Converting MXNet GluonCV Models¶
Warning
Note that OpenVINO support for Apache MXNet is currently being deprecated and will be removed entirely in the future.
This article provides the instructions and examples on how to convert GluonCV SSD and YOLO-v3 models to IR.
Choose the topology available from the GluonCV Model Zoo and export to the MXNet format using the GluonCV API. For example, for the
ssd_512_mobilenet1.0
topology:from gluoncv import model_zoo, data, utils from gluoncv.utils import export_block net = model_zoo.get_model('ssd_512_mobilenet1.0_voc', pretrained=True) export_block('ssd_512_mobilenet1.0_voc', net, preprocess=True, layout='HWC')
As a result, you will get an MXNet model representation in
ssd_512_mobilenet1.0.params
andssd_512_mobilenet1.0.json
files generated in the current directory.Run model conversion API, specifying the
enable_ssd_gluoncv
option. Make sure theinput_shape
parameter is set to the input shape layout of your model (NHWC or NCHW). The examples below illustrate running model conversion for the SSD and YOLO-v3 models trained with the NHWC layout and located in the<model_directory>
:For GluonCV SSD topologies:
mo --input_model <model_directory>/ssd_512_mobilenet1.0.params --enable_ssd_gluoncv --input_shape [1,512,512,3] --input data --output_dir <OUTPUT_MODEL_DIR>
For YOLO-v3 topology:
To convert the model:
mo --input_model <model_directory>/yolo3_mobilenet1.0_voc-0000.params --input_shape [1,255,255,3] --output_dir <OUTPUT_MODEL_DIR>
To convert the model with replacing the subgraph with RegionYolo layers:
mo --input_model <model_directory>/models/yolo3_mobilenet1.0_voc-0000.params --input_shape [1,255,255,3] --transformations_config "front/mxnet/ yolo_v3_mobilenet1_voc. json" --output_dir <OUTPUT_MODEL_DIR>