 0.2158



22/92 [======>…………………..] - ETA: 4s - loss: 1.6696 - accuracy: 0.2188



23/92 [======>…………………..] - ETA: 4s - loss: 1.6659 - accuracy: 0.2188



24/92 [======>…………………..] - ETA: 4s - loss: 1.6625 - accuracy: 0.2279



25/92 [=======>………………….] - ETA: 3s - loss: 1.6613 - accuracy: 0.2250



26/92 [=======>………………….] - ETA: 3s - loss: 1.6581 - accuracy: 0.2236



27/92 [=======>………………….] - ETA: 3s - loss: 1.6524 - accuracy: 0.2280



28/92 [========>…………………] - ETA: 3s - loss: 1.6476 - accuracy: 0.2288



29/92 [========>…………………] - ETA: 3s - loss: 1.6450 - accuracy: 0.2284



30/92 [========>…………………] - ETA: 3s - loss: 1.6415 - accuracy: 0.2292



31/92 [=========>………………..] - ETA: 3s - loss: 1.6390 - accuracy: 0.2288



32/92 [=========>………………..] - ETA: 3s - loss: 1.6343 - accuracy: 0.2344



33/92 [=========>………………..] - ETA: 3s - loss: 1.6313 - accuracy: 0.2358



34/92 [==========>……………….] - ETA: 3s - loss: 1.6276 - accuracy: 0.2371



35/92 [==========>……………….] - ETA: 3s - loss: 1.6229 - accuracy: 0.2384



36/92 [==========>……………….] - ETA: 3s - loss: 1.6208 - accuracy: 0.2378



37/92 [===========>………………] - ETA: 3s - loss: 1.6166 - accuracy: 0.2432



38/92 [===========>………………] - ETA: 3s - loss: 1.6133 - accuracy: 0.2442



39/92 [===========>………………] - ETA: 3s - loss: 1.6112 - accuracy: 0.2420



40/92 [============>……………..] - ETA: 3s - loss: 1.6055 - accuracy: 0.2453



41/92 [============>……………..] - ETA: 3s - loss: 1.6035 - accuracy: 0.2462



42/92 [============>……………..] - ETA: 2s - loss: 1.6018 - accuracy: 0.2448



43/92 [=============>…………….] - ETA: 2s - loss: 1.5969 - accuracy: 0.2464



44/92 [=============>…………….] - ETA: 2s - loss: 1.5921 - accuracy: 0.2507



45/92 [=============>…………….] - ETA: 2s - loss: 1.5882 - accuracy: 0.2569



46/92 [==============>……………] - ETA: 2s - loss: 1.5821 - accuracy: 0.2615



47/92 [==============>……………] - ETA: 2s - loss: 1.5754 - accuracy: 0.2620



48/92 [==============>……………] - ETA: 2s - loss: 1.5700 - accuracy: 0.2637



49/92 [==============>……………] - ETA: 2s - loss: 1.5665 - accuracy: 0.2659



50/92 [===============>…………..] - ETA: 2s - loss: 1.5562 - accuracy: 0.2725



51/92 [===============>…………..] - ETA: 2s - loss: 1.5479 - accuracy: 0.2757



52/92 [===============>…………..] - ETA: 2s - loss: 1.5424 - accuracy: 0.2800



53/92 [================>………….] - ETA: 2s - loss: 1.5411 - accuracy: 0.2789



54/92 [================>………….] - ETA: 2s - loss: 1.5413 - accuracy: 0.2807



55/92 [================>………….] - ETA: 2s - loss: 1.5364 - accuracy: 0.2847



56/92 [=================>…………] - ETA: 2s - loss: 1.5344 - accuracy: 0.2868



57/92 [=================>…………] - ETA: 2s - loss: 1.5273 - accuracy: 0.2906



58/92 [=================>…………] - ETA: 2s - loss: 1.5258 - accuracy: 0.2909



59/92 [==================>………..] - ETA: 1s - loss: 1.5204 - accuracy: 0.2966



60/92 [==================>………..] - ETA: 1s - loss: 1.5154 - accuracy: 0.3016



61/92 [==================>………..] - ETA: 1s - loss: 1.5101 - accuracy: 0.3053



62/92 [===================>……….] - ETA: 1s - loss: 1.5026 - accuracy: 0.3115



63/92 [===================>……….] - ETA: 1s - loss: 1.4993 - accuracy: 0.3125



64/92 [===================>……….] - ETA: 1s - loss: 1.4941 - accuracy: 0.3159



65/92 [====================>………] - ETA: 1s - loss: 1.4912 - accuracy: 0.3178



66/92 [====================>………] - ETA: 1s - loss: 1.4849 - accuracy: 0.3205



67/92 [====================>………] - ETA: 1s - loss: 1.4824 - accuracy: 0.3223



68/92 [=====================>……..] - ETA: 1s - loss: 1.4789 - accuracy: 0.3235



69/92 [=====================>……..] - ETA: 1s - loss: 1.4753 - accuracy: 0.3252



70/92 [=====================>……..] - ETA: 1s - loss: 1.4727 - accuracy: 0.3272



71/92 [======================>…….] - ETA: 1s - loss: 1.4665 - accuracy: 0.3288



72/92 [======================>…….] - ETA: 1s - loss: 1.4654 - accuracy: 0.3307



73/92 [======================>…….] - ETA: 1s - loss: 1.4620 - accuracy: 0.3313



74/92 [=======================>……] - ETA: 1s - loss: 1.4587 - accuracy: 0.3336



75/92 [=======================>……] - ETA: 1s - loss: 1.4537 - accuracy: 0.3363



76/92 [=======================>……] - ETA: 0s - loss: 1.4491 - accuracy: 0.3392



77/92 [========================>…..] - ETA: 0s - loss: 1.4422 - accuracy: 0.3421



78/92 [========================>…..] - ETA: 0s - loss: 1.4408 - accuracy: 0.3438



79/92 [========================>…..] - ETA: 0s - loss: 1.4371 - accuracy: 0.3465



80/92 [=========================>….] - ETA: 0s - loss: 1.4337 - accuracy: 0.3484



81/92 [=========================>….] - ETA: 0s - loss: 1.4300 - accuracy: 0.3499



82/92 [=========================>….] - ETA: 0s - loss: 1.4264 - accuracy: 0.3518



83/92 [==========================>…] - ETA: 0s - loss: 1.4237 - accuracy: 0.3524



84/92 [==========================>…] - ETA: 0s - loss: 1.4204 - accuracy: 0.3534



85/92 [==========================>…] - ETA: 0s - loss: 1.4163 - accuracy: 0.3555



86/92 [===========================>..] - ETA: 0s - loss: 1.4132 - accuracy: 0.3586



87/92 [===========================>..] - ETA: 0s - loss: 1.4104 - accuracy: 0.3602



88/92 [===========================>..] - ETA: 0s - loss: 1.4067 - accuracy: 0.3629



89/92 [============================>.] - ETA: 0s - loss: 1.4013 - accuracy: 0.3655



90/92 [============================>.] - ETA: 0s - loss: 1.3969 - accuracy: 0.3677



91/92 [============================>.] - ETA: 0s - loss: 1.3957 - accuracy: 0.3678



92/92 [==============================] - ETA: 0s - loss: 1.3942 - accuracy: 0.3682

2024-02-10 01:12:17.857731: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [734]
     [[{{node Placeholder/_0}}]]
2024-02-10 01:12:17.858066: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [734]
     [[{{node Placeholder/_0}}]]


92/92 [==============================] - 7s 67ms/step - loss: 1.3942 - accuracy: 0.3682 - val_loss: 1.2278 - val_accuracy: 0.4864

Epoch 2/15
1/92 [..............................] - ETA: 7s - loss: 1.1103 - accuracy: 0.5000
   
2/92 [..............................] - ETA: 5s - loss: 1.1211 - accuracy: 0.5781
   
3/92 [..............................] - ETA: 5s - loss: 1.1221 - accuracy: 0.5521
   
4/92 [>.............................] - ETA: 5s - loss: 1.1369 - accuracy: 0.5469
   
5/92 [>.............................] - ETA: 5s - loss: 1.1210 - accuracy: 0.5312
   
6/92 [>.............................] - ETA: 5s - loss: 1.1376 - accuracy: 0.5260
   
7/92 [=>............................] - ETA: 5s - loss: 1.0852 - accuracy: 0.5402
   
8/92 [=>............................] - ETA: 4s - loss: 1.0779 - accuracy: 0.5312
   
9/92 [=>............................] - ETA: 4s - loss: 1.1305 - accuracy: 0.5208


10/92 [==>………………………] - ETA: 4s - loss: 1.1464 - accuracy: 0.5094



11/92 [==>………………………] - ETA: 4s - loss: 1.1565 - accuracy: 0.5028



12/92 [==>………………………] - ETA: 4s - loss: 1.1657 - accuracy: 0.5052



14/92 [===>……………………..] - ETA: 4s - loss: 1.1414 - accuracy: 0.5114



15/92 [===>……………………..] - ETA: 4s - loss: 1.1527 - accuracy: 0.5064



16/92 [====>…………………….] - ETA: 4s - loss: 1.1726 - accuracy: 0.4980



17/92 [====>…………………….] - ETA: 4s - loss: 1.1768 - accuracy: 0.4907



18/92 [====>…………………….] - ETA: 4s - loss: 1.1829 - accuracy: 0.4894



19/92 [=====>……………………] - ETA: 4s - loss: 1.1829 - accuracy: 0.4917



20/92 [=====>……………………] - ETA: 4s - loss: 1.1813 - accuracy: 0.4968



21/92 [=====>……………………] - ETA: 4s - loss: 1.1744 - accuracy: 0.5030



22/92 [======>…………………..] - ETA: 4s - loss: 1.1793 - accuracy: 0.5000



23/92 [======>…………………..] - ETA: 3s - loss: 1.1772 - accuracy: 0.5014



24/92 [======>…………………..] - ETA: 3s - loss: 1.1748 - accuracy: 0.5039



25/92 [=======>………………….] - ETA: 3s - loss: 1.1731 - accuracy: 0.5038



26/92 [=======>………………….] - ETA: 3s - loss: 1.1667 - accuracy: 0.5109



27/92 [=======>………………….] - ETA: 3s - loss: 1.1709 - accuracy: 0.5093



28/92 [========>…………………] - ETA: 3s - loss: 1.1625 - accuracy: 0.5146



29/92 [========>…………………] - ETA: 3s - loss: 1.1613 - accuracy: 0.5152



30/92 [========>…………………] - ETA: 3s - loss: 1.1667 - accuracy: 0.5147



31/92 [=========>………………..] - ETA: 3s - loss: 1.1620 - accuracy: 0.5193



32/92 [=========>………………..] - ETA: 3s - loss: 1.1589 - accuracy: 0.5177



33/92 [=========>………………..] - ETA: 3s - loss: 1.1593 - accuracy: 0.5181



34/92 [==========>……………….] - ETA: 3s - loss: 1.1560 - accuracy: 0.5167



35/92 [==========>……………….] - ETA: 3s - loss: 1.1544 - accuracy: 0.5162



36/92 [==========>……………….] - ETA: 3s - loss: 1.1475 - accuracy: 0.5210



37/92 [===========>………………] - ETA: 3s - loss: 1.1431 - accuracy: 0.5213



38/92 [===========>………………] - ETA: 3s - loss: 1.1386 - accuracy: 0.5265



39/92 [===========>………………] - ETA: 3s - loss: 1.1383 - accuracy: 0.5282



40/92 [============>……………..] - ETA: 3s - loss: 1.1376 - accuracy: 0.5275



41/92 [============>……………..] - ETA: 2s - loss: 1.1386 - accuracy: 0.5268



42/92 [============>……………..] - ETA: 2s - loss: 1.1374 - accuracy: 0.5262



43/92 [=============>…………….] - ETA: 2s - loss: 1.1333 - accuracy: 0.5278



44/92 [=============>…………….] - ETA: 2s - loss: 1.1271 - accuracy: 0.5293



45/92 [=============>…………….] - ETA: 2s - loss: 1.1306 - accuracy: 0.5258



46/92 [==============>……………] - ETA: 2s - loss: 1.1306 - accuracy: 0.5246



47/92 [==============>……………] - ETA: 2s - loss: 1.1274 - accuracy: 0.5261



48/92 [==============>……………] - ETA: 2s - loss: 1.1235 - accuracy: 0.5268



49/92 [==============>……………] - ETA: 2s - loss: 1.1230 - accuracy: 0.5282



50/92 [===============>…………..] - ETA: 2s - loss: 1.1240 - accuracy: 0.5283



51/92 [===============>…………..] - ETA: 2s - loss: 1.1228 - accuracy: 0.5302



52/92 [===============>…………..] - ETA: 2s - loss: 1.1179 - accuracy: 0.5326



53/92 [================>………….] - ETA: 2s - loss: 1.1113 - accuracy: 0.5367



54/92 [================>………….] - ETA: 2s - loss: 1.1151 - accuracy: 0.5378



55/92 [================>………….] - ETA: 2s - loss: 1.1139 - accuracy: 0.5388



56/92 [=================>…………] - ETA: 2s - loss: 1.1117 - accuracy: 0.5392



57/92 [=================>…………] - ETA: 2s - loss: 1.1080 - accuracy: 0.5413



58/92 [=================>…………] - ETA: 1s - loss: 1.1064 - accuracy: 0.5438



59/92 [==================>………..] - ETA: 1s - loss: 1.1016 - accuracy: 0.5452



60/92 [==================>………..] - ETA: 1s - loss: 1.1005 - accuracy: 0.5455



61/92 [==================>………..] - ETA: 1s - loss: 1.1002 - accuracy: 0.5448



62/92 [===================>……….] - ETA: 1s - loss: 1.0986 - accuracy: 0.5461



63/92 [===================>……….] - ETA: 1s - loss: 1.0959 - accuracy: 0.5483



64/92 [===================>……….] - ETA: 1s - loss: 1.0937 - accuracy: 0.5505



65/92 [====================>………] - ETA: 1s - loss: 1.0917 - accuracy: 0.5502



66/92 [====================>………] - ETA: 1s - loss: 1.0901 - accuracy: 0.5490



67/92 [====================>………] - ETA: 1s - loss: 1.0901 - accuracy: 0.5501



68/92 [=====================>……..] - ETA: 1s - loss: 1.0897 - accuracy: 0.5517



69/92 [=====================>……..] - ETA: 1s - loss: 1.0857 - accuracy: 0.5523



70/92 [=====================>……..] - ETA: 1s - loss: 1.0831 - accuracy: 0.5538



71/92 [======================>…….] - ETA: 1s - loss: 1.0809 - accuracy: 0.5548



72/92 [======================>…….] - ETA: 1s - loss: 1.0771 - accuracy: 0.5575



73/92 [======================>…….] - ETA: 1s - loss: 1.0745 - accuracy: 0.5597



74/92 [=======================>……] - ETA: 1s - loss: 1.0762 - accuracy: 0.5593



75/92 [=======================>……] - ETA: 0s - loss: 1.0742 - accuracy: 0.5594



76/92 [=======================>……] - ETA: 0s - loss: 1.0738 - accuracy: 0.5586



77/92 [========================>…..] - ETA: 0s - loss: 1.0748 - accuracy: 0.5574



78/92 [========================>…..] - ETA: 0s - loss: 1.0728 - accuracy: 0.5579



79/92 [========================>…..] - ETA: 0s - loss: 1.0742 - accuracy: 0.5595



80/92 [=========================>….] - ETA: 0s - loss: 1.0765 - accuracy: 0.5588



81/92 [=========================>….] - ETA: 0s - loss: 1.0769 - accuracy: 0.5600



82/92 [=========================>….] - ETA: 0s - loss: 1.0754 - accuracy: 0.5596



83/92 [==========================>…] - ETA: 0s - loss: 1.0743 - accuracy: 0.5597



84/92 [==========================>…] - ETA: 0s - loss: 1.0725 - accuracy: 0.5619



85/92 [==========================>…] - ETA: 0s - loss: 1.0725 - accuracy: 0.5608



86/92 [===========================>..] - ETA: 0s - loss: 1.0737 - accuracy: 0.5601



87/92 [===========================>..] - ETA: 0s - loss: 1.0731 - accuracy: 0.5602



88/92 [===========================>..] - ETA: 0s - loss: 1.0762 - accuracy: 0.5580



89/92 [============================>.] - ETA: 0s - loss: 1.0749 - accuracy: 0.5588



90/92 [============================>.] - ETA: 0s - loss: 1.0765 - accuracy: 0.5578



91/92 [============================>.] - ETA: 0s - loss: 1.0753 - accuracy: 0.5579



92/92 [==============================] - ETA: 0s - loss: 1.0742 - accuracy: 0.5589



92/92 [==============================] - 6s 64ms/step - loss: 1.0742 - accuracy: 0.5589 - val_loss: 1.0685 - val_accuracy: 0.5627

Epoch 3/15
1/92 [..............................] - ETA: 7s - loss: 0.9481 - accuracy: 0.6250
   
2/92 [..............................] - ETA: 5s - loss: 1.0400 - accuracy: 0.5312
   
3/92 [..............................] - ETA: 5s - loss: 1.0083 - accuracy: 0.5833
   
4/92 [>.............................] - ETA: 5s - loss: 0.9945 - accuracy: 0.6016
   
5/92 [>.............................] - ETA: 5s - loss: 0.9999 - accuracy: 0.5875
   
6/92 [>.............................] - ETA: 4s - loss: 0.9974 - accuracy: 0.5833
   
7/92 [=>............................] - ETA: 4s - loss: 0.9819 - accuracy: 0.5982
   
8/92 [=>............................] - ETA: 4s - loss: 0.9862 - accuracy: 0.5938
   
9/92 [=>............................] - ETA: 4s - loss: 0.9919 - accuracy: 0.6007


10/92 [==>………………………] - ETA: 4s - loss: 0.9875 - accuracy: 0.6062



11/92 [==>………………………] - ETA: 4s - loss: 0.9882 - accuracy: 0.6080



12/92 [==>………………………] - ETA: 4s - loss: 0.9726 - accuracy: 0.6120



13/92 [===>……………………..] - ETA: 4s - loss: 0.9736 - accuracy: 0.6034



14/92 [===>……………………..] - ETA: 4s - loss: 0.9760 - accuracy: 0.5982



15/92 [===>……………………..] - ETA: 4s - loss: 0.9785 - accuracy: 0.5979



16/92 [====>…………………….] - ETA: 4s - loss: 0.9527 - accuracy: 0.6172



17/92 [====>…………………….] - ETA: 4s - loss: 0.9492 - accuracy: 0.6213



18/92 [====>…………………….] - ETA: 4s - loss: 0.9475 - accuracy: 0.6215



19/92 [=====>……………………] - ETA: 4s - loss: 0.9402 - accuracy: 0.6234



20/92 [=====>……………………] - ETA: 4s - loss: 0.9313 - accuracy: 0.6281



21/92 [=====>……………………] - ETA: 4s - loss: 0.9270 - accuracy: 0.6324



22/92 [======>…………………..] - ETA: 4s - loss: 0.9411 - accuracy: 0.6264



23/92 [======>…………………..] - ETA: 4s - loss: 0.9370 - accuracy: 0.6264



24/92 [======>…………………..] - ETA: 3s - loss: 0.9346 - accuracy: 0.6276



25/92 [=======>………………….] - ETA: 3s - loss: 0.9300 - accuracy: 0.6300



26/92 [=======>………………….] - ETA: 3s - loss: 0.9249 - accuracy: 0.6298



27/92 [=======>………………….] - ETA: 3s - loss: 0.9217 - accuracy: 0.6319



28/92 [========>…………………] - ETA: 3s - loss: 0.9224 - accuracy: 0.6283



29/92 [========>…………………] - ETA: 3s - loss: 0.9219 - accuracy: 0.6261



30/92 [========>…………………] - ETA: 3s - loss: 0.9185 - accuracy: 0.6250



31/92 [=========>………………..] - ETA: 3s - loss: 0.9241 - accuracy: 0.6220



32/92 [=========>………………..] - ETA: 3s - loss: 0.9325 - accuracy: 0.6182



33/92 [=========>………………..] - ETA: 3s - loss: 0.9336 - accuracy: 0.6231



34/92 [==========>……………….] - ETA: 3s - loss: 0.9345 - accuracy: 0.6241



35/92 [==========>……………….] - ETA: 3s - loss: 0.9392 - accuracy: 0.6232



36/92 [==========>……………….] - ETA: 3s - loss: 0.9411 - accuracy: 0.6224



37/92 [===========>………………] - ETA: 3s - loss: 0.9436 - accuracy: 0.6225



38/92 [===========>………………] - ETA: 3s - loss: 0.9506 - accuracy: 0.6201



39/92 [===========>………………] - ETA: 3s - loss: 0.9491 - accuracy: 0.6234



40/92 [============>……………..] - ETA: 3s - loss: 0.9481 - accuracy: 0.6227



41/92 [============>……………..] - ETA: 2s - loss: 0.9429 - accuracy: 0.6250



42/92 [============>……………..] - ETA: 2s - loss: 0.9385 - accuracy: 0.6272



43/92 [=============>…………….] - ETA: 2s - loss: 0.9361 - accuracy: 0.6279



44/92 [=============>…………….] - ETA: 2s - loss: 0.9339 - accuracy: 0.6271



45/92 [=============>…………….] - ETA: 2s - loss: 0.9319 - accuracy: 0.6278



46/92 [==============>……………] - ETA: 2s - loss: 0.9336 - accuracy: 0.6277



47/92 [==============>……………] - ETA: 2s - loss: 0.9366 - accuracy: 0.6270



48/92 [==============>……………] - ETA: 2s - loss: 0.9346 - accuracy: 0.6263



49/92 [==============>……………] - ETA: 2s - loss: 0.9313 - accuracy: 0.6276



50/92 [===============>…………..] - ETA: 2s - loss: 0.9317 - accuracy: 0.6263



51/92 [===============>…………..] - ETA: 2s - loss: 0.9299 - accuracy: 0.6256



52/92 [===============>…………..] - ETA: 2s - loss: 0.9252 - accuracy: 0.6274



53/92 [================>………….] - ETA: 2s - loss: 0.9252 - accuracy: 0.6268



54/92 [================>………….] - ETA: 2s - loss: 0.9259 - accuracy: 0.6279



55/92 [================>………….] - ETA: 2s - loss: 0.9261 - accuracy: 0.6273



56/92 [=================>…………] - ETA: 2s - loss: 0.9282 - accuracy: 0.6278



57/92 [=================>…………] - ETA: 2s - loss: 0.9275 - accuracy: 0.6283



58/92 [=================>…………] - ETA: 1s - loss: 0.9368 - accuracy: 0.6245



59/92 [==================>………..] - ETA: 1s - loss: 0.9373 - accuracy: 0.6229



60/92 [==================>………..] - ETA: 1s - loss: 0.9358 - accuracy: 0.6234



61/92 [==================>………..] - ETA: 1s - loss: 0.9381 - accuracy: 0.6224



62/92 [===================>……….] - ETA: 1s - loss: 0.9375 - accuracy: 0.6235



63/92 [===================>……….] - ETA: 1s - loss: 0.9379 - accuracy: 0.6240



64/92 [===================>……….] - ETA: 1s - loss: 0.9418 - accuracy: 0.6230



65/92 [====================>………] - ETA: 1s - loss: 0.9404 - accuracy: 0.6221



66/92 [====================>………] - ETA: 1s - loss: 0.9375 - accuracy: 0.6245



67/92 [====================>………] - ETA: 1s - loss: 0.9395 - accuracy: 0.6227



68/92 [=====================>……..] - ETA: 1s - loss: 0.9382 - accuracy: 0.6232



69/92 [=====================>……..] - ETA: 1s - loss: 0.9388 - accuracy: 0.6236



70/92 [=====================>……..] - ETA: 1s - loss: 0.9366 - accuracy: 0.6246



71/92 [======================>…….] - ETA: 1s - loss: 0.9352 - accuracy: 0.6250



72/92 [======================>…….] - ETA: 1s - loss: 0.9365 - accuracy: 0.6233



73/92 [======================>…….] - ETA: 1s - loss: 0.9340 - accuracy: 0.6250



74/92 [=======================>……] - ETA: 1s - loss: 0.9335 - accuracy: 0.6258



75/92 [=======================>……] - ETA: 0s - loss: 0.9347 - accuracy: 0.6254



76/92 [=======================>……] - ETA: 0s - loss: 0.9330 - accuracy: 0.6262



77/92 [========================>…..] - ETA: 0s - loss: 0.9301 - accuracy: 0.6291



78/92 [========================>…..] - ETA: 0s - loss: 0.9306 - accuracy: 0.6290



80/92 [=========================>….] - ETA: 0s - loss: 0.9272 - accuracy: 0.6313



81/92 [=========================>….] - ETA: 0s - loss: 0.9265 - accuracy: 0.6316



82/92 [=========================>….] - ETA: 0s - loss: 0.9277 - accuracy: 0.6307



83/92 [==========================>…] - ETA: 0s - loss: 0.9297 - accuracy: 0.6295



84/92 [==========================>…] - ETA: 0s - loss: 0.9302 - accuracy: 0.6299



85/92 [==========================>…] - ETA: 0s - loss: 0.9299 - accuracy: 0.6309



86/92 [===========================>..] - ETA: 0s - loss: 0.9320 - accuracy: 0.6301



87/92 [===========================>..] - ETA: 0s - loss: 0.9358 - accuracy: 0.6279



88/92 [===========================>..] - ETA: 0s - loss: 0.9352 - accuracy: 0.6289



89/92 [============================>.] - ETA: 0s - loss: 0.9329 - accuracy: 0.6292



90/92 [============================>.] - ETA: 0s - loss: 0.9313 - accuracy: 0.6295



91/92 [============================>.] - ETA: 0s - loss: 0.9285 - accuracy: 0.6309



92/92 [==============================] - ETA: 0s - loss: 0.9316 - accuracy: 0.6291



92/92 [==============================] - 6s 64ms/step - loss: 0.9316 - accuracy: 0.6291 - val_loss: 0.8948 - val_accuracy: 0.6540

Epoch 4/15
1/92 [..............................] - ETA: 6s - loss: 0.9437 - accuracy: 0.6250
   
2/92 [..............................] - ETA: 5s - loss: 0.9400 - accuracy: 0.6406
   
3/92 [..............................] - ETA: 5s - loss: 1.0213 - accuracy: 0.6146
   
4/92 [>.............................] - ETA: 5s - loss: 1.0144 - accuracy: 0.6016
   
5/92 [>.............................] - ETA: 5s - loss: 0.9660 - accuracy: 0.6250
   
6/92 [>.............................] - ETA: 5s - loss: 0.9476 - accuracy: 0.6510
   
7/92 [=>............................] - ETA: 4s - loss: 0.9413 - accuracy: 0.6518
   
8/92 [=>............................] - ETA: 4s - loss: 0.9381 - accuracy: 0.6484
   
9/92 [=>............................] - ETA: 4s - loss: 0.9303 - accuracy: 0.6389


10/92 [==>………………………] - ETA: 4s - loss: 0.9133 - accuracy: 0.6469



11/92 [==>………………………] - ETA: 4s - loss: 0.9262 - accuracy: 0.6420



12/92 [==>………………………] - ETA: 4s - loss: 0.9131 - accuracy: 0.6458



13/92 [===>……………………..] - ETA: 4s - loss: 0.9015 - accuracy: 0.6538



14/92 [===>……………………..] - ETA: 4s - loss: 0.8883 - accuracy: 0.6585



15/92 [===>……………………..] - ETA: 4s - loss: 0.8822 - accuracy: 0.6562



16/92 [====>…………………….] - ETA: 4s - loss: 0.8838 - accuracy: 0.6602



17/92 [====>…………………….] - ETA: 4s - loss: 0.9114 - accuracy: 0.6489



18/92 [====>…………………….] - ETA: 4s - loss: 0.9011 - accuracy: 0.6510



19/92 [=====>……………………] - ETA: 4s - loss: 0.8960 - accuracy: 0.6530



20/92 [=====>……………………] - ETA: 4s - loss: 0.8969 - accuracy: 0.6516



21/92 [=====>……………………] - ETA: 4s - loss: 0.8903 - accuracy: 0.6503



22/92 [======>…………………..] - ETA: 4s - loss: 0.8889 - accuracy: 0.6477



23/92 [======>…………………..] - ETA: 4s - loss: 0.8916 - accuracy: 0.6467



24/92 [======>…………………..] - ETA: 3s - loss: 0.8925 - accuracy: 0.6471



25/92 [=======>………………….] - ETA: 3s - loss: 0.8842 - accuracy: 0.6513



26/92 [=======>………………….] - ETA: 3s - loss: 0.8855 - accuracy: 0.6502



27/92 [=======>………………….] - ETA: 3s - loss: 0.8771 - accuracy: 0.6539



28/92 [========>…………………] - ETA: 3s - loss: 0.8767 - accuracy: 0.6518



29/92 [========>…………………] - ETA: 3s - loss: 0.8698 - accuracy: 0.6541



30/92 [========>…………………] - ETA: 3s - loss: 0.8710 - accuracy: 0.6542



31/92 [=========>………………..] - ETA: 3s - loss: 0.8748 - accuracy: 0.6532



32/92 [=========>………………..] - ETA: 3s - loss: 0.8705 - accuracy: 0.6543



33/92 [=========>………………..] - ETA: 3s - loss: 0.8692 - accuracy: 0.6562



34/92 [==========>……………….] - ETA: 3s - loss: 0.8665 - accuracy: 0.6599



36/92 [==========>……………….] - ETA: 3s - loss: 0.8706 - accuracy: 0.6617



37/92 [===========>………………] - ETA: 3s - loss: 0.8676 - accuracy: 0.6624



38/92 [===========>………………] - ETA: 3s - loss: 0.8652 - accuracy: 0.6623



39/92 [===========>………………] - ETA: 3s - loss: 0.8623 - accuracy: 0.6629



40/92 [============>……………..] - ETA: 3s - loss: 0.8594 - accuracy: 0.6651



41/92 [============>……………..] - ETA: 2s - loss: 0.8566 - accuracy: 0.6672



42/92 [============>……………..] - ETA: 2s - loss: 0.8507 - accuracy: 0.6707



43/92 [=============>…………….] - ETA: 2s - loss: 0.8462 - accuracy: 0.6718



44/92 [=============>…………….] - ETA: 2s - loss: 0.8465 - accuracy: 0.6693



45/92 [=============>…………….] - ETA: 2s - loss: 0.8456 - accuracy: 0.6690



46/92 [==============>……………] - ETA: 2s - loss: 0.8501 - accuracy: 0.6653



47/92 [==============>……………] - ETA: 2s - loss: 0.8534 - accuracy: 0.6651



48/92 [==============>……………] - ETA: 2s - loss: 0.8511 - accuracy: 0.6656



49/92 [==============>……………] - ETA: 2s - loss: 0.8530 - accuracy: 0.6654



50/92 [===============>…………..] - ETA: 2s - loss: 0.8499 - accuracy: 0.6658



51/92 [===============>…………..] - ETA: 2s - loss: 0.8518 - accuracy: 0.6644



52/92 [===============>…………..] - ETA: 2s - loss: 0.8521 - accuracy: 0.6636



53/92 [================>………….] - ETA: 2s - loss: 0.8538 - accuracy: 0.6629



54/92 [================>………….] - ETA: 2s - loss: 0.8603 - accuracy: 0.6605



55/92 [================>………….] - ETA: 2s - loss: 0.8678 - accuracy: 0.6592



56/92 [=================>…………] - ETA: 2s - loss: 0.8674 - accuracy: 0.6592



57/92 [=================>…………] - ETA: 2s - loss: 0.8660 - accuracy: 0.6591



58/92 [=================>…………] - ETA: 1s - loss: 0.8648 - accuracy: 0.6607



59/92 [==================>………..] - ETA: 1s - loss: 0.8631 - accuracy: 0.6617



60/92 [==================>………..] - ETA: 1s - loss: 0.8645 - accuracy: 0.6595



61/92 [==================>………..] - ETA: 1s - loss: 0.8637 - accuracy: 0.6600



62/92 [===================>……….] - ETA: 1s - loss: 0.8635 - accuracy: 0.6594



63/92 [===================>……….] - ETA: 1s - loss: 0.8610 - accuracy: 0.6599



64/92 [===================>……….] - ETA: 1s - loss: 0.8574 - accuracy: 0.6623



65/92 [====================>………] - ETA: 1s - loss: 0.8597 - accuracy: 0.6612



66/92 [====================>………] - ETA: 1s - loss: 0.8600 - accuracy: 0.6602



67/92 [====================>………] - ETA: 1s - loss: 0.8582 - accuracy: 0.6606



68/92 [=====================>……..] - ETA: 1s - loss: 0.8573 - accuracy: 0.6601



69/92 [=====================>……..] - ETA: 1s - loss: 0.8575 - accuracy: 0.6600



70/92 [=====================>……..] - ETA: 1s - loss: 0.8576 - accuracy: 0.6604



71/92 [======================>…….] - ETA: 1s - loss: 0.8571 - accuracy: 0.6617



72/92 [======================>…….] - ETA: 1s - loss: 0.8587 - accuracy: 0.6598



73/92 [======================>…….] - ETA: 1s - loss: 0.8593 - accuracy: 0.6598



74/92 [=======================>……] - ETA: 1s - loss: 0.8549 - accuracy: 0.6610



75/92 [=======================>……] - ETA: 0s - loss: 0.8569 - accuracy: 0.6610



76/92 [=======================>……] - ETA: 0s - loss: 0.8579 - accuracy: 0.6605



77/92 [========================>…..] - ETA: 0s - loss: 0.8619 - accuracy: 0.6584



78/92 [========================>…..] - ETA: 0s - loss: 0.8620 - accuracy: 0.6580



79/92 [========================>…..] - ETA: 0s - loss: 0.8613 - accuracy: 0.6583



80/92 [=========================>….] - ETA: 0s - loss: 0.8616 - accuracy: 0.6591



81/92 [=========================>….] - ETA: 0s - loss: 0.8579 - accuracy: 0.6602



82/92 [=========================>….] - ETA: 0s - loss: 0.8597 - accuracy: 0.6594



83/92 [==========================>…] - ETA: 0s - loss: 0.8589 - accuracy: 0.6597



84/92 [==========================>…] - ETA: 0s - loss: 0.8584 - accuracy: 0.6601



85/92 [==========================>…] - ETA: 0s - loss: 0.8609 - accuracy: 0.6578



86/92 [===========================>..] - ETA: 0s - loss: 0.8626 - accuracy: 0.6567



87/92 [===========================>..] - ETA: 0s - loss: 0.8617 - accuracy: 0.6574



88/92 [===========================>..] - ETA: 0s - loss: 0.8618 - accuracy: 0.6571



89/92 [============================>.] - ETA: 0s - loss: 0.8622 - accuracy: 0.6553



90/92 [============================>.] - ETA: 0s - loss: 0.8624 - accuracy: 0.6542



91/92 [============================>.] - ETA: 0s - loss: 0.8621 - accuracy: 0.6553



92/92 [==============================] - ETA: 0s - loss: 0.8626 - accuracy: 0.6550



92/92 [==============================] - 6s 64ms/step - loss: 0.8626 - accuracy: 0.6550 - val_loss: 0.8452 - val_accuracy: 0.6540

Epoch 5/15
1/92 [..............................] - ETA: 7s - loss: 0.6427 - accuracy: 0.7188
   
2/92 [..............................] - ETA: 5s - loss: 0.6912 - accuracy: 0.7188
   
3/92 [..............................] - ETA: 5s - loss: 0.7137 - accuracy: 0.6875
   
4/92 [>.............................] - ETA: 5s - loss: 0.7362 - accuracy: 0.6875
   
5/92 [>.............................] - ETA: 5s - loss: 0.7649 - accuracy: 0.6812
   
6/92 [>.............................] - ETA: 5s - loss: 0.8160 - accuracy: 0.6562
   
7/92 [=>............................] - ETA: 4s - loss: 0.8130 - accuracy: 0.6562
   
8/92 [=>............................] - ETA: 4s - loss: 0.7964 - accuracy: 0.6680
   
9/92 [=>............................] - ETA: 4s - loss: 0.8136 - accuracy: 0.6632


10/92 [==>………………………] - ETA: 4s - loss: 0.8277 - accuracy: 0.6562



11/92 [==>………………………] - ETA: 4s - loss: 0.8489 - accuracy: 0.6477



12/92 [==>………………………] - ETA: 4s - loss: 0.8382 - accuracy: 0.6510



13/92 [===>……………………..] - ETA: 4s - loss: 0.8242 - accuracy: 0.6611



14/92 [===>……………………..] - ETA: 4s - loss: 0.8200 - accuracy: 0.6607



15/92 [===>……………………..] - ETA: 4s - loss: 0.8231 - accuracy: 0.6562



16/92 [====>…………………….] - ETA: 4s - loss: 0.8219 - accuracy: 0.6602



17/92 [====>…………………….] - ETA: 4s - loss: 0.8155 - accuracy: 0.6654



18/92 [====>…………………….] - ETA: 4s - loss: 0.8175 - accuracy: 0.6667



19/92 [=====>……………………] - ETA: 4s - loss: 0.8136 - accuracy: 0.6727



20/92 [=====>……………………] - ETA: 4s - loss: 0.8088 - accuracy: 0.6719



21/92 [=====>……………………] - ETA: 4s - loss: 0.7999 - accuracy: 0.6771



22/92 [======>…………………..] - ETA: 4s - loss: 0.8036 - accuracy: 0.6747



23/92 [======>…………………..] - ETA: 4s - loss: 0.8034 - accuracy: 0.6780



24/92 [======>…………………..] - ETA: 3s - loss: 0.8009 - accuracy: 0.6797



25/92 [=======>………………….] - ETA: 3s - loss: 0.7954 - accuracy: 0.6837



26/92 [=======>………………….] - ETA: 3s - loss: 0.7901 - accuracy: 0.6875



27/92 [=======>………………….] - ETA: 3s - loss: 0.7908 - accuracy: 0.6852



28/92 [========>…………………] - ETA: 3s - loss: 0.7907 - accuracy: 0.6864



29/92 [========>…………………] - ETA: 3s - loss: 0.7913 - accuracy: 0.6864



30/92 [========>…………………] - ETA: 3s - loss: 0.7988 - accuracy: 0.6823



31/92 [=========>………………..] - ETA: 3s - loss: 0.8004 - accuracy: 0.6804



32/92 [=========>………………..] - ETA: 3s - loss: 0.8030 - accuracy: 0.6797



33/92 [=========>………………..] - ETA: 3s - loss: 0.7989 - accuracy: 0.6809



34/92 [==========>……………….] - ETA: 3s - loss: 0.8025 - accuracy: 0.6792



35/92 [==========>……………….] - ETA: 3s - loss: 0.7999 - accuracy: 0.6786



36/92 [==========>……………….] - ETA: 3s - loss: 0.7912 - accuracy: 0.6832



37/92 [===========>………………] - ETA: 3s - loss: 0.7929 - accuracy: 0.6833



38/92 [===========>………………] - ETA: 3s - loss: 0.7941 - accuracy: 0.6826



39/92 [===========>………………] - ETA: 3s - loss: 0.7943 - accuracy: 0.6843



40/92 [============>……………..] - ETA: 3s - loss: 0.8040 - accuracy: 0.6828



41/92 [============>……………..] - ETA: 2s - loss: 0.8066 - accuracy: 0.6822



42/92 [============>……………..] - ETA: 2s - loss: 0.8043 - accuracy: 0.6838



43/92 [=============>…………….] - ETA: 2s - loss: 0.8004 - accuracy: 0.6860



44/92 [=============>…………….] - ETA: 2s - loss: 0.7954 - accuracy: 0.6875



45/92 [=============>…………….] - ETA: 2s - loss: 0.7981 - accuracy: 0.6875



46/92 [==============>……………] - ETA: 2s - loss: 0.7944 - accuracy: 0.6889



47/92 [==============>……………] - ETA: 2s - loss: 0.7967 - accuracy: 0.6875



48/92 [==============>……………] - ETA: 2s - loss: 0.7933 - accuracy: 0.6888



49/92 [==============>……………] - ETA: 2s - loss: 0.7877 - accuracy: 0.6913



50/92 [===============>…………..] - ETA: 2s - loss: 0.7844 - accuracy: 0.6919



51/92 [===============>…………..] - ETA: 2s - loss: 0.7897 - accuracy: 0.6893



53/92 [================>………….] - ETA: 2s - loss: 0.7869 - accuracy: 0.6902



54/92 [================>………….] - ETA: 2s - loss: 0.7861 - accuracy: 0.6913



55/92 [================>………….] - ETA: 2s - loss: 0.7849 - accuracy: 0.6912



56/92 [=================>…………] - ETA: 2s - loss: 0.7852 - accuracy: 0.6917



57/92 [=================>…………] - ETA: 2s - loss: 0.7868 - accuracy: 0.6916



58/92 [=================>…………] - ETA: 1s - loss: 0.7890 - accuracy: 0.6916



59/92 [==================>………..] - ETA: 1s - loss: 0.7928 - accuracy: 0.6910



60/92 [==================>………..] - ETA: 1s - loss: 0.7903 - accuracy: 0.6930



61/92 [==================>………..] - ETA: 1s - loss: 0.7904 - accuracy: 0.6939



62/92 [===================>……….] - ETA: 1s - loss: 0.7863 - accuracy: 0.6969



63/92 [===================>……….] - ETA: 1s - loss: 0.7856 - accuracy: 0.6977



64/92 [===================>……….] - ETA: 1s - loss: 0.7854 - accuracy: 0.6971



65/92 [====================>………] - ETA: 1s - loss: 0.7943 - accuracy: 0.6940



66/92 [====================>………] - ETA: 1s - loss: 0.7963 - accuracy: 0.6939



67/92 [====================>………] - ETA: 1s - loss: 0.8017 - accuracy: 0.6910



68/92 [=====================>……..] - ETA: 1s - loss: 0.8011 - accuracy: 0.6923



69/92 [=====================>……..] - ETA: 1s - loss: 0.8030 - accuracy: 0.6918



70/92 [=====================>……..] - ETA: 1s - loss: 0.8016 - accuracy: 0.6913



71/92 [======================>…….] - ETA: 1s - loss: 0.8007 - accuracy: 0.6917



72/92 [======================>…….] - ETA: 1s - loss: 0.8018 - accuracy: 0.6908



73/92 [======================>…….] - ETA: 1s - loss: 0.8020 - accuracy: 0.6920



74/92 [=======================>……] - ETA: 1s - loss: 0.8055 - accuracy: 0.6903



75/92 [=======================>……] - ETA: 0s - loss: 0.8092 - accuracy: 0.6894



76/92 [=======================>……] - ETA: 0s - loss: 0.8083 - accuracy: 0.6914



77/92 [========================>…..] - ETA: 0s - loss: 0.8063 - accuracy: 0.6930



78/92 [========================>…..] - ETA: 0s - loss: 0.8076 - accuracy: 0.6929



79/92 [========================>…..] - ETA: 0s - loss: 0.8080 - accuracy: 0.6925



80/92 [=========================>….] - ETA: 0s - loss: 0.8081 - accuracy: 0.6932



81/92 [=========================>….] - ETA: 0s - loss: 0.8083 - accuracy: 0.6916



82/92 [=========================>….] - ETA: 0s - loss: 0.8071 - accuracy: 0.6919



83/92 [==========================>…] - ETA: 0s - loss: 0.8083 - accuracy: 0.6915



84/92 [==========================>…] - ETA: 0s - loss: 0.8077 - accuracy: 0.6914



85/92 [==========================>…] - ETA: 0s - loss: 0.8083 - accuracy: 0.6910



86/92 [===========================>..] - ETA: 0s - loss: 0.8087 - accuracy: 0.6902



87/92 [===========================>..] - ETA: 0s - loss: 0.8088 - accuracy: 0.6891



88/92 [===========================>..] - ETA: 0s - loss: 0.8067 - accuracy: 0.6898



89/92 [============================>.] - ETA: 0s - loss: 0.8064 - accuracy: 0.6887



90/92 [============================>.] - ETA: 0s - loss: 0.8070 - accuracy: 0.6891



91/92 [============================>.] - ETA: 0s - loss: 0.8046 - accuracy: 0.6901



92/92 [==============================] - ETA: 0s - loss: 0.8027 - accuracy: 0.6911



92/92 [==============================] - 6s 64ms/step - loss: 0.8027 - accuracy: 0.6911 - val_loss: 0.9385 - val_accuracy: 0.6540

Epoch 6/15
1/92 [..............................] - ETA: 7s - loss: 0.8309 - accuracy: 0.6875
   
2/92 [..............................] - ETA: 5s - loss: 0.8032 - accuracy: 0.7031
   
3/92 [..............................] - ETA: 5s - loss: 0.8544 - accuracy: 0.6979
   
4/92 [>.............................] - ETA: 5s - loss: 0.7712 - accuracy: 0.7422
   
5/92 [>.............................] - ETA: 5s - loss: 0.7464 - accuracy: 0.7375
   
6/92 [>.............................] - ETA: 5s - loss: 0.7709 - accuracy: 0.7396
   
7/92 [=>............................] - ETA: 4s - loss: 0.7587 - accuracy: 0.7411
   
8/92 [=>............................] - ETA: 4s - loss: 0.8016 - accuracy: 0.7227
   
9/92 [=>............................] - ETA: 4s - loss: 0.7806 - accuracy: 0.7153


10/92 [==>………………………] - ETA: 4s - loss: 0.7750 - accuracy: 0.7188



11/92 [==>………………………] - ETA: 4s - loss: 0.7794 - accuracy: 0.7159



12/92 [==>………………………] - ETA: 4s - loss: 0.7689 - accuracy: 0.7161



13/92 [===>……………………..] - ETA: 4s - loss: 0.7657 - accuracy: 0.7115



14/92 [===>……………………..] - ETA: 4s - loss: 0.7456 - accuracy: 0.7165



15/92 [===>……………………..] - ETA: 4s - loss: 0.7359 - accuracy: 0.7188



16/92 [====>…………………….] - ETA: 4s - loss: 0.7275 - accuracy: 0.7207



17/92 [====>…………………….] - ETA: 4s - loss: 0.7406 - accuracy: 0.7151



18/92 [====>…………………….] - ETA: 4s - loss: 0.7406 - accuracy: 0.7135



19/92 [=====>……………………] - ETA: 4s - loss: 0.7385 - accuracy: 0.7138



20/92 [=====>……………………] - ETA: 4s - loss: 0.7366 - accuracy: 0.7141



21/92 [=====>……………………] - ETA: 4s - loss: 0.7355 - accuracy: 0.7143



22/92 [======>…………………..] - ETA: 4s - loss: 0.7315 - accuracy: 0.7145



23/92 [======>…………………..] - ETA: 4s - loss: 0.7283 - accuracy: 0.7160



24/92 [======>…………………..] - ETA: 3s - loss: 0.7425 - accuracy: 0.7070



25/92 [=======>………………….] - ETA: 3s - loss: 0.7453 - accuracy: 0.7088



26/92 [=======>………………….] - ETA: 3s - loss: 0.7423 - accuracy: 0.7151



27/92 [=======>………………….] - ETA: 3s - loss: 0.7448 - accuracy: 0.7118



28/92 [========>…………………] - ETA: 3s - loss: 0.7458 - accuracy: 0.7121



29/92 [========>…………………] - ETA: 3s - loss: 0.7452 - accuracy: 0.7144



30/92 [========>…………………] - ETA: 3s - loss: 0.7466 - accuracy: 0.7135



31/92 [=========>………………..] - ETA: 3s - loss: 0.7409 - accuracy: 0.7157



32/92 [=========>………………..] - ETA: 3s - loss: 0.7407 - accuracy: 0.7168



33/92 [=========>………………..] - ETA: 3s - loss: 0.7351 - accuracy: 0.7197



34/92 [==========>……………….] - ETA: 3s - loss: 0.7291 - accuracy: 0.7215



35/92 [==========>……………….] - ETA: 3s - loss: 0.7285 - accuracy: 0.7223



36/92 [==========>……………….] - ETA: 3s - loss: 0.7361 - accuracy: 0.7188



37/92 [===========>………………] - ETA: 3s - loss: 0.7333 - accuracy: 0.7204



38/92 [===========>………………] - ETA: 3s - loss: 0.7315 - accuracy: 0.7204



39/92 [===========>………………] - ETA: 3s - loss: 0.7309 - accuracy: 0.7204



40/92 [============>……………..] - ETA: 3s - loss: 0.7319 - accuracy: 0.7211



41/92 [============>……………..] - ETA: 2s - loss: 0.7360 - accuracy: 0.7180



42/92 [============>……………..] - ETA: 2s - loss: 0.7382 - accuracy: 0.7173



43/92 [=============>…………….] - ETA: 2s - loss: 0.7401 - accuracy: 0.7151



44/92 [=============>…………….] - ETA: 2s - loss: 0.7342 - accuracy: 0.7180



45/92 [=============>…………….] - ETA: 2s - loss: 0.7370 - accuracy: 0.7174



46/92 [==============>……………] - ETA: 2s - loss: 0.7370 - accuracy: 0.7174



47/92 [==============>……………] - ETA: 2s - loss: 0.7349 - accuracy: 0.7201



48/92 [==============>……………] - ETA: 2s - loss: 0.7335 - accuracy: 0.7181



49/92 [==============>……………] - ETA: 2s - loss: 0.7344 - accuracy: 0.7162



50/92 [===============>…………..] - ETA: 2s - loss: 0.7317 - accuracy: 0.7163



51/92 [===============>…………..] - ETA: 2s - loss: 0.7332 - accuracy: 0.7157



52/92 [===============>…………..] - ETA: 2s - loss: 0.7387 - accuracy: 0.7133



53/92 [================>………….] - ETA: 2s - loss: 0.7450 - accuracy: 0.7117



54/92 [================>………….] - ETA: 2s - loss: 0.7455 - accuracy: 0.7124



55/92 [================>………….] - ETA: 2s - loss: 0.7468 - accuracy: 0.7114



56/92 [=================>…………] - ETA: 2s - loss: 0.7489 - accuracy: 0.7121



58/92 [=================>…………] - ETA: 1s - loss: 0.7542 - accuracy: 0.7094



59/92 [==================>………..] - ETA: 1s - loss: 0.7542 - accuracy: 0.7090



60/92 [==================>………..] - ETA: 1s - loss: 0.7528 - accuracy: 0.7113



61/92 [==================>………..] - ETA: 1s - loss: 0.7565 - accuracy: 0.7088



62/92 [===================>……….] - ETA: 1s - loss: 0.7541 - accuracy: 0.7110



63/92 [===================>……….] - ETA: 1s - loss: 0.7551 - accuracy: 0.7097



64/92 [===================>……….] - ETA: 1s - loss: 0.7536 - accuracy: 0.7108



65/92 [====================>………] - ETA: 1s - loss: 0.7494 - accuracy: 0.7128



66/92 [====================>………] - ETA: 1s - loss: 0.7460 - accuracy: 0.7144



67/92 [====================>………] - ETA: 1s - loss: 0.7464 - accuracy: 0.7140



68/92 [=====================>……..] - ETA: 1s - loss: 0.7455 - accuracy: 0.7145



69/92 [=====================>……..] - ETA: 1s - loss: 0.7467 - accuracy: 0.7136



70/92 [=====================>……..] - ETA: 1s - loss: 0.7478 - accuracy: 0.7142



71/92 [======================>…….] - ETA: 1s - loss: 0.7466 - accuracy: 0.7155



72/92 [======================>…….] - ETA: 1s - loss: 0.7430 - accuracy: 0.7160



73/92 [======================>…….] - ETA: 1s - loss: 0.7404 - accuracy: 0.7169



74/92 [=======================>……] - ETA: 1s - loss: 0.7433 - accuracy: 0.7148



75/92 [=======================>……] - ETA: 0s - loss: 0.7427 - accuracy: 0.7153



76/92 [=======================>……] - ETA: 0s - loss: 0.7442 - accuracy: 0.7149



77/92 [========================>…..] - ETA: 0s - loss: 0.7437 - accuracy: 0.7146



78/92 [========================>…..] - ETA: 0s - loss: 0.7435 - accuracy: 0.7150



79/92 [========================>…..] - ETA: 0s - loss: 0.7461 - accuracy: 0.7151



80/92 [=========================>….] - ETA: 0s - loss: 0.7502 - accuracy: 0.7143



81/92 [=========================>….] - ETA: 0s - loss: 0.7494 - accuracy: 0.7148



82/92 [=========================>….] - ETA: 0s - loss: 0.7490 - accuracy: 0.7156



83/92 [==========================>…] - ETA: 0s - loss: 0.7489 - accuracy: 0.7156



84/92 [==========================>…] - ETA: 0s - loss: 0.7506 - accuracy: 0.7134



85/92 [==========================>…] - ETA: 0s - loss: 0.7490 - accuracy: 0.7146



86/92 [===========================>..] - ETA: 0s - loss: 0.7500 - accuracy: 0.7143



87/92 [===========================>..] - ETA: 0s - loss: 0.7500 - accuracy: 0.7143



88/92 [===========================>..] - ETA: 0s - loss: 0.7505 - accuracy: 0.7140



89/92 [============================>.] - ETA: 0s - loss: 0.7555 - accuracy: 0.7116



90/92 [============================>.] - ETA: 0s - loss: 0.7560 - accuracy: 0.7117



91/92 [============================>.] - ETA: 0s - loss: 0.7572 - accuracy: 0.7111



92/92 [==============================] - ETA: 0s - loss: 0.7571 - accuracy: 0.7115



92/92 [==============================] - 6s 64ms/step - loss: 0.7571 - accuracy: 0.7115 - val_loss: 0.7898 - val_accuracy: 0.6757

Epoch 7/15
1/92 [..............................] - ETA: 7s - loss: 1.0297 - accuracy: 0.5312
   
2/92 [..............................] - ETA: 5s - loss: 0.9824 - accuracy: 0.6250
   
3/92 [..............................] - ETA: 5s - loss: 0.9507 - accuracy: 0.6250
   
4/92 [>.............................] - ETA: 5s - loss: 0.8653 - accuracy: 0.6797
   
5/92 [>.............................] - ETA: 5s - loss: 0.8340 - accuracy: 0.6875
   
6/92 [>.............................] - ETA: 5s - loss: 0.7951 - accuracy: 0.7135
   
7/92 [=>............................] - ETA: 5s - loss: 0.7668 - accuracy: 0.7321
   
8/92 [=>............................] - ETA: 4s - loss: 0.7473 - accuracy: 0.7383
   
9/92 [=>............................] - ETA: 4s - loss: 0.7561 - accuracy: 0.7257


10/92 [==>………………………] - ETA: 4s - loss: 0.7352 - accuracy: 0.7344



11/92 [==>………………………] - ETA: 4s - loss: 0.7213 - accuracy: 0.7443



12/92 [==>………………………] - ETA: 4s - loss: 0.7234 - accuracy: 0.7396



13/92 [===>……………………..] - ETA: 4s - loss: 0.7168 - accuracy: 0.7380



14/92 [===>……………………..] - ETA: 4s - loss: 0.7381 - accuracy: 0.7344



15/92 [===>……………………..] - ETA: 4s - loss: 0.7442 - accuracy: 0.7292



16/92 [====>…………………….] - ETA: 4s - loss: 0.7399 - accuracy: 0.7305



17/92 [====>…………………….] - ETA: 4s - loss: 0.7363 - accuracy: 0.7316



18/92 [====>…………………….] - ETA: 4s - loss: 0.7337 - accuracy: 0.7292



19/92 [=====>……………………] - ETA: 4s - loss: 0.7476 - accuracy: 0.7286



20/92 [=====>……………………] - ETA: 4s - loss: 0.7442 - accuracy: 0.7297



21/92 [=====>……………………] - ETA: 4s - loss: 0.7557 - accuracy: 0.7217



22/92 [======>…………………..] - ETA: 4s - loss: 0.7469 - accuracy: 0.7244



23/92 [======>…………………..] - ETA: 4s - loss: 0.7375 - accuracy: 0.7296



24/92 [======>…………………..] - ETA: 3s - loss: 0.7313 - accuracy: 0.7318



25/92 [=======>………………….] - ETA: 3s - loss: 0.7247 - accuracy: 0.7337



26/92 [=======>………………….] - ETA: 3s - loss: 0.7243 - accuracy: 0.7344



27/92 [=======>………………….] - ETA: 3s - loss: 0.7181 - accuracy: 0.7350



28/92 [========>…………………] - ETA: 3s - loss: 0.7166 - accuracy: 0.7333



29/92 [========>…………………] - ETA: 3s - loss: 0.7185 - accuracy: 0.7328



30/92 [========>…………………] - ETA: 3s - loss: 0.7122 - accuracy: 0.7354



31/92 [=========>………………..] - ETA: 3s - loss: 0.7137 - accuracy: 0.7349



32/92 [=========>………………..] - ETA: 3s - loss: 0.7101 - accuracy: 0.7363



33/92 [=========>………………..] - ETA: 3s - loss: 0.7042 - accuracy: 0.7377



34/92 [==========>……………….] - ETA: 3s - loss: 0.7058 - accuracy: 0.7362



35/92 [==========>……………….] - ETA: 3s - loss: 0.7068 - accuracy: 0.7339



36/92 [==========>……………….] - ETA: 3s - loss: 0.7114 - accuracy: 0.7318



37/92 [===========>………………] - ETA: 3s - loss: 0.7073 - accuracy: 0.7348



38/92 [===========>………………] - ETA: 3s - loss: 0.7022 - accuracy: 0.7360



39/92 [===========>………………] - ETA: 3s - loss: 0.7105 - accuracy: 0.7340



40/92 [============>……………..] - ETA: 3s - loss: 0.7085 - accuracy: 0.7344



41/92 [============>……………..] - ETA: 2s - loss: 0.7062 - accuracy: 0.7348



42/92 [============>……………..] - ETA: 2s - loss: 0.7022 - accuracy: 0.7359



43/92 [=============>…………….] - ETA: 2s - loss: 0.7012 - accuracy: 0.7355



44/92 [=============>…………….] - ETA: 2s - loss: 0.7048 - accuracy: 0.7358



45/92 [=============>…………….] - ETA: 2s - loss: 0.7104 - accuracy: 0.7312



46/92 [==============>……………] - ETA: 2s - loss: 0.7085 - accuracy: 0.7303



47/92 [==============>……………] - ETA: 2s - loss: 0.7083 - accuracy: 0.7307



48/92 [==============>……………] - ETA: 2s - loss: 0.7098 - accuracy: 0.7298



49/92 [==============>……………] - ETA: 2s - loss: 0.7082 - accuracy: 0.7315



50/92 [===============>…………..] - ETA: 2s - loss: 0.7100 - accuracy: 0.7319



51/92 [===============>…………..] - ETA: 2s - loss: 0.7118 - accuracy: 0.7292



52/92 [===============>…………..] - ETA: 2s - loss: 0.7132 - accuracy: 0.7290



53/92 [================>………….] - ETA: 2s - loss: 0.7155 - accuracy: 0.7270



54/92 [================>………….] - ETA: 2s - loss: 0.7165 - accuracy: 0.7274



55/92 [================>………….] - ETA: 2s - loss: 0.7120 - accuracy: 0.7312



56/92 [=================>…………] - ETA: 2s - loss: 0.7100 - accuracy: 0.7321



57/92 [=================>…………] - ETA: 2s - loss: 0.7080 - accuracy: 0.7330



58/92 [=================>…………] - ETA: 1s - loss: 0.7078 - accuracy: 0.7322



59/92 [==================>………..] - ETA: 1s - loss: 0.7053 - accuracy: 0.7325



60/92 [==================>………..] - ETA: 1s - loss: 0.7040 - accuracy: 0.7323



61/92 [==================>………..] - ETA: 1s - loss: 0.7034 - accuracy: 0.7336



62/92 [===================>……….] - ETA: 1s - loss: 0.7052 - accuracy: 0.7329



63/92 [===================>……….] - ETA: 1s - loss: 0.7045 - accuracy: 0.7331



64/92 [===================>……….] - ETA: 1s - loss: 0.7029 - accuracy: 0.7329



65/92 [====================>………] - ETA: 1s - loss: 0.7010 - accuracy: 0.7327



66/92 [====================>………] - ETA: 1s - loss: 0.7028 - accuracy: 0.7320



67/92 [====================>………] - ETA: 1s - loss: 0.6986 - accuracy: 0.7341



68/92 [=====================>……..] - ETA: 1s - loss: 0.7025 - accuracy: 0.7335



69/92 [=====================>……..] - ETA: 1s - loss: 0.7025 - accuracy: 0.7337



70/92 [=====================>……..] - ETA: 1s - loss: 0.7004 - accuracy: 0.7339



71/92 [======================>…….] - ETA: 1s - loss: 0.7004 - accuracy: 0.7337



72/92 [======================>…….] - ETA: 1s - loss: 0.7039 - accuracy: 0.7326



73/92 [======================>…….] - ETA: 1s - loss: 0.7038 - accuracy: 0.7324



74/92 [=======================>……] - ETA: 1s - loss: 0.7075 - accuracy: 0.7314



75/92 [=======================>……] - ETA: 0s - loss: 0.7079 - accuracy: 0.7308



76/92 [=======================>……] - ETA: 0s - loss: 0.7064 - accuracy: 0.7315



77/92 [========================>…..] - ETA: 0s - loss: 0.7045 - accuracy: 0.7321



78/92 [========================>…..] - ETA: 0s - loss: 0.7033 - accuracy: 0.7324



79/92 [========================>…..] - ETA: 0s - loss: 0.7059 - accuracy: 0.7318



80/92 [=========================>….] - ETA: 0s - loss: 0.7084 - accuracy: 0.7305



81/92 [=========================>….] - ETA: 0s - loss: 0.7065 - accuracy: 0.7307



82/92 [=========================>….] - ETA: 0s - loss: 0.7112 - accuracy: 0.7287



83/92 [==========================>…] - ETA: 0s - loss: 0.7109 - accuracy: 0.7282



85/92 [==========================>…] - ETA: 0s - loss: 0.7080 - accuracy: 0.7301



86/92 [===========================>..] - ETA: 0s - loss: 0.7118 - accuracy: 0.7281



87/92 [===========================>..] - ETA: 0s - loss: 0.7095 - accuracy: 0.7287



88/92 [===========================>..] - ETA: 0s - loss: 0.7078 - accuracy: 0.7297



89/92 [============================>.] - ETA: 0s - loss: 0.7082 - accuracy: 0.7299



90/92 [============================>.] - ETA: 0s - loss: 0.7092 - accuracy: 0.7295



91/92 [============================>.] - ETA: 0s - loss: 0.7118 - accuracy: 0.7276



92/92 [==============================] - ETA: 0s - loss: 0.7101 - accuracy: 0.7279



92/92 [==============================] - 6s 64ms/step - loss: 0.7101 - accuracy: 0.7279 - val_loss: 0.7492 - val_accuracy: 0.7125

Epoch 8/15
1/92 [..............................] - ETA: 7s - loss: 0.4827 - accuracy: 0.8438
   
2/92 [..............................] - ETA: 5s - loss: 0.5721 - accuracy: 0.7969
   
3/92 [..............................] - ETA: 5s - loss: 0.5558 - accuracy: 0.7812
   
4/92 [>.............................] - ETA: 5s - loss: 0.5700 - accuracy: 0.7578
   
5/92 [>.............................] - ETA: 5s - loss: 0.5991 - accuracy: 0.7625
   
6/92 [>.............................] - ETA: 5s - loss: 0.6347 - accuracy: 0.7552
   
7/92 [=>............................] - ETA: 4s - loss: 0.6193 - accuracy: 0.7634
   
8/92 [=>............................] - ETA: 4s - loss: 0.6489 - accuracy: 0.7461
   
9/92 [=>............................] - ETA: 4s - loss: 0.6611 - accuracy: 0.7361


10/92 [==>………………………] - ETA: 4s - loss: 0.6498 - accuracy: 0.7375



11/92 [==>………………………] - ETA: 4s - loss: 0.6517 - accuracy: 0.7330



12/92 [==>………………………] - ETA: 4s - loss: 0.6420 - accuracy: 0.7448



13/92 [===>……………………..] - ETA: 4s - loss: 0.6429 - accuracy: 0.7476



14/92 [===>……………………..] - ETA: 4s - loss: 0.6445 - accuracy: 0.7455



15/92 [===>……………………..] - ETA: 4s - loss: 0.6421 - accuracy: 0.7437



16/92 [====>…………………….] - ETA: 4s - loss: 0.6356 - accuracy: 0.7461



17/92 [====>…………………….] - ETA: 4s - loss: 0.6272 - accuracy: 0.7500



18/92 [====>…………………….] - ETA: 4s - loss: 0.6430 - accuracy: 0.7396



19/92 [=====>……………………] - ETA: 4s - loss: 0.6390 - accuracy: 0.7434



20/92 [=====>……………………] - ETA: 4s - loss: 0.6434 - accuracy: 0.7422



21/92 [=====>……………………] - ETA: 4s - loss: 0.6388 - accuracy: 0.7470



22/92 [======>…………………..] - ETA: 4s - loss: 0.6338 - accuracy: 0.7472



23/92 [======>…………………..] - ETA: 4s - loss: 0.6420 - accuracy: 0.7418



24/92 [======>…………………..] - ETA: 3s - loss: 0.6480 - accuracy: 0.7383



25/92 [=======>………………….] - ETA: 3s - loss: 0.6484 - accuracy: 0.7425



26/92 [=======>………………….] - ETA: 3s - loss: 0.6535 - accuracy: 0.7440



27/92 [=======>………………….] - ETA: 3s - loss: 0.6577 - accuracy: 0.7407



28/92 [========>…………………] - ETA: 3s - loss: 0.6681 - accuracy: 0.7388



29/92 [========>…………………] - ETA: 3s - loss: 0.6671 - accuracy: 0.7414



30/92 [========>…………………] - ETA: 3s - loss: 0.6700 - accuracy: 0.7396



31/92 [=========>………………..] - ETA: 3s - loss: 0.6742 - accuracy: 0.7389



32/92 [=========>………………..] - ETA: 3s - loss: 0.6706 - accuracy: 0.7393



33/92 [=========>………………..] - ETA: 3s - loss: 0.6776 - accuracy: 0.7367



34/92 [==========>……………….] - ETA: 3s - loss: 0.6775 - accuracy: 0.7362



35/92 [==========>……………….] - ETA: 3s - loss: 0.6801 - accuracy: 0.7366



36/92 [==========>……………….] - ETA: 3s - loss: 0.6821 - accuracy: 0.7361



37/92 [===========>………………] - ETA: 3s - loss: 0.6873 - accuracy: 0.7356



38/92 [===========>………………] - ETA: 3s - loss: 0.6916 - accuracy: 0.7336



39/92 [===========>………………] - ETA: 3s - loss: 0.6910 - accuracy: 0.7324



40/92 [============>……………..] - ETA: 3s - loss: 0.6938 - accuracy: 0.7305



41/92 [============>……………..] - ETA: 2s - loss: 0.6958 - accuracy: 0.7294



42/92 [============>……………..] - ETA: 2s - loss: 0.6957 - accuracy: 0.7307



43/92 [=============>…………….] - ETA: 2s - loss: 0.6969 - accuracy: 0.7289



44/92 [=============>…………….] - ETA: 2s - loss: 0.6972 - accuracy: 0.7301



45/92 [=============>…………….] - ETA: 2s - loss: 0.6984 - accuracy: 0.7292



46/92 [==============>……………] - ETA: 2s - loss: 0.6993 - accuracy: 0.7283



47/92 [==============>……………] - ETA: 2s - loss: 0.6983 - accuracy: 0.7287



48/92 [==============>……………] - ETA: 2s - loss: 0.6976 - accuracy: 0.7298



49/92 [==============>……………] - ETA: 2s - loss: 0.6959 - accuracy: 0.7321



50/92 [===============>…………..] - ETA: 2s - loss: 0.6940 - accuracy: 0.7325



51/92 [===============>…………..] - ETA: 2s - loss: 0.6960 - accuracy: 0.7298



52/92 [===============>…………..] - ETA: 2s - loss: 0.6936 - accuracy: 0.7320



53/92 [================>………….] - ETA: 2s - loss: 0.6952 - accuracy: 0.7317



54/92 [================>………….] - ETA: 2s - loss: 0.6960 - accuracy: 0.7321



55/92 [================>………….] - ETA: 2s - loss: 0.6993 - accuracy: 0.7301



56/92 [=================>…………] - ETA: 2s - loss: 0.6994 - accuracy: 0.7299



57/92 [=================>…………] - ETA: 2s - loss: 0.7015 - accuracy: 0.7303



58/92 [=================>…………] - ETA: 1s - loss: 0.7040 - accuracy: 0.7279



59/92 [==================>………..] - ETA: 1s - loss: 0.7009 - accuracy: 0.7293



60/92 [==================>………..] - ETA: 1s - loss: 0.6984 - accuracy: 0.7318



61/92 [==================>………..] - ETA: 1s - loss: 0.6969 - accuracy: 0.7321



62/92 [===================>……….] - ETA: 1s - loss: 0.7041 - accuracy: 0.7308



63/92 [===================>……….] - ETA: 1s - loss: 0.7038 - accuracy: 0.7326



64/92 [===================>……….] - ETA: 1s - loss: 0.7015 - accuracy: 0.7349



65/92 [====================>………] - ETA: 1s - loss: 0.7055 - accuracy: 0.7327



66/92 [====================>………] - ETA: 1s - loss: 0.7060 - accuracy: 0.7311



67/92 [====================>………] - ETA: 1s - loss: 0.7073 - accuracy: 0.7304



68/92 [=====================>……..] - ETA: 1s - loss: 0.7051 - accuracy: 0.7316



69/92 [=====================>……..] - ETA: 1s - loss: 0.7052 - accuracy: 0.7310



70/92 [=====================>……..] - ETA: 1s - loss: 0.7040 - accuracy: 0.7312



71/92 [======================>…….] - ETA: 1s - loss: 0.7014 - accuracy: 0.7315



72/92 [======================>…….] - ETA: 1s - loss: 0.6997 - accuracy: 0.7313



73/92 [======================>…….] - ETA: 1s - loss: 0.7002 - accuracy: 0.7320



74/92 [=======================>……] - ETA: 1s - loss: 0.7024 - accuracy: 0.7306



75/92 [=======================>……] - ETA: 0s - loss: 0.7007 - accuracy: 0.7304



76/92 [=======================>……] - ETA: 0s - loss: 0.6981 - accuracy: 0.7315



77/92 [========================>…..] - ETA: 0s - loss: 0.6973 - accuracy: 0.7309



78/92 [========================>…..] - ETA: 0s - loss: 0.6992 - accuracy: 0.7304



79/92 [========================>…..] - ETA: 0s - loss: 0.7035 - accuracy: 0.7282



80/92 [=========================>….] - ETA: 0s - loss: 0.7038 - accuracy: 0.7277



81/92 [=========================>….] - ETA: 0s - loss: 0.7013 - accuracy: 0.7296



82/92 [=========================>….] - ETA: 0s - loss: 0.7029 - accuracy: 0.7287



83/92 [==========================>…] - ETA: 0s - loss: 0.7047 - accuracy: 0.7282



84/92 [==========================>…] - ETA: 0s - loss: 0.7022 - accuracy: 0.7295



85/92 [==========================>…] - ETA: 0s - loss: 0.7017 - accuracy: 0.7298



87/92 [===========================>..] - ETA: 0s - loss: 0.7005 - accuracy: 0.7298



88/92 [===========================>..] - ETA: 0s - loss: 0.7001 - accuracy: 0.7293



89/92 [============================>.] - ETA: 0s - loss: 0.6992 - accuracy: 0.7292



90/92 [============================>.] - ETA: 0s - loss: 0.7045 - accuracy: 0.7270



91/92 [============================>.] - ETA: 0s - loss: 0.7020 - accuracy: 0.7280



92/92 [==============================] - ETA: 0s - loss: 0.7008 - accuracy: 0.7285



92/92 [==============================] - 6s 64ms/step - loss: 0.7008 - accuracy: 0.7285 - val_loss: 0.7422 - val_accuracy: 0.7139

Epoch 9/15
1/92 [..............................] - ETA: 7s - loss: 0.5952 - accuracy: 0.8125
   
2/92 [..............................] - ETA: 5s - loss: 0.6358 - accuracy: 0.7656
   
3/92 [..............................] - ETA: 5s - loss: 0.6093 - accuracy: 0.7812
   
4/92 [>.............................] - ETA: 5s - loss: 0.6300 - accuracy: 0.7812
   
5/92 [>.............................] - ETA: 5s - loss: 0.6096 - accuracy: 0.7875
   
6/92 [>.............................] - ETA: 4s - loss: 0.6280 - accuracy: 0.7812
   
7/92 [=>............................] - ETA: 4s - loss: 0.6085 - accuracy: 0.7902
   
8/92 [=>............................] - ETA: 4s - loss: 0.5959 - accuracy: 0.7930
   
9/92 [=>............................] - ETA: 4s - loss: 0.6384 - accuracy: 0.7674


10/92 [==>………………………] - ETA: 4s - loss: 0.6578 - accuracy: 0.7594



11/92 [==>………………………] - ETA: 4s - loss: 0.6381 - accuracy: 0.7557



12/92 [==>………………………] - ETA: 4s - loss: 0.6323 - accuracy: 0.7526



13/92 [===>……………………..] - ETA: 4s - loss: 0.6182 - accuracy: 0.7620



14/92 [===>……………………..] - ETA: 4s - loss: 0.6125 - accuracy: 0.7679



15/92 [===>……………………..] - ETA: 4s - loss: 0.6359 - accuracy: 0.7604



16/92 [====>…………………….] - ETA: 4s - loss: 0.6226 - accuracy: 0.7676



17/92 [====>…………………….] - ETA: 4s - loss: 0.6165 - accuracy: 0.7665



18/92 [====>…………………….] - ETA: 4s - loss: 0.6314 - accuracy: 0.7622



19/92 [=====>……………………] - ETA: 4s - loss: 0.6526 - accuracy: 0.7549



20/92 [=====>……………………] - ETA: 4s - loss: 0.6501 - accuracy: 0.7578



21/92 [=====>……………………] - ETA: 4s - loss: 0.6442 - accuracy: 0.7574



22/92 [======>…………………..] - ETA: 4s - loss: 0.6517 - accuracy: 0.7557



23/92 [======>…………………..] - ETA: 4s - loss: 0.6544 - accuracy: 0.7554



24/92 [======>…………………..] - ETA: 3s - loss: 0.6612 - accuracy: 0.7526



25/92 [=======>………………….] - ETA: 3s - loss: 0.6606 - accuracy: 0.7538



26/92 [=======>………………….] - ETA: 3s - loss: 0.6734 - accuracy: 0.7476



27/92 [=======>………………….] - ETA: 3s - loss: 0.6781 - accuracy: 0.7465



28/92 [========>…………………] - ETA: 3s - loss: 0.6773 - accuracy: 0.7478



29/92 [========>…………………] - ETA: 3s - loss: 0.6764 - accuracy: 0.7468



30/92 [========>…………………] - ETA: 3s - loss: 0.6786 - accuracy: 0.7448



31/92 [=========>………………..] - ETA: 3s - loss: 0.6748 - accuracy: 0.7470



32/92 [=========>………………..] - ETA: 3s - loss: 0.6695 - accuracy: 0.7500



33/92 [=========>………………..] - ETA: 3s - loss: 0.6737 - accuracy: 0.7500



34/92 [==========>……………….] - ETA: 3s - loss: 0.6742 - accuracy: 0.7528



35/92 [==========>……………….] - ETA: 3s - loss: 0.6742 - accuracy: 0.7527



36/92 [==========>……………….] - ETA: 3s - loss: 0.6792 - accuracy: 0.7491



37/92 [===========>………………] - ETA: 3s - loss: 0.6797 - accuracy: 0.7492



38/92 [===========>………………] - ETA: 3s - loss: 0.6795 - accuracy: 0.7508



39/92 [===========>………………] - ETA: 3s - loss: 0.6798 - accuracy: 0.7524



40/92 [============>……………..] - ETA: 3s - loss: 0.6784 - accuracy: 0.7531



41/92 [============>……………..] - ETA: 2s - loss: 0.6777 - accuracy: 0.7546



42/92 [============>……………..] - ETA: 2s - loss: 0.6793 - accuracy: 0.7537



43/92 [=============>…………….] - ETA: 2s - loss: 0.6765 - accuracy: 0.7551



44/92 [=============>…………….] - ETA: 2s - loss: 0.6809 - accuracy: 0.7521



45/92 [=============>…………….] - ETA: 2s - loss: 0.6783 - accuracy: 0.7528



46/92 [==============>……………] - ETA: 2s - loss: 0.6778 - accuracy: 0.7520



47/92 [==============>……………] - ETA: 2s - loss: 0.6757 - accuracy: 0.7527



48/92 [==============>……………] - ETA: 2s - loss: 0.6733 - accuracy: 0.7552



49/92 [==============>……………] - ETA: 2s - loss: 0.6682 - accuracy: 0.7570



50/92 [===============>…………..] - ETA: 2s - loss: 0.6681 - accuracy: 0.7563



51/92 [===============>…………..] - ETA: 2s - loss: 0.6729 - accuracy: 0.7543



52/92 [===============>…………..] - ETA: 2s - loss: 0.6719 - accuracy: 0.7554



53/92 [================>………….] - ETA: 2s - loss: 0.6718 - accuracy: 0.7559



54/92 [================>………….] - ETA: 2s - loss: 0.6663 - accuracy: 0.7581



55/92 [================>………….] - ETA: 2s - loss: 0.6645 - accuracy: 0.7574



56/92 [=================>…………] - ETA: 2s - loss: 0.6582 - accuracy: 0.7600



57/92 [=================>…………] - ETA: 2s - loss: 0.6585 - accuracy: 0.7599



58/92 [=================>…………] - ETA: 1s - loss: 0.6641 - accuracy: 0.7586



59/92 [==================>………..] - ETA: 1s - loss: 0.6662 - accuracy: 0.7590



60/92 [==================>………..] - ETA: 1s - loss: 0.6648 - accuracy: 0.7599



61/92 [==================>………..] - ETA: 1s - loss: 0.6666 - accuracy: 0.7592



62/92 [===================>……….] - ETA: 1s - loss: 0.6684 - accuracy: 0.7576



63/92 [===================>……….] - ETA: 1s - loss: 0.6665 - accuracy: 0.7594



64/92 [===================>……….] - ETA: 1s - loss: 0.6657 - accuracy: 0.7598



65/92 [====================>………] - ETA: 1s - loss: 0.6704 - accuracy: 0.7582



66/92 [====================>………] - ETA: 1s - loss: 0.6705 - accuracy: 0.7576



67/92 [====================>………] - ETA: 1s - loss: 0.6678 - accuracy: 0.7579



68/92 [=====================>……..] - ETA: 1s - loss: 0.6693 - accuracy: 0.7574



69/92 [=====================>……..] - ETA: 1s - loss: 0.6673 - accuracy: 0.7586



71/92 [======================>…….] - ETA: 1s - loss: 0.6658 - accuracy: 0.7588



72/92 [======================>…….] - ETA: 1s - loss: 0.6684 - accuracy: 0.7583



73/92 [======================>…….] - ETA: 1s - loss: 0.6677 - accuracy: 0.7582



74/92 [=======================>……] - ETA: 1s - loss: 0.6661 - accuracy: 0.7581



75/92 [=======================>……] - ETA: 0s - loss: 0.6632 - accuracy: 0.7588



76/92 [=======================>……] - ETA: 0s - loss: 0.6618 - accuracy: 0.7591



77/92 [========================>…..] - ETA: 0s - loss: 0.6600 - accuracy: 0.7602



78/92 [========================>…..] - ETA: 0s - loss: 0.6619 - accuracy: 0.7592



79/92 [========================>…..] - ETA: 0s - loss: 0.6630 - accuracy: 0.7583



80/92 [=========================>….] - ETA: 0s - loss: 0.6628 - accuracy: 0.7586



81/92 [=========================>….] - ETA: 0s - loss: 0.6634 - accuracy: 0.7593



82/92 [=========================>….] - ETA: 0s - loss: 0.6638 - accuracy: 0.7592



83/92 [==========================>…] - ETA: 0s - loss: 0.6610 - accuracy: 0.7606



84/92 [==========================>…] - ETA: 0s - loss: 0.6593 - accuracy: 0.7616



85/92 [==========================>…] - ETA: 0s - loss: 0.6583 - accuracy: 0.7622



86/92 [===========================>..] - ETA: 0s - loss: 0.6555 - accuracy: 0.7635



87/92 [===========================>..] - ETA: 0s - loss: 0.6543 - accuracy: 0.7637



88/92 [===========================>..] - ETA: 0s - loss: 0.6534 - accuracy: 0.7639



89/92 [============================>.] - ETA: 0s - loss: 0.6534 - accuracy: 0.7637



90/92 [============================>.] - ETA: 0s - loss: 0.6510 - accuracy: 0.7646



91/92 [============================>.] - ETA: 0s - loss: 0.6516 - accuracy: 0.7634



92/92 [==============================] - ETA: 0s - loss: 0.6513 - accuracy: 0.7636



92/92 [==============================] - 6s 64ms/step - loss: 0.6513 - accuracy: 0.7636 - val_loss: 0.7100 - val_accuracy: 0.7166

Epoch 10/15
1/92 [..............................] - ETA: 7s - loss: 0.6052 - accuracy: 0.7812
   
2/92 [..............................] - ETA: 5s - loss: 0.7084 - accuracy: 0.7344
   
3/92 [..............................] - ETA: 5s - loss: 0.7363 - accuracy: 0.7292
   
4/92 [>.............................] - ETA: 5s - loss: 0.7406 - accuracy: 0.7031
   
5/92 [>.............................] - ETA: 5s - loss: 0.7162 - accuracy: 0.7125
   
6/92 [>.............................] - ETA: 5s - loss: 0.6760 - accuracy: 0.7344
   
7/92 [=>............................] - ETA: 5s - loss: 0.6778 - accuracy: 0.7455
   
8/92 [=>............................] - ETA: 4s - loss: 0.6985 - accuracy: 0.7422
   
9/92 [=>............................] - ETA: 4s - loss: 0.6704 - accuracy: 0.7500


10/92 [==>………………………] - ETA: 4s - loss: 0.6536 - accuracy: 0.7531



11/92 [==>………………………] - ETA: 4s - loss: 0.6671 - accuracy: 0.7415



12/92 [==>………………………] - ETA: 4s - loss: 0.6608 - accuracy: 0.7500



13/92 [===>……………………..] - ETA: 4s - loss: 0.6551 - accuracy: 0.7500



14/92 [===>……………………..] - ETA: 4s - loss: 0.6409 - accuracy: 0.7545



15/92 [===>……………………..] - ETA: 4s - loss: 0.6365 - accuracy: 0.7563



16/92 [====>…………………….] - ETA: 4s - loss: 0.6387 - accuracy: 0.7539



17/92 [====>…………………….] - ETA: 4s - loss: 0.6240 - accuracy: 0.7592



18/92 [====>…………………….] - ETA: 4s - loss: 0.6206 - accuracy: 0.7604



19/92 [=====>……………………] - ETA: 4s - loss: 0.6151 - accuracy: 0.7615



20/92 [=====>……………………] - ETA: 4s - loss: 0.6012 - accuracy: 0.7688



21/92 [=====>……………………] - ETA: 4s - loss: 0.6084 - accuracy: 0.7604



22/92 [======>…………………..] - ETA: 4s - loss: 0.6143 - accuracy: 0.7585



23/92 [======>…………………..] - ETA: 3s - loss: 0.6111 - accuracy: 0.7609



24/92 [======>…………………..] - ETA: 3s - loss: 0.6047 - accuracy: 0.7643



25/92 [=======>………………….] - ETA: 3s - loss: 0.6062 - accuracy: 0.7638



26/92 [=======>………………….] - ETA: 3s - loss: 0.6128 - accuracy: 0.7620



27/92 [=======>………………….] - ETA: 3s - loss: 0.6038 - accuracy: 0.7650



28/92 [========>…………………] - ETA: 3s - loss: 0.5998 - accuracy: 0.7667



29/92 [========>…………………] - ETA: 3s - loss: 0.6027 - accuracy: 0.7672



30/92 [========>…………………] - ETA: 3s - loss: 0.5977 - accuracy: 0.7698



31/92 [=========>………………..] - ETA: 3s - loss: 0.5898 - accuracy: 0.7742



32/92 [=========>………………..] - ETA: 3s - loss: 0.5843 - accuracy: 0.7764



33/92 [=========>………………..] - ETA: 3s - loss: 0.5808 - accuracy: 0.7784



34/92 [==========>……………….] - ETA: 3s - loss: 0.5807 - accuracy: 0.7785



35/92 [==========>……………….] - ETA: 3s - loss: 0.5837 - accuracy: 0.7777



36/92 [==========>……………….] - ETA: 3s - loss: 0.5817 - accuracy: 0.7769



37/92 [===========>………………] - ETA: 3s - loss: 0.5841 - accuracy: 0.7762



38/92 [===========>………………] - ETA: 3s - loss: 0.5874 - accuracy: 0.7747



39/92 [===========>………………] - ETA: 3s - loss: 0.5920 - accuracy: 0.7740



40/92 [============>……………..] - ETA: 3s - loss: 0.5974 - accuracy: 0.7711



41/92 [============>……………..] - ETA: 2s - loss: 0.5961 - accuracy: 0.7713



42/92 [============>……………..] - ETA: 2s - loss: 0.5957 - accuracy: 0.7708



43/92 [=============>…………….] - ETA: 2s - loss: 0.5937 - accuracy: 0.7718



44/92 [=============>…………….] - ETA: 2s - loss: 0.5961 - accuracy: 0.7727



45/92 [=============>…………….] - ETA: 2s - loss: 0.5961 - accuracy: 0.7715



46/92 [==============>……………] - ETA: 2s - loss: 0.5962 - accuracy: 0.7724



47/92 [==============>……………] - ETA: 2s - loss: 0.5937 - accuracy: 0.7733



48/92 [==============>……………] - ETA: 2s - loss: 0.5960 - accuracy: 0.7715



49/92 [==============>……………] - ETA: 2s - loss: 0.5972 - accuracy: 0.7723



50/92 [===============>…………..] - ETA: 2s - loss: 0.5950 - accuracy: 0.7719



52/92 [===============>…………..] - ETA: 2s - loss: 0.5917 - accuracy: 0.7729



53/92 [================>………….] - ETA: 2s - loss: 0.5941 - accuracy: 0.7731



54/92 [================>………….] - ETA: 2s - loss: 0.5972 - accuracy: 0.7721



55/92 [================>………….] - ETA: 2s - loss: 0.5983 - accuracy: 0.7705



56/92 [=================>…………] - ETA: 2s - loss: 0.5951 - accuracy: 0.7724



57/92 [=================>…………] - ETA: 2s - loss: 0.5926 - accuracy: 0.7737



58/92 [=================>…………] - ETA: 1s - loss: 0.5937 - accuracy: 0.7727



59/92 [==================>………..] - ETA: 1s - loss: 0.5921 - accuracy: 0.7729



60/92 [==================>………..] - ETA: 1s - loss: 0.5895 - accuracy: 0.7741



61/92 [==================>………..] - ETA: 1s - loss: 0.5880 - accuracy: 0.7747



62/92 [===================>……….] - ETA: 1s - loss: 0.5898 - accuracy: 0.7743



63/92 [===================>……….] - ETA: 1s - loss: 0.5955 - accuracy: 0.7734



64/92 [===================>……….] - ETA: 1s - loss: 0.5929 - accuracy: 0.7755



65/92 [====================>………] - ETA: 1s - loss: 0.5930 - accuracy: 0.7761



66/92 [====================>………] - ETA: 1s - loss: 0.5938 - accuracy: 0.7757



67/92 [====================>………] - ETA: 1s - loss: 0.5978 - accuracy: 0.7734



68/92 [=====================>……..] - ETA: 1s - loss: 0.5989 - accuracy: 0.7721



69/92 [=====================>……..] - ETA: 1s - loss: 0.5998 - accuracy: 0.7714



70/92 [=====================>……..] - ETA: 1s - loss: 0.6006 - accuracy: 0.7715



71/92 [======================>…….] - ETA: 1s - loss: 0.6049 - accuracy: 0.7694



72/92 [======================>…….] - ETA: 1s - loss: 0.6058 - accuracy: 0.7696



73/92 [======================>…….] - ETA: 1s - loss: 0.6072 - accuracy: 0.7685



74/92 [=======================>……] - ETA: 1s - loss: 0.6073 - accuracy: 0.7686



75/92 [=======================>……] - ETA: 0s - loss: 0.6071 - accuracy: 0.7684



76/92 [=======================>……] - ETA: 0s - loss: 0.6093 - accuracy: 0.7661



77/92 [========================>…..] - ETA: 0s - loss: 0.6097 - accuracy: 0.7667



78/92 [========================>…..] - ETA: 0s - loss: 0.6090 - accuracy: 0.7673



79/92 [========================>…..] - ETA: 0s - loss: 0.6091 - accuracy: 0.7679



80/92 [=========================>….] - ETA: 0s - loss: 0.6084 - accuracy: 0.7680



81/92 [=========================>….] - ETA: 0s - loss: 0.6114 - accuracy: 0.7659



82/92 [=========================>….] - ETA: 0s - loss: 0.6117 - accuracy: 0.7653



83/92 [==========================>…] - ETA: 0s - loss: 0.6108 - accuracy: 0.7655



84/92 [==========================>…] - ETA: 0s - loss: 0.6127 - accuracy: 0.7631



85/92 [==========================>…] - ETA: 0s - loss: 0.6124 - accuracy: 0.7644



86/92 [===========================>..] - ETA: 0s - loss: 0.6118 - accuracy: 0.7638



87/92 [===========================>..] - ETA: 0s - loss: 0.6130 - accuracy: 0.7633



88/92 [===========================>..] - ETA: 0s - loss: 0.6134 - accuracy: 0.7625



89/92 [============================>.] - ETA: 0s - loss: 0.6146 - accuracy: 0.7616



90/92 [============================>.] - ETA: 0s - loss: 0.6157 - accuracy: 0.7608



91/92 [============================>.] - ETA: 0s - loss: 0.6157 - accuracy: 0.7617



92/92 [==============================] - ETA: 0s - loss: 0.6144 - accuracy: 0.7616



92/92 [==============================] - 6s 65ms/step - loss: 0.6144 - accuracy: 0.7616 - val_loss: 0.7003 - val_accuracy: 0.7180

Epoch 11/15
1/92 [..............................] - ETA: 7s - loss: 0.5609 - accuracy: 0.8438
   
2/92 [..............................] - ETA: 5s - loss: 0.6191 - accuracy: 0.8125
   
3/92 [..............................] - ETA: 5s - loss: 0.6127 - accuracy: 0.7917
   
4/92 [>.............................] - ETA: 5s - loss: 0.5744 - accuracy: 0.8047
   
5/92 [>.............................] - ETA: 5s - loss: 0.5683 - accuracy: 0.8188
   
6/92 [>.............................] - ETA: 4s - loss: 0.5502 - accuracy: 0.8125
   
7/92 [=>............................] - ETA: 4s - loss: 0.5450 - accuracy: 0.8170
   
8/92 [=>............................] - ETA: 4s - loss: 0.5383 - accuracy: 0.8164
   
9/92 [=>............................] - ETA: 4s - loss: 0.5373 - accuracy: 0.8125


10/92 [==>………………………] - ETA: 4s - loss: 0.5662 - accuracy: 0.8000



11/92 [==>………………………] - ETA: 4s - loss: 0.5610 - accuracy: 0.8011



12/92 [==>………………………] - ETA: 4s - loss: 0.5628 - accuracy: 0.7969



13/92 [===>……………………..] - ETA: 4s - loss: 0.5678 - accuracy: 0.7885



14/92 [===>……………………..] - ETA: 4s - loss: 0.5793 - accuracy: 0.7857



15/92 [===>……………………..] - ETA: 4s - loss: 0.5903 - accuracy: 0.7812



16/92 [====>…………………….] - ETA: 4s - loss: 0.5735 - accuracy: 0.7871



17/92 [====>…………………….] - ETA: 4s - loss: 0.5678 - accuracy: 0.7941



18/92 [====>…………………….] - ETA: 4s - loss: 0.5694 - accuracy: 0.7951



19/92 [=====>……………………] - ETA: 4s - loss: 0.5696 - accuracy: 0.7911



20/92 [=====>……………………] - ETA: 4s - loss: 0.5765 - accuracy: 0.7875



21/92 [=====>……………………] - ETA: 4s - loss: 0.5767 - accuracy: 0.7887



22/92 [======>…………………..] - ETA: 4s - loss: 0.5683 - accuracy: 0.7912



23/92 [======>…………………..] - ETA: 3s - loss: 0.5697 - accuracy: 0.7894



24/92 [======>…………………..] - ETA: 3s - loss: 0.5762 - accuracy: 0.7852



25/92 [=======>………………….] - ETA: 3s - loss: 0.5817 - accuracy: 0.7812



26/92 [=======>………………….] - ETA: 3s - loss: 0.5912 - accuracy: 0.7800



27/92 [=======>………………….] - ETA: 3s - loss: 0.5881 - accuracy: 0.7836



29/92 [========>…………………] - ETA: 3s - loss: 0.5812 - accuracy: 0.7859



30/92 [========>…………………] - ETA: 3s - loss: 0.5884 - accuracy: 0.7847



31/92 [=========>………………..] - ETA: 3s - loss: 0.5870 - accuracy: 0.7856



32/92 [=========>………………..] - ETA: 3s - loss: 0.5873 - accuracy: 0.7844



33/92 [=========>………………..] - ETA: 3s - loss: 0.5851 - accuracy: 0.7853



34/92 [==========>……………….] - ETA: 3s - loss: 0.5834 - accuracy: 0.7833



35/92 [==========>……………….] - ETA: 3s - loss: 0.5811 - accuracy: 0.7851



36/92 [==========>……………….] - ETA: 3s - loss: 0.5825 - accuracy: 0.7841



37/92 [===========>………………] - ETA: 3s - loss: 0.5817 - accuracy: 0.7840



38/92 [===========>………………] - ETA: 3s - loss: 0.5770 - accuracy: 0.7864



39/92 [===========>………………] - ETA: 3s - loss: 0.5761 - accuracy: 0.7879



40/92 [============>……………..] - ETA: 2s - loss: 0.5797 - accuracy: 0.7862



41/92 [============>……………..] - ETA: 2s - loss: 0.5812 - accuracy: 0.7860



42/92 [============>……………..] - ETA: 2s - loss: 0.5845 - accuracy: 0.7837



43/92 [=============>…………….] - ETA: 2s - loss: 0.5830 - accuracy: 0.7844



44/92 [=============>…………….] - ETA: 2s - loss: 0.5943 - accuracy: 0.7800



45/92 [=============>…………….] - ETA: 2s - loss: 0.5970 - accuracy: 0.7800



46/92 [==============>……………] - ETA: 2s - loss: 0.6007 - accuracy: 0.7773



47/92 [==============>……………] - ETA: 2s - loss: 0.6019 - accuracy: 0.7781



48/92 [==============>……………] - ETA: 2s - loss: 0.5988 - accuracy: 0.7801



49/92 [==============>……………] - ETA: 2s - loss: 0.6033 - accuracy: 0.7776



50/92 [===============>…………..] - ETA: 2s - loss: 0.6090 - accuracy: 0.7770



51/92 [===============>…………..] - ETA: 2s - loss: 0.6071 - accuracy: 0.7777



52/92 [===============>…………..] - ETA: 2s - loss: 0.6072 - accuracy: 0.7760



53/92 [================>………….] - ETA: 2s - loss: 0.6075 - accuracy: 0.7749



54/92 [================>………….] - ETA: 2s - loss: 0.6071 - accuracy: 0.7750



55/92 [================>………….] - ETA: 2s - loss: 0.6111 - accuracy: 0.7728



56/92 [=================>…………] - ETA: 2s - loss: 0.6106 - accuracy: 0.7735



57/92 [=================>…………] - ETA: 2s - loss: 0.6089 - accuracy: 0.7742



58/92 [=================>…………] - ETA: 1s - loss: 0.6079 - accuracy: 0.7744



59/92 [==================>………..] - ETA: 1s - loss: 0.6050 - accuracy: 0.7766



60/92 [==================>………..] - ETA: 1s - loss: 0.6046 - accuracy: 0.7762



61/92 [==================>………..] - ETA: 1s - loss: 0.6085 - accuracy: 0.7752



62/92 [===================>……….] - ETA: 1s - loss: 0.6054 - accuracy: 0.7763



63/92 [===================>……….] - ETA: 1s - loss: 0.6062 - accuracy: 0.7754



64/92 [===================>……….] - ETA: 1s - loss: 0.6037 - accuracy: 0.7775



65/92 [====================>………] - ETA: 1s - loss: 0.6036 - accuracy: 0.7770



66/92 [====================>………] - ETA: 1s - loss: 0.6023 - accuracy: 0.7776



67/92 [====================>………] - ETA: 1s - loss: 0.6014 - accuracy: 0.7776



68/92 [=====================>……..] - ETA: 1s - loss: 0.5986 - accuracy: 0.7781



69/92 [=====================>……..] - ETA: 1s - loss: 0.5991 - accuracy: 0.7773



70/92 [=====================>……..] - ETA: 1s - loss: 0.5972 - accuracy: 0.7778



71/92 [======================>…….] - ETA: 1s - loss: 0.5990 - accuracy: 0.7761



72/92 [======================>…….] - ETA: 1s - loss: 0.5993 - accuracy: 0.7761



73/92 [======================>…….] - ETA: 1s - loss: 0.5993 - accuracy: 0.7758



74/92 [=======================>……] - ETA: 1s - loss: 0.5950 - accuracy: 0.7767



75/92 [=======================>……] - ETA: 0s - loss: 0.5950 - accuracy: 0.7755



76/92 [=======================>……] - ETA: 0s - loss: 0.5929 - accuracy: 0.7764



77/92 [========================>…..] - ETA: 0s - loss: 0.5914 - accuracy: 0.7769



78/92 [========================>…..] - ETA: 0s - loss: 0.5930 - accuracy: 0.7765



79/92 [========================>…..] - ETA: 0s - loss: 0.5929 - accuracy: 0.7754



80/92 [=========================>….] - ETA: 0s - loss: 0.5919 - accuracy: 0.7759



81/92 [=========================>….] - ETA: 0s - loss: 0.5910 - accuracy: 0.7759



82/92 [=========================>….] - ETA: 0s - loss: 0.5926 - accuracy: 0.7752



83/92 [==========================>…] - ETA: 0s - loss: 0.5900 - accuracy: 0.7764



84/92 [==========================>…] - ETA: 0s - loss: 0.5929 - accuracy: 0.7754



85/92 [==========================>…] - ETA: 0s - loss: 0.5931 - accuracy: 0.7758



86/92 [===========================>..] - ETA: 0s - loss: 0.5959 - accuracy: 0.7751



87/92 [===========================>..] - ETA: 0s - loss: 0.5965 - accuracy: 0.7749



88/92 [===========================>..] - ETA: 0s - loss: 0.5951 - accuracy: 0.7760



89/92 [============================>.] - ETA: 0s - loss: 0.5932 - accuracy: 0.7768



90/92 [============================>.] - ETA: 0s - loss: 0.5922 - accuracy: 0.7775



91/92 [============================>.] - ETA: 0s - loss: 0.5940 - accuracy: 0.7769



92/92 [==============================] - ETA: 0s - loss: 0.5958 - accuracy: 0.7755



92/92 [==============================] - 6s 64ms/step - loss: 0.5958 - accuracy: 0.7755 - val_loss: 0.6917 - val_accuracy: 0.7343

Epoch 12/15
1/92 [..............................] - ETA: 7s - loss: 0.5158 - accuracy: 0.8438
   
2/92 [..............................] - ETA: 5s - loss: 0.4748 - accuracy: 0.8594
   
3/92 [..............................] - ETA: 5s - loss: 0.4990 - accuracy: 0.8542
   
4/92 [>.............................] - ETA: 5s - loss: 0.5068 - accuracy: 0.8438
   
5/92 [>.............................] - ETA: 5s - loss: 0.4829 - accuracy: 0.8500
   
6/92 [>.............................] - ETA: 5s - loss: 0.4823 - accuracy: 0.8438
   
7/92 [=>............................] - ETA: 4s - loss: 0.4679 - accuracy: 0.8482
   
8/92 [=>............................] - ETA: 4s - loss: 0.4979 - accuracy: 0.8320
   
9/92 [=>............................] - ETA: 4s - loss: 0.5087 - accuracy: 0.8299


10/92 [==>………………………] - ETA: 4s - loss: 0.5058 - accuracy: 0.8313



11/92 [==>………………………] - ETA: 4s - loss: 0.5191 - accuracy: 0.8210



12/92 [==>………………………] - ETA: 4s - loss: 0.5316 - accuracy: 0.8125



13/92 [===>……………………..] - ETA: 4s - loss: 0.5217 - accuracy: 0.8125



14/92 [===>……………………..] - ETA: 4s - loss: 0.5414 - accuracy: 0.8036



15/92 [===>……………………..] - ETA: 4s - loss: 0.5347 - accuracy: 0.8083



16/92 [====>…………………….] - ETA: 4s - loss: 0.5313 - accuracy: 0.8086



17/92 [====>…………………….] - ETA: 4s - loss: 0.5244 - accuracy: 0.8088



18/92 [====>…………………….] - ETA: 4s - loss: 0.5229 - accuracy: 0.8090



19/92 [=====>……………………] - ETA: 4s - loss: 0.5354 - accuracy: 0.7993



20/92 [=====>……………………] - ETA: 4s - loss: 0.5348 - accuracy: 0.8000



21/92 [=====>……………………] - ETA: 4s - loss: 0.5396 - accuracy: 0.7946



22/92 [======>…………………..] - ETA: 4s - loss: 0.5375 - accuracy: 0.7926



23/92 [======>…………………..] - ETA: 4s - loss: 0.5355 - accuracy: 0.7962



24/92 [======>…………………..] - ETA: 3s - loss: 0.5312 - accuracy: 0.7982



25/92 [=======>………………….] - ETA: 3s - loss: 0.5287 - accuracy: 0.7975



26/92 [=======>………………….] - ETA: 3s - loss: 0.5257 - accuracy: 0.7981



27/92 [=======>………………….] - ETA: 3s - loss: 0.5265 - accuracy: 0.7986



28/92 [========>…………………] - ETA: 3s - loss: 0.5345 - accuracy: 0.7980



30/92 [========>…………………] - ETA: 3s - loss: 0.5298 - accuracy: 0.7973



31/92 [=========>………………..] - ETA: 3s - loss: 0.5337 - accuracy: 0.7978



32/92 [=========>………………..] - ETA: 3s - loss: 0.5332 - accuracy: 0.7963



33/92 [=========>………………..] - ETA: 3s - loss: 0.5406 - accuracy: 0.7920



34/92 [==========>……………….] - ETA: 3s - loss: 0.5398 - accuracy: 0.7944



35/92 [==========>……………….] - ETA: 3s - loss: 0.5319 - accuracy: 0.7986



36/92 [==========>……………….] - ETA: 3s - loss: 0.5308 - accuracy: 0.7990



37/92 [===========>………………] - ETA: 3s - loss: 0.5460 - accuracy: 0.7976



38/92 [===========>………………] - ETA: 3s - loss: 0.5438 - accuracy: 0.7972



39/92 [===========>………………] - ETA: 3s - loss: 0.5420 - accuracy: 0.7984



40/92 [============>……………..] - ETA: 3s - loss: 0.5416 - accuracy: 0.7980



41/92 [============>……………..] - ETA: 2s - loss: 0.5411 - accuracy: 0.7983



42/92 [============>……………..] - ETA: 2s - loss: 0.5440 - accuracy: 0.7964



43/92 [=============>…………….] - ETA: 2s - loss: 0.5429 - accuracy: 0.7982



44/92 [=============>…………….] - ETA: 2s - loss: 0.5435 - accuracy: 0.7993



45/92 [=============>…………….] - ETA: 2s - loss: 0.5461 - accuracy: 0.7982



46/92 [==============>……………] - ETA: 2s - loss: 0.5474 - accuracy: 0.7992



47/92 [==============>……………] - ETA: 2s - loss: 0.5516 - accuracy: 0.7981



48/92 [==============>……………] - ETA: 2s - loss: 0.5529 - accuracy: 0.7971



49/92 [==============>……………] - ETA: 2s - loss: 0.5537 - accuracy: 0.7962



50/92 [===============>…………..] - ETA: 2s - loss: 0.5525 - accuracy: 0.7971



51/92 [===============>…………..] - ETA: 2s - loss: 0.5512 - accuracy: 0.7962



52/92 [===============>…………..] - ETA: 2s - loss: 0.5524 - accuracy: 0.7947



53/92 [================>………….] - ETA: 2s - loss: 0.5529 - accuracy: 0.7956



54/92 [================>………….] - ETA: 2s - loss: 0.5568 - accuracy: 0.7924



55/92 [================>………….] - ETA: 2s - loss: 0.5531 - accuracy: 0.7945



56/92 [=================>…………] - ETA: 2s - loss: 0.5524 - accuracy: 0.7943



57/92 [=================>…………] - ETA: 2s - loss: 0.5604 - accuracy: 0.7902



58/92 [=================>…………] - ETA: 1s - loss: 0.5582 - accuracy: 0.7911



59/92 [==================>………..] - ETA: 1s - loss: 0.5608 - accuracy: 0.7915



60/92 [==================>………..] - ETA: 1s - loss: 0.5603 - accuracy: 0.7924



61/92 [==================>………..] - ETA: 1s - loss: 0.5640 - accuracy: 0.7912



62/92 [===================>……….] - ETA: 1s - loss: 0.5657 - accuracy: 0.7900



63/92 [===================>……….] - ETA: 1s - loss: 0.5675 - accuracy: 0.7893



64/92 [===================>……….] - ETA: 1s - loss: 0.5684 - accuracy: 0.7892



65/92 [====================>………] - ETA: 1s - loss: 0.5670 - accuracy: 0.7891



66/92 [====================>………] - ETA: 1s - loss: 0.5671 - accuracy: 0.7880



67/92 [====================>………] - ETA: 1s - loss: 0.5679 - accuracy: 0.7870



68/92 [=====================>……..] - ETA: 1s - loss: 0.5679 - accuracy: 0.7874



69/92 [=====================>……..] - ETA: 1s - loss: 0.5674 - accuracy: 0.7868



70/92 [=====================>……..] - ETA: 1s - loss: 0.5682 - accuracy: 0.7872



71/92 [======================>…….] - ETA: 1s - loss: 0.5684 - accuracy: 0.7862



72/92 [======================>…….] - ETA: 1s - loss: 0.5679 - accuracy: 0.7861



73/92 [======================>…….] - ETA: 1s - loss: 0.5695 - accuracy: 0.7848



74/92 [=======================>……] - ETA: 1s - loss: 0.5699 - accuracy: 0.7852



75/92 [=======================>……] - ETA: 0s - loss: 0.5709 - accuracy: 0.7834



76/92 [=======================>……] - ETA: 0s - loss: 0.5713 - accuracy: 0.7826



77/92 [========================>…..] - ETA: 0s - loss: 0.5702 - accuracy: 0.7834



78/92 [========================>…..] - ETA: 0s - loss: 0.5696 - accuracy: 0.7838



79/92 [========================>…..] - ETA: 0s - loss: 0.5722 - accuracy: 0.7833



80/92 [=========================>….] - ETA: 0s - loss: 0.5749 - accuracy: 0.7817



81/92 [=========================>….] - ETA: 0s - loss: 0.5762 - accuracy: 0.7817



82/92 [=========================>….] - ETA: 0s - loss: 0.5755 - accuracy: 0.7829



83/92 [==========================>…] - ETA: 0s - loss: 0.5726 - accuracy: 0.7847



84/92 [==========================>…] - ETA: 0s - loss: 0.5699 - accuracy: 0.7854



85/92 [==========================>…] - ETA: 0s - loss: 0.5690 - accuracy: 0.7850



86/92 [===========================>..] - ETA: 0s - loss: 0.5712 - accuracy: 0.7839



87/92 [===========================>..] - ETA: 0s - loss: 0.5746 - accuracy: 0.7828



88/92 [===========================>..] - ETA: 0s - loss: 0.5740 - accuracy: 0.7828



89/92 [============================>.] - ETA: 0s - loss: 0.5743 - accuracy: 0.7827



90/92 [============================>.] - ETA: 0s - loss: 0.5750 - accuracy: 0.7824



91/92 [============================>.] - ETA: 0s - loss: 0.5774 - accuracy: 0.7820



92/92 [==============================] - ETA: 0s - loss: 0.5758 - accuracy: 0.7827



92/92 [==============================] - 6s 64ms/step - loss: 0.5758 - accuracy: 0.7827 - val_loss: 0.6737 - val_accuracy: 0.7425

Epoch 13/15
1/92 [..............................] - ETA: 7s - loss: 0.4396 - accuracy: 0.8125
   
2/92 [..............................] - ETA: 5s - loss: 0.4462 - accuracy: 0.8125
   
3/92 [..............................] - ETA: 5s - loss: 0.4262 - accuracy: 0.8229
   
4/92 [>.............................] - ETA: 5s - loss: 0.4356 - accuracy: 0.8203
   
5/92 [>.............................] - ETA: 5s - loss: 0.4686 - accuracy: 0.8062
   
6/92 [>.............................] - ETA: 4s - loss: 0.4781 - accuracy: 0.8021
   
7/92 [=>............................] - ETA: 4s - loss: 0.4812 - accuracy: 0.8036
   
8/92 [=>............................] - ETA: 4s - loss: 0.4844 - accuracy: 0.8047
   
9/92 [=>............................] - ETA: 4s - loss: 0.5125 - accuracy: 0.7917


10/92 [==>………………………] - ETA: 4s - loss: 0.5056 - accuracy: 0.7906



11/92 [==>………………………] - ETA: 4s - loss: 0.5237 - accuracy: 0.7869



12/92 [==>………………………] - ETA: 4s - loss: 0.5073 - accuracy: 0.7995



13/92 [===>……………………..] - ETA: 4s - loss: 0.5007 - accuracy: 0.8029



14/92 [===>……………………..] - ETA: 4s - loss: 0.5219 - accuracy: 0.7902



15/92 [===>……………………..] - ETA: 4s - loss: 0.5231 - accuracy: 0.7958



16/92 [====>…………………….] - ETA: 4s - loss: 0.5311 - accuracy: 0.7988



17/92 [====>…………………….] - ETA: 4s - loss: 0.5357 - accuracy: 0.7960



18/92 [====>…………………….] - ETA: 4s - loss: 0.5235 - accuracy: 0.8003



20/92 [=====>……………………] - ETA: 4s - loss: 0.5218 - accuracy: 0.7991



21/92 [=====>……………………] - ETA: 4s - loss: 0.5102 - accuracy: 0.8042



22/92 [======>…………………..] - ETA: 4s - loss: 0.5218 - accuracy: 0.8003



23/92 [======>…………………..] - ETA: 3s - loss: 0.5211 - accuracy: 0.8022



24/92 [======>…………………..] - ETA: 3s - loss: 0.5188 - accuracy: 0.8039



25/92 [=======>………………….] - ETA: 3s - loss: 0.5143 - accuracy: 0.8068



26/92 [=======>………………….] - ETA: 3s - loss: 0.5156 - accuracy: 0.8070



27/92 [=======>………………….] - ETA: 3s - loss: 0.5277 - accuracy: 0.8002



28/92 [========>…………………] - ETA: 3s - loss: 0.5307 - accuracy: 0.7984



29/92 [========>…………………] - ETA: 3s - loss: 0.5394 - accuracy: 0.7957



30/92 [========>…………………] - ETA: 3s - loss: 0.5341 - accuracy: 0.7983



31/92 [=========>………………..] - ETA: 3s - loss: 0.5317 - accuracy: 0.7978



32/92 [=========>………………..] - ETA: 3s - loss: 0.5310 - accuracy: 0.7972



33/92 [=========>………………..] - ETA: 3s - loss: 0.5332 - accuracy: 0.7968



34/92 [==========>……………….] - ETA: 3s - loss: 0.5486 - accuracy: 0.7880



35/92 [==========>……………….] - ETA: 3s - loss: 0.5522 - accuracy: 0.7896



36/92 [==========>……………….] - ETA: 3s - loss: 0.5504 - accuracy: 0.7920



37/92 [===========>………………] - ETA: 3s - loss: 0.5485 - accuracy: 0.7951



38/92 [===========>………………] - ETA: 3s - loss: 0.5474 - accuracy: 0.7955



39/92 [===========>………………] - ETA: 3s - loss: 0.5452 - accuracy: 0.7976



40/92 [============>……………..] - ETA: 2s - loss: 0.5448 - accuracy: 0.7980



41/92 [============>……………..] - ETA: 2s - loss: 0.5430 - accuracy: 0.7991



42/92 [============>……………..] - ETA: 2s - loss: 0.5441 - accuracy: 0.7957



43/92 [=============>…………….] - ETA: 2s - loss: 0.5452 - accuracy: 0.7939



44/92 [=============>…………….] - ETA: 2s - loss: 0.5462 - accuracy: 0.7936



45/92 [=============>…………….] - ETA: 2s - loss: 0.5492 - accuracy: 0.7919



46/92 [==============>……………] - ETA: 2s - loss: 0.5471 - accuracy: 0.7923



47/92 [==============>……………] - ETA: 2s - loss: 0.5492 - accuracy: 0.7914



48/92 [==============>……………] - ETA: 2s - loss: 0.5489 - accuracy: 0.7906



49/92 [==============>……………] - ETA: 2s - loss: 0.5501 - accuracy: 0.7904



50/92 [===============>…………..] - ETA: 2s - loss: 0.5509 - accuracy: 0.7883



51/92 [===============>…………..] - ETA: 2s - loss: 0.5542 - accuracy: 0.7869



52/92 [===============>…………..] - ETA: 2s - loss: 0.5537 - accuracy: 0.7874



53/92 [================>………….] - ETA: 2s - loss: 0.5512 - accuracy: 0.7885



54/92 [================>………….] - ETA: 2s - loss: 0.5559 - accuracy: 0.7878



55/92 [================>………….] - ETA: 2s - loss: 0.5574 - accuracy: 0.7882



56/92 [=================>…………] - ETA: 2s - loss: 0.5546 - accuracy: 0.7898



57/92 [=================>…………] - ETA: 2s - loss: 0.5586 - accuracy: 0.7880



58/92 [=================>…………] - ETA: 1s - loss: 0.5582 - accuracy: 0.7873



59/92 [==================>………..] - ETA: 1s - loss: 0.5607 - accuracy: 0.7862



60/92 [==================>………..] - ETA: 1s - loss: 0.5620 - accuracy: 0.7861



61/92 [==================>………..] - ETA: 1s - loss: 0.5641 - accuracy: 0.7845



62/92 [===================>……….] - ETA: 1s - loss: 0.5626 - accuracy: 0.7854



63/92 [===================>……….] - ETA: 1s - loss: 0.5606 - accuracy: 0.7874



64/92 [===================>……….] - ETA: 1s - loss: 0.5580 - accuracy: 0.7877



65/92 [====================>………] - ETA: 1s - loss: 0.5549 - accuracy: 0.7891



66/92 [====================>………] - ETA: 1s - loss: 0.5561 - accuracy: 0.7866



67/92 [====================>………] - ETA: 1s - loss: 0.5561 - accuracy: 0.7865



68/92 [=====================>……..] - ETA: 1s - loss: 0.5565 - accuracy: 0.7864



69/92 [=====================>……..] - ETA: 1s - loss: 0.5549 - accuracy: 0.7882



70/92 [=====================>……..] - ETA: 1s - loss: 0.5530 - accuracy: 0.7890



71/92 [======================>…….] - ETA: 1s - loss: 0.5503 - accuracy: 0.7902



72/92 [======================>…….] - ETA: 1s - loss: 0.5483 - accuracy: 0.7914



73/92 [======================>…….] - ETA: 1s - loss: 0.5492 - accuracy: 0.7912



74/92 [=======================>……] - ETA: 1s - loss: 0.5528 - accuracy: 0.7898



75/92 [=======================>……] - ETA: 0s - loss: 0.5583 - accuracy: 0.7897



76/92 [=======================>……] - ETA: 0s - loss: 0.5578 - accuracy: 0.7896



77/92 [========================>…..] - ETA: 0s - loss: 0.5585 - accuracy: 0.7895



78/92 [========================>…..] - ETA: 0s - loss: 0.5557 - accuracy: 0.7910



79/92 [========================>…..] - ETA: 0s - loss: 0.5546 - accuracy: 0.7913



80/92 [=========================>….] - ETA: 0s - loss: 0.5538 - accuracy: 0.7915



81/92 [=========================>….] - ETA: 0s - loss: 0.5527 - accuracy: 0.7918



82/92 [=========================>….] - ETA: 0s - loss: 0.5529 - accuracy: 0.7913



83/92 [==========================>…] - ETA: 0s - loss: 0.5508 - accuracy: 0.7923



84/92 [==========================>…] - ETA: 0s - loss: 0.5517 - accuracy: 0.7918



85/92 [==========================>…] - ETA: 0s - loss: 0.5550 - accuracy: 0.7917



86/92 [===========================>..] - ETA: 0s - loss: 0.5556 - accuracy: 0.7912



87/92 [===========================>..] - ETA: 0s - loss: 0.5538 - accuracy: 0.7921



88/92 [===========================>..] - ETA: 0s - loss: 0.5527 - accuracy: 0.7931



89/92 [============================>.] - ETA: 0s - loss: 0.5515 - accuracy: 0.7937



90/92 [============================>.] - ETA: 0s - loss: 0.5509 - accuracy: 0.7942



91/92 [============================>.] - ETA: 0s - loss: 0.5499 - accuracy: 0.7948



92/92 [==============================] - ETA: 0s - loss: 0.5491 - accuracy: 0.7939



92/92 [==============================] - 6s 64ms/step - loss: 0.5491 - accuracy: 0.7939 - val_loss: 0.6629 - val_accuracy: 0.7493

Epoch 14/15
1/92 [..............................] - ETA: 8s - loss: 0.4716 - accuracy: 0.7812
   
2/92 [..............................] - ETA: 5s - loss: 0.5226 - accuracy: 0.8125
   
3/92 [..............................] - ETA: 5s - loss: 0.5847 - accuracy: 0.7604
   
4/92 [>.............................] - ETA: 5s - loss: 0.5652 - accuracy: 0.7578
   
5/92 [>.............................] - ETA: 5s - loss: 0.5379 - accuracy: 0.7688
   
6/92 [>.............................] - ETA: 5s - loss: 0.5409 - accuracy: 0.7708
   
7/92 [=>............................] - ETA: 4s - loss: 0.5271 - accuracy: 0.7902
   
8/92 [=>............................] - ETA: 4s - loss: 0.5225 - accuracy: 0.7930
   
9/92 [=>............................] - ETA: 4s - loss: 0.4996 - accuracy: 0.8056


10/92 [==>………………………] - ETA: 4s - loss: 0.5121 - accuracy: 0.7969



11/92 [==>………………………] - ETA: 4s - loss: 0.5245 - accuracy: 0.7926



12/92 [==>………………………] - ETA: 4s - loss: 0.5377 - accuracy: 0.7812



13/92 [===>……………………..] - ETA: 4s - loss: 0.5415 - accuracy: 0.7788



14/92 [===>……………………..] - ETA: 4s - loss: 0.5262 - accuracy: 0.7835



15/92 [===>……………………..] - ETA: 4s - loss: 0.5100 - accuracy: 0.7917



16/92 [====>…………………….] - ETA: 4s - loss: 0.5001 - accuracy: 0.7988



17/92 [====>…………………….] - ETA: 4s - loss: 0.4880 - accuracy: 0.8088



18/92 [====>…………………….] - ETA: 4s - loss: 0.4818 - accuracy: 0.8108



19/92 [=====>……………………] - ETA: 4s - loss: 0.5005 - accuracy: 0.8043



20/92 [=====>……………………] - ETA: 4s - loss: 0.5034 - accuracy: 0.8000



21/92 [=====>……………………] - ETA: 4s - loss: 0.5092 - accuracy: 0.7976



22/92 [======>…………………..] - ETA: 4s - loss: 0.5218 - accuracy: 0.7940



23/92 [======>…………………..] - ETA: 4s - loss: 0.5222 - accuracy: 0.7908



24/92 [======>…………………..] - ETA: 3s - loss: 0.5202 - accuracy: 0.7930



25/92 [=======>………………….] - ETA: 3s - loss: 0.5256 - accuracy: 0.7925



26/92 [=======>………………….] - ETA: 3s - loss: 0.5329 - accuracy: 0.7921



27/92 [=======>………………….] - ETA: 3s - loss: 0.5374 - accuracy: 0.7917



28/92 [========>…………………] - ETA: 3s - loss: 0.5278 - accuracy: 0.7969



29/92 [========>…………………] - ETA: 3s - loss: 0.5416 - accuracy: 0.7931



30/92 [========>…………………] - ETA: 3s - loss: 0.5388 - accuracy: 0.7948



31/92 [=========>………………..] - ETA: 3s - loss: 0.5455 - accuracy: 0.7913



32/92 [=========>………………..] - ETA: 3s - loss: 0.5467 - accuracy: 0.7900



33/92 [=========>………………..] - ETA: 3s - loss: 0.5513 - accuracy: 0.7888



34/92 [==========>……………….] - ETA: 3s - loss: 0.5546 - accuracy: 0.7886



35/92 [==========>……………….] - ETA: 3s - loss: 0.5517 - accuracy: 0.7902



36/92 [==========>……………….] - ETA: 3s - loss: 0.5480 - accuracy: 0.7908



37/92 [===========>………………] - ETA: 3s - loss: 0.5459 - accuracy: 0.7922



38/92 [===========>………………] - ETA: 3s - loss: 0.5450 - accuracy: 0.7936



39/92 [===========>………………] - ETA: 3s - loss: 0.5391 - accuracy: 0.7965



40/92 [============>……………..] - ETA: 3s - loss: 0.5383 - accuracy: 0.7961



41/92 [============>……………..] - ETA: 2s - loss: 0.5348 - accuracy: 0.7973



42/92 [============>……………..] - ETA: 2s - loss: 0.5337 - accuracy: 0.7976



43/92 [=============>…………….] - ETA: 2s - loss: 0.5316 - accuracy: 0.7994



44/92 [=============>…………….] - ETA: 2s - loss: 0.5287 - accuracy: 0.7997



45/92 [=============>…………….] - ETA: 2s - loss: 0.5271 - accuracy: 0.8028



46/92 [==============>……………] - ETA: 2s - loss: 0.5250 - accuracy: 0.8030



47/92 [==============>……………] - ETA: 2s - loss: 0.5255 - accuracy: 0.8039



48/92 [==============>……………] - ETA: 2s - loss: 0.5265 - accuracy: 0.8034



49/92 [==============>……………] - ETA: 2s - loss: 0.5259 - accuracy: 0.8029



50/92 [===============>…………..] - ETA: 2s - loss: 0.5263 - accuracy: 0.8031



51/92 [===============>…………..] - ETA: 2s - loss: 0.5260 - accuracy: 0.8027



52/92 [===============>…………..] - ETA: 2s - loss: 0.5245 - accuracy: 0.8041



53/92 [================>………….] - ETA: 2s - loss: 0.5264 - accuracy: 0.8042



54/92 [================>………….] - ETA: 2s - loss: 0.5256 - accuracy: 0.8050



55/92 [================>………….] - ETA: 2s - loss: 0.5227 - accuracy: 0.8057



56/92 [=================>…………] - ETA: 2s - loss: 0.5253 - accuracy: 0.8041



57/92 [=================>…………] - ETA: 2s - loss: 0.5265 - accuracy: 0.8026



58/92 [=================>…………] - ETA: 1s - loss: 0.5269 - accuracy: 0.8028



59/92 [==================>………..] - ETA: 1s - loss: 0.5235 - accuracy: 0.8040



60/92 [==================>………..] - ETA: 1s - loss: 0.5222 - accuracy: 0.8031



61/92 [==================>………..] - ETA: 1s - loss: 0.5280 - accuracy: 0.8007



62/92 [===================>……….] - ETA: 1s - loss: 0.5321 - accuracy: 0.7984



63/92 [===================>……….] - ETA: 1s - loss: 0.5292 - accuracy: 0.7991



64/92 [===================>……….] - ETA: 1s - loss: 0.5326 - accuracy: 0.7988



65/92 [====================>………] - ETA: 1s - loss: 0.5359 - accuracy: 0.7971



67/92 [====================>………] - ETA: 1s - loss: 0.5367 - accuracy: 0.7968



68/92 [=====================>……..] - ETA: 1s - loss: 0.5342 - accuracy: 0.7980



69/92 [=====================>……..] - ETA: 1s - loss: 0.5342 - accuracy: 0.7977



70/92 [=====================>……..] - ETA: 1s - loss: 0.5368 - accuracy: 0.7975



71/92 [======================>…….] - ETA: 1s - loss: 0.5370 - accuracy: 0.7977



72/92 [======================>…….] - ETA: 1s - loss: 0.5361 - accuracy: 0.7979



73/92 [======================>…….] - ETA: 1s - loss: 0.5350 - accuracy: 0.7990



74/92 [=======================>……] - ETA: 1s - loss: 0.5390 - accuracy: 0.7979



75/92 [=======================>……] - ETA: 0s - loss: 0.5402 - accuracy: 0.7972



76/92 [=======================>……] - ETA: 0s - loss: 0.5415 - accuracy: 0.7966



77/92 [========================>…..] - ETA: 0s - loss: 0.5416 - accuracy: 0.7964



78/92 [========================>…..] - ETA: 0s - loss: 0.5412 - accuracy: 0.7962



79/92 [========================>…..] - ETA: 0s - loss: 0.5435 - accuracy: 0.7948



80/92 [=========================>….] - ETA: 0s - loss: 0.5452 - accuracy: 0.7935



81/92 [=========================>….] - ETA: 0s - loss: 0.5493 - accuracy: 0.7918



82/92 [=========================>….] - ETA: 0s - loss: 0.5472 - accuracy: 0.7928



83/92 [==========================>…] - ETA: 0s - loss: 0.5474 - accuracy: 0.7923



84/92 [==========================>…] - ETA: 0s - loss: 0.5458 - accuracy: 0.7933



85/92 [==========================>…] - ETA: 0s - loss: 0.5452 - accuracy: 0.7931



86/92 [===========================>..] - ETA: 0s - loss: 0.5448 - accuracy: 0.7930



87/92 [===========================>..] - ETA: 0s - loss: 0.5434 - accuracy: 0.7939



88/92 [===========================>..] - ETA: 0s - loss: 0.5425 - accuracy: 0.7945



89/92 [============================>.] - ETA: 0s - loss: 0.5434 - accuracy: 0.7937



90/92 [============================>.] - ETA: 0s - loss: 0.5470 - accuracy: 0.7925



91/92 [============================>.] - ETA: 0s - loss: 0.5459 - accuracy: 0.7941



92/92 [==============================] - ETA: 0s - loss: 0.5434 - accuracy: 0.7950



92/92 [==============================] - 6s 64ms/step - loss: 0.5434 - accuracy: 0.7950 - val_loss: 0.7003 - val_accuracy: 0.7357

Epoch 15/15
1/92 [..............................] - ETA: 7s - loss: 0.3981 - accuracy: 0.8750
   
2/92 [..............................] - ETA: 5s - loss: 0.4149 - accuracy: 0.8438
   
3/92 [..............................] - ETA: 5s - loss: 0.5013 - accuracy: 0.8125
   
4/92 [>.............................] - ETA: 5s - loss: 0.4675 - accuracy: 0.8281
   
5/92 [>.............................] - ETA: 5s - loss: 0.4681 - accuracy: 0.8188
   
6/92 [>.............................] - ETA: 5s - loss: 0.4709 - accuracy: 0.8229
   
7/92 [=>............................] - ETA: 4s - loss: 0.4701 - accuracy: 0.8214
   
8/92 [=>............................] - ETA: 4s - loss: 0.4571 - accuracy: 0.8281
   
9/92 [=>............................] - ETA: 4s - loss: 0.4488 - accuracy: 0.8368


10/92 [==>………………………] - ETA: 4s - loss: 0.4419 - accuracy: 0.8406



11/92 [==>………………………] - ETA: 4s - loss: 0.4333 - accuracy: 0.8438



12/92 [==>………………………] - ETA: 4s - loss: 0.4277 - accuracy: 0.8464



13/92 [===>……………………..] - ETA: 4s - loss: 0.4366 - accuracy: 0.8462



14/92 [===>……………………..] - ETA: 4s - loss: 0.4465 - accuracy: 0.8393



15/92 [===>……………………..] - ETA: 4s - loss: 0.4502 - accuracy: 0.8354



16/92 [====>…………………….] - ETA: 4s - loss: 0.4574 - accuracy: 0.8301



17/92 [====>…………………….] - ETA: 4s - loss: 0.4492 - accuracy: 0.8364



18/92 [====>…………………….] - ETA: 4s - loss: 0.4515 - accuracy: 0.8299



19/92 [=====>……………………] - ETA: 4s - loss: 0.4427 - accuracy: 0.8306



20/92 [=====>……………………] - ETA: 4s - loss: 0.4537 - accuracy: 0.8266



21/92 [=====>……………………] - ETA: 4s - loss: 0.4501 - accuracy: 0.8274



22/92 [======>…………………..] - ETA: 4s - loss: 0.4552 - accuracy: 0.8253



23/92 [======>…………………..] - ETA: 4s - loss: 0.4613 - accuracy: 0.8207



24/92 [======>…………………..] - ETA: 3s - loss: 0.4597 - accuracy: 0.8229



25/92 [=======>………………….] - ETA: 3s - loss: 0.4571 - accuracy: 0.8250



26/92 [=======>………………….] - ETA: 3s - loss: 0.4539 - accuracy: 0.8269



27/92 [=======>………………….] - ETA: 3s - loss: 0.4631 - accuracy: 0.8252



28/92 [========>…………………] - ETA: 3s - loss: 0.4597 - accuracy: 0.8270



29/92 [========>…………………] - ETA: 3s - loss: 0.4645 - accuracy: 0.8244



30/92 [========>…………………] - ETA: 3s - loss: 0.4748 - accuracy: 0.8229



31/92 [=========>………………..] - ETA: 3s - loss: 0.4794 - accuracy: 0.8206



33/92 [=========>………………..] - ETA: 3s - loss: 0.4802 - accuracy: 0.8206



34/92 [==========>……………….] - ETA: 3s - loss: 0.4806 - accuracy: 0.8204



35/92 [==========>……………….] - ETA: 3s - loss: 0.4783 - accuracy: 0.8210



36/92 [==========>……………….] - ETA: 3s - loss: 0.4816 - accuracy: 0.8199



37/92 [===========>………………] - ETA: 3s - loss: 0.4810 - accuracy: 0.8189



38/92 [===========>………………] - ETA: 3s - loss: 0.4834 - accuracy: 0.8179



39/92 [===========>………………] - ETA: 3s - loss: 0.4872 - accuracy: 0.8177



40/92 [============>……………..] - ETA: 2s - loss: 0.4897 - accuracy: 0.8160



41/92 [============>……………..] - ETA: 2s - loss: 0.4889 - accuracy: 0.8160



42/92 [============>……………..] - ETA: 2s - loss: 0.4955 - accuracy: 0.8129



43/92 [=============>…………….] - ETA: 2s - loss: 0.5023 - accuracy: 0.8099



44/92 [=============>…………….] - ETA: 2s - loss: 0.5021 - accuracy: 0.8107



45/92 [=============>…………….] - ETA: 2s - loss: 0.5024 - accuracy: 0.8101



46/92 [==============>……………] - ETA: 2s - loss: 0.5017 - accuracy: 0.8101



47/92 [==============>……………] - ETA: 2s - loss: 0.5044 - accuracy: 0.8102



48/92 [==============>……………] - ETA: 2s - loss: 0.5106 - accuracy: 0.8069



49/92 [==============>……………] - ETA: 2s - loss: 0.5094 - accuracy: 0.8064



50/92 [===============>…………..] - ETA: 2s - loss: 0.5061 - accuracy: 0.8090



51/92 [===============>…………..] - ETA: 2s - loss: 0.5033 - accuracy: 0.8103



52/92 [===============>…………..] - ETA: 2s - loss: 0.5022 - accuracy: 0.8116



53/92 [================>………….] - ETA: 2s - loss: 0.5020 - accuracy: 0.8116



54/92 [================>………….] - ETA: 2s - loss: 0.5025 - accuracy: 0.8105



55/92 [================>………….] - ETA: 2s - loss: 0.5012 - accuracy: 0.8122



56/92 [=================>…………] - ETA: 2s - loss: 0.5013 - accuracy: 0.8122



57/92 [=================>…………] - ETA: 2s - loss: 0.5014 - accuracy: 0.8128



58/92 [=================>…………] - ETA: 1s - loss: 0.4985 - accuracy: 0.8144



59/92 [==================>………..] - ETA: 1s - loss: 0.4989 - accuracy: 0.8138



60/92 [==================>………..] - ETA: 1s - loss: 0.5007 - accuracy: 0.8117



61/92 [==================>………..] - ETA: 1s - loss: 0.5011 - accuracy: 0.8107



62/92 [===================>……….] - ETA: 1s - loss: 0.4986 - accuracy: 0.8122



63/92 [===================>……….] - ETA: 1s - loss: 0.4991 - accuracy: 0.8123



64/92 [===================>……….] - ETA: 1s - loss: 0.4975 - accuracy: 0.8137



65/92 [====================>………] - ETA: 1s - loss: 0.4949 - accuracy: 0.8156



66/92 [====================>………] - ETA: 1s - loss: 0.4949 - accuracy: 0.8156



67/92 [====================>………] - ETA: 1s - loss: 0.4917 - accuracy: 0.8165



68/92 [=====================>……..] - ETA: 1s - loss: 0.4898 - accuracy: 0.8178



69/92 [=====================>……..] - ETA: 1s - loss: 0.4893 - accuracy: 0.8177



70/92 [=====================>……..] - ETA: 1s - loss: 0.4878 - accuracy: 0.8185



71/92 [======================>…….] - ETA: 1s - loss: 0.4858 - accuracy: 0.8193



72/92 [======================>…….] - ETA: 1s - loss: 0.4848 - accuracy: 0.8193



73/92 [======================>…….] - ETA: 1s - loss: 0.4851 - accuracy: 0.8183



74/92 [=======================>……] - ETA: 1s - loss: 0.4869 - accuracy: 0.8174



75/92 [=======================>……] - ETA: 0s - loss: 0.4863 - accuracy: 0.8165



76/92 [=======================>……] - ETA: 0s - loss: 0.4874 - accuracy: 0.8156



77/92 [========================>…..] - ETA: 0s - loss: 0.4895 - accuracy: 0.8156



78/92 [========================>…..] - ETA: 0s - loss: 0.4899 - accuracy: 0.8159



79/92 [========================>…..] - ETA: 0s - loss: 0.4896 - accuracy: 0.8159



80/92 [=========================>….] - ETA: 0s - loss: 0.4900 - accuracy: 0.8154



81/92 [=========================>….] - ETA: 0s - loss: 0.4929 - accuracy: 0.8135



82/92 [=========================>….] - ETA: 0s - loss: 0.4921 - accuracy: 0.8131



83/92 [==========================>…] - ETA: 0s - loss: 0.4925 - accuracy: 0.8134



84/92 [==========================>…] - ETA: 0s - loss: 0.4912 - accuracy: 0.8131



85/92 [==========================>…] - ETA: 0s - loss: 0.4906 - accuracy: 0.8142



86/92 [===========================>..] - ETA: 0s - loss: 0.4939 - accuracy: 0.8120



87/92 [===========================>..] - ETA: 0s - loss: 0.4967 - accuracy: 0.8102



88/92 [===========================>..] - ETA: 0s - loss: 0.4958 - accuracy: 0.8109



89/92 [============================>.] - ETA: 0s - loss: 0.4973 - accuracy: 0.8095



90/92 [============================>.] - ETA: 0s - loss: 0.5005 - accuracy: 0.8085



91/92 [============================>.] - ETA: 0s - loss: 0.5006 - accuracy: 0.8089



92/92 [==============================] - ETA: 0s - loss: 0.5029 - accuracy: 0.8079



92/92 [==============================] - 6s 64ms/step - loss: 0.5029 - accuracy: 0.8079 - val_loss: 0.6990 - val_accuracy: 0.7411

Visualize Training Results

After applying data augmentation and Dropout, there is less overfitting than before, and training and validation accuracy are closer aligned.

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
../_images/301-tensorflow-training-openvino-with-output_66_0.png

Predict on New Data

Finally, let us use the model to classify an image that was not included in the training or validation sets.

NOTE: Data augmentation and Dropout layers are inactive at inference time.

sunflower_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/592px-Red_sunflower.jpg"
sunflower_path = tf.keras.utils.get_file('Red_sunflower', origin=sunflower_url)

img = keras.preprocessing.image.load_img(
    sunflower_path, target_size=(img_height, img_width)
)
img_array = keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)  # Create a batch

predictions = model.predict(img_array)
score = tf.nn.softmax(predictions[0])

print(
    "This image most likely belongs to {} with a {:.2f} percent confidence."
    .format(class_names[np.argmax(score)], 100 * np.max(score))
)
1/1 [==============================] - ETA: 0s

1/1 [==============================] - 0s 83ms/step
This image most likely belongs to sunflowers with a 99.80 percent confidence.

Save the TensorFlow Model

#save the trained model - a new folder flower will be created
#and the file "saved_model.pb" is the pre-trained model
model_dir = "model"
saved_model_dir = f"{model_dir}/flower/saved_model"
model.save(saved_model_dir)
2024-02-10 01:13:41.810110: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'random_flip_input' with dtype float and shape [?,180,180,3]
     [[{{node random_flip_input}}]]
2024-02-10 01:13:41.894772: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:41.904859: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'random_flip_input' with dtype float and shape [?,180,180,3]
     [[{{node random_flip_input}}]]
2024-02-10 01:13:41.916513: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:41.923535: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:41.930525: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:41.941500: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:41.979801: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'sequential_1_input' with dtype float and shape [?,180,180,3]
     [[{{node sequential_1_input}}]]
2024-02-10 01:13:42.047000: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:42.067363: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'sequential_1_input' with dtype float and shape [?,180,180,3]
     [[{{node sequential_1_input}}]]
2024-02-10 01:13:42.106717: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,22,22,64]
     [[{{node inputs}}]]
2024-02-10 01:13:42.133121: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:42.206690: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:42.348773: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:42.485746: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,22,22,64]
     [[{{node inputs}}]]
2024-02-10 01:13:42.519497: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:42.547013: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
2024-02-10 01:13:42.593572: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
     [[{{node inputs}}]]
WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _update_step_xla while saving (showing 4 of 4). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: model/flower/saved_model/assets
INFO:tensorflow:Assets written to: model/flower/saved_model/assets

Convert the TensorFlow model with OpenVINO Model Conversion API

To convert the model to OpenVINO IR with FP16 precision, use model conversion Python API.

# Convert the model to ir model format and save it.
ir_model_path = Path("model/flower")
ir_model_path.mkdir(parents=True, exist_ok=True)
ir_model = ov.convert_model(saved_model_dir, input=[1,180,180,3])
ov.save_model(ir_model, ir_model_path / "flower_ir.xml")

Preprocessing Image Function

def pre_process_image(imagePath, img_height=180):
    # Model input format
    n, h, w, c = [1, img_height, img_height, 3]
    image = Image.open(imagePath)
    image = image.resize((h, w), resample=Image.BILINEAR)

    # Convert to array and change data layout from HWC to CHW
    image = np.array(image)
    input_image = image.reshape((n, h, w, c))

    return input_image

OpenVINO Runtime Setup

Select inference device

select device from dropdown list for running inference using OpenVINO

import ipywidgets as widgets

# Initialize OpenVINO runtime
core = ov.Core()
device = widgets.Dropdown(
    options=core.available_devices + ["AUTO"],
    value='AUTO',
    description='Device:',
    disabled=False,
)

device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
class_names=["daisy", "dandelion", "roses", "sunflowers", "tulips"]

compiled_model = core.compile_model(model=ir_model, device_name=device.value)

del ir_model

input_layer = compiled_model.input(0)
output_layer = compiled_model.output(0)

Run the Inference Step

# Run inference on the input image...
inp_img_url = "https://upload.wikimedia.org/wikipedia/commons/4/48/A_Close_Up_Photo_of_a_Dandelion.jpg"
OUTPUT_DIR = "output"
inp_file_name = f"A_Close_Up_Photo_of_a_Dandelion.jpg"
file_path = Path(OUTPUT_DIR)/Path(inp_file_name)

os.makedirs(OUTPUT_DIR, exist_ok=True)

# Download the image
download_file(inp_img_url, inp_file_name, directory=OUTPUT_DIR)

# Pre-process the image and get it ready for inference.
input_image = pre_process_image(file_path)

print(input_image.shape)
print(input_layer.shape)
res = compiled_model([input_image])[output_layer]

score = tf.nn.softmax(res[0])

# Show the results
image = Image.open(file_path)
plt.imshow(image)
print(
    "This image most likely belongs to {} with a {:.2f} percent confidence."
    .format(class_names[np.argmax(score)], 100 * np.max(score))
)
'output/A_Close_Up_Photo_of_a_Dandelion.jpg' already exists.
(1, 180, 180, 3)
[1,180,180,3]
This image most likely belongs to dandelion with a 98.49 percent confidence.
../_images/301-tensorflow-training-openvino-with-output_79_1.png

The Next Steps

This tutorial showed how to train a TensorFlow model, how to convert that model to OpenVINO’s IR format, and how to do inference on the converted model. For faster inference speed, you can quantize the IR model. To see how to quantize this model with OpenVINO’s Post-training Quantization with NNCF Tool, check out the Post-Training Quantization with TensorFlow Classification Model notebook.