OpenVINO™ model conversion API¶
This Jupyter notebook can be launched after a local installation only.
This notebook shows how to convert a model from original framework format to OpenVINO Intermediate Representation (IR).
Table of contents:¶
# Required imports. Please execute this cell first.
%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu \
"openvino-dev>=2023.1.0" "requests" "tqdm" "transformers[onnx]>=4.21.1" "torch" "torchvision"
Note: you may need to restart the kernel to use updated packages.
OpenVINO IR format¶
OpenVINO Intermediate Representation
(IR) is the
proprietary model format of OpenVINO. It is produced after converting a
model with model conversion API. Model conversion API translates the
frequently used deep learning operations to their respective similar
representation in OpenVINO and tunes them with the associated weights
and biases from the trained model. The resulting IR contains two files:
an .xml
file, containing information about network topology, and a
.bin
file, containing the weights and biases binary data.
IR preparation with Python conversion API and Model Optimizer command-line tool¶
There are two ways to convert a model from the original framework format to OpenVINO IR: Python conversion API and Model Optimizer command-line tool. You can choose one of them based on whichever is most convenient for you. There should not be any differences in the results of model conversion if the same set of parameters is used. For more details, refer to Model Preparation documentation.
# Model Optimizer CLI tool parameters description
! mo --help
usage: main.py [options] optional arguments: -h, --help show this help message and exit --framework FRAMEWORK Name of the framework used to train the input model. Framework-agnostic parameters: --model_name MODEL_NAME, -n MODEL_NAME Model_name parameter passed to the final create_ir transform. This parameter is used to name a network in a generated IR and output .xml/.bin files. --output_dir OUTPUT_DIR, -o OUTPUT_DIR Directory that stores the generated IR. By default, it is the directory from where the Model Conversion is launched. --freeze_placeholder_with_value FREEZE_PLACEHOLDER_WITH_VALUE Replaces input layer with constant node with provided value, for example: "node_name->True". It will be DEPRECATED in future releases. Use "input" option to specify a value for freezing. --static_shape Enables IR generation for fixed input shape (folding ShapeOf operations and shape-calculating sub-graphs to Constant). Changing model input shape using the OpenVINO Runtime API in runtime may fail for such an IR. --use_new_frontend Force the usage of new Frontend for model conversion into IR. The new Frontend is C++ based and is available for ONNX* and PaddlePaddle* models. Model Conversion API uses new Frontend for ONNX* and PaddlePaddle* by default that means use_new_frontend and use_legacy_frontend options are not specified. --use_legacy_frontend Force the usage of legacy Frontend for model conversion into IR. The legacy Frontend is Python based and is available for TensorFlow*, ONNX*, MXNet*, Caffe*, and Kaldi* models. --input_model INPUT_MODEL, -m INPUT_MODEL, -w INPUT_MODEL Tensorflow*: a file with a pre-trained model (binary or text .pb file after freezing). Caffe*: a model proto file with model weights. --input INPUT Quoted list of comma-separated input nodes names with shapes, data types, and values for freezing. The order of inputs in converted model is the same as order of specified operation names. The shape and value are specified as comma-separated lists. The data type of input node is specified in braces and can have one of the values: f64 (float64), f32 (float32), f16 (float16), i64 (int64), i32 (int32), u8 (uint8), boolean (bool). Data type is optional. If it's not specified explicitly then there are two options: if input node is a parameter, data type is taken from the original node dtype, if input node is not a parameter, data type is set to f32. Example, to set input_1 with shape [1,100], and Parameter node sequence_len with scalar input with value 150, and boolean input is_training with False value use the following format: "input_1[1,100],sequence_len->150,is_training->False". Another example, use the following format to set input port 0 of the node node_name1 with the shape [3,4] as an input node and freeze output port 1 of the node "node_name2" with the value [20,15] of the int32 type and shape [2]: "0:node_name1[3,4],node_name2:1[2]{i32}->[20,15]". --output OUTPUT The name of the output operation of the model or list of names. For TensorFlow*, do not add :0 to this name.The order of outputs in converted model is the same as order of specified operation names. --input_shape INPUT_SHAPE Input shape(s) that should be fed to an input node(s) of the model. Shape is defined as a comma-separated list of integer numbers enclosed in parentheses or square brackets, for example [1,3,227,227] or (1,227,227,3), where the order of dimensions depends on the framework input layout of the model. For example, [N,C,H,W] is used for ONNX* models and [N,H,W,C] for TensorFlow* models. The shape can contain undefined dimensions (? or -1) and should fit the dimensions defined in the input operation of the graph. Boundaries of undefined dimension can be specified with ellipsis, for example [1,1..10,128,128]. One boundary can be undefined, for example [1,..100] or [1,3,1..,1..]. If there are multiple inputs in the model, --input_shape should contain definition of shape for each input separated by a comma, for example: [1,3,227,227],[2,4] for a model with two inputs with 4D and 2D shapes. Alternatively, specify shapes with the --input option. --example_input EXAMPLE_INPUT Sample of model input in original framework. For PyTorch it can be torch.Tensor. For Tensorflow it can be tf.Tensor or numpy.ndarray. For PaddlePaddle it can be Paddle Variable. --batch BATCH, -b BATCH Set batch size. It applies to 1D or higher dimension inputs. The default dimension index for the batch is zero. Use a label 'n' in --layout or --source_layout option to set the batch dimension. For example, "x(hwnc)" defines the third dimension to be the batch. --mean_values MEAN_VALUES Mean values to be used for the input image per channel. Values to be provided in the (R,G,B) or [R,G,B] format. Can be defined for desired input of the model, for example: "--mean_values data[255,255,255],info[255,255,255]". The exact meaning and order of channels depend on how the original model was trained. --scale_values SCALE_VALUES Scale values to be used for the input image per channel. Values are provided in the (R,G,B) or [R,G,B] format. Can be defined for desired input of the model, for example: "--scale_values data[255,255,255],info[255,255,255]". The exact meaning and order of channels depend on how the original model was trained. If both --mean_values and --scale_values are specified, the mean is subtracted first and then scale is applied regardless of the order of options in command line. --scale SCALE, -s SCALE All input values coming from original network inputs will be divided by this value. When a list of inputs is overridden by the --input parameter, this scale is not applied for any input that does not match with the original input of the model. If both --mean_values and --scale are specified, the mean is subtracted first and then scale is applied regardless of the order of options in command line. --reverse_input_channels [REVERSE_INPUT_CHANNELS] Switch the input channels order from RGB to BGR (or vice versa). Applied to original inputs of the model if and only if a number of channels equals 3. When --mean_values/--scale_values are also specified, reversing of channels will be applied to user's input data first, so that numbers in --mean_values and --scale_values go in the order of channels used in the original model. In other words, if both options are specified, then the data flow in the model looks as following: Parameter -> ReverseInputChannels -> Mean apply-> Scale apply -> the original body of the model. --source_layout SOURCE_LAYOUT Layout of the input or output of the model in the framework. Layout can be specified in the short form, e.g. nhwc, or in complex form, e.g. "[n,h,w,c]". Example for many names: "in_name1([n,h,w,c]),in_name2( nc),out_name1(n),out_name2(nc)". Layout can be partially defined, "?" can be used to specify undefined layout for one dimension, "..." can be used to specify undefined layout for multiple dimensions, for example "?c??", "nc...", "n...c", etc. --target_layout TARGET_LAYOUT Same as --source_layout, but specifies target layout that will be in the model after processing by ModelOptimizer. --layout LAYOUT Combination of --source_layout and --target_layout. Can't be used with either of them. If model has one input it is sufficient to specify layout of this input, for example --layout nhwc. To specify layouts of many tensors, names must be provided, for example: --layout "name1(nchw),name2(nc)". It is possible to instruct ModelOptimizer to change layout, for example: --layout "name1(nhwc->nchw),name2(cn->nc)". Also "*" in long layout form can be used to fuse dimensions, for example "[n,c,...]->[n*c,...]". --compress_to_fp16 [COMPRESS_TO_FP16] If the original model has FP32 weights or biases, they are compressed to FP16. All intermediate data is kept in original precision. Option can be specified alone as "--compress_to_fp16", or explicit True/False values can be set, for example: "--compress_to_fp16=False", or "--compress_to_fp16=True" --extensions EXTENSIONS Paths or a comma-separated list of paths to libraries (.so or .dll) with extensions. For the legacy MO path (if --use_legacy_frontend is used), a directory or a comma-separated list of directories with extensions are supported. To disable all extensions including those that are placed at the default location, pass an empty string. --transform TRANSFORM Apply additional transformations. Usage: "--transform transformation_name1[args],transformation_name2..." where [args] is key=value pairs separated by semicolon. Examples: "--transform LowLatency2" or "-- transform Pruning" or "--transform LowLatency2[use_const_initializer=False]" or "-- transform "MakeStateful[param_res_names= {'input_name_ 1':'output_name_1','input_name_2':'output_name_2'}]" Available transformations: "LowLatency2", "MakeStateful", "Pruning" --transformations_config TRANSFORMATIONS_CONFIG Use the configuration file with transformations description. Transformations file can be specified as relative path from the current directory, as absolute path or as arelative path from the mo root directory. --silent [SILENT] Prevent any output messages except those that correspond to log level equals ERROR, that can be set with the following option: --log_level. By default, log level is already ERROR. --log_level {CRITICAL,ERROR,WARN,WARNING,INFO,DEBUG,NOTSET} Logger level of logging massages from MO. Expected one of ['CRITICAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET']. --version Version of Model Optimizer --progress [PROGRESS] Enable model conversion progress display. --stream_output [STREAM_OUTPUT] Switch model conversion progress display to a multiline mode. --share_weights [SHARE_WEIGHTS] Map memory of weights instead reading files or share memory from input model. Currently, mapping feature is provided only for ONNX models that do not require fallback to the legacy ONNX frontend for the conversion. TensorFlow*-specific parameters: --input_model_is_text [INPUT_MODEL_IS_TEXT] TensorFlow*: treat the input model file as a text protobuf format. If not specified, the Model Optimizer treats it as a binary file by default. --input_checkpoint INPUT_CHECKPOINT TensorFlow*: variables file to load. --input_meta_graph INPUT_META_GRAPH Tensorflow*: a file with a meta-graph of the model before freezing --saved_model_dir SAVED_MODEL_DIR TensorFlow*: directory with a model in SavedModel format of TensorFlow 1.x or 2.x version. --saved_model_tags SAVED_MODEL_TAGS Group of tag(s) of the MetaGraphDef to load, in string format, separated by ','. For tag-set contains multiple tags, all tags must be passed in. --tensorflow_custom_operations_config_update TENSORFLOW_CUSTOM_OPERATIONS_CONFIG_UPDATE TensorFlow*: update the configuration file with node name patterns with input/output nodes information. --tensorflow_object_detection_api_pipeline_config TENSORFLOW_OBJECT_DETECTION_API_PIPELINE_CONFIG TensorFlow*: path to the pipeline configuration file used to generate model created with help of Object Detection API. --tensorboard_logdir TENSORBOARD_LOGDIR TensorFlow*: dump the input graph to a given directory that should be used with TensorBoard. --tensorflow_custom_layer_libraries TENSORFLOW_CUSTOM_LAYER_LIBRARIES TensorFlow*: comma separated list of shared libraries with TensorFlow* custom operations implementation. Caffe*-specific parameters: --input_proto INPUT_PROTO, -d INPUT_PROTO Deploy-ready prototxt file that contains a topology structure and layer attributes --caffe_parser_path CAFFE_PARSER_PATH Path to Python Caffe* parser generated from caffe.proto --k K Path to CustomLayersMapping.xml to register custom layers --disable_omitting_optional [DISABLE_OMITTING_OPTIONAL] Disable omitting optional attributes to be used for custom layers. Use this option if you want to transfer all attributes of a custom layer to IR. Default behavior is to transfer the attributes with default values and the attributes defined by the user to IR. --enable_flattening_nested_params [ENABLE_FLATTENING_NESTED_PARAMS] Enable flattening optional params to be used for custom layers. Use this option if you want to transfer attributes of a custom layer to IR with flattened nested parameters. Default behavior is to transfer the attributes without flattening nested parameters. MXNet-specific parameters: --input_symbol INPUT_SYMBOL Symbol file (for example, model-symbol.json) that contains a topology structure and layer attributes --nd_prefix_name ND_PREFIX_NAME Prefix name for args.nd and argx.nd files. --pretrained_model_name PRETRAINED_MODEL_NAME Name of a pretrained MXNet model without extension and epoch number. This model will be merged with args.nd and argx.nd files --save_params_from_nd [SAVE_PARAMS_FROM_ND] Enable saving built parameters file from .nd files --legacy_mxnet_model [LEGACY_MXNET_MODEL] Enable MXNet loader to make a model compatible with the latest MXNet version. Use only if your model was trained with MXNet version lower than 1.0.0 --enable_ssd_gluoncv [ENABLE_SSD_GLUONCV] Enable pattern matchers replacers for converting gluoncv ssd topologies. Kaldi-specific parameters: --counts COUNTS Path to the counts file --remove_output_softmax [REMOVE_OUTPUT_SOFTMAX] Removes the SoftMax layer that is the output layer --remove_memory [REMOVE_MEMORY] Removes the Memory layer and use additional inputs outputs instead
# Python conversion API parameters description
from openvino.tools import mo
mo.convert_model(help=True)
Optional parameters: --help Print available parameters. --framework Name of the framework used to train the input model. Framework-agnostic parameters: --input_model Model object in original framework (PyTorch, Tensorflow) or path to model file. Tensorflow*: a file with a pre-trained model (binary or text .pb file after freezing). Caffe*: a model proto file with model weights Supported formats of input model: PaddlePaddle paddle.hapi.model.Model paddle.fluid.dygraph.layers.Layer paddle.fluid.executor.Executor PyTorch torch.nn.Module torch.jit.ScriptModule torch.jit.ScriptFunction TF tf.compat.v1.Graph tf.compat.v1.GraphDef tf.compat.v1.wrap_function tf.compat.v1.session TF2 / Keras tf.keras.Model tf.keras.layers.Layer tf.function tf.Module tf.train.checkpoint --input Input can be set by passing a list of InputCutInfo objects or by a list of tuples. Each tuple can contain optionally input name, input type or input shape. Example: input=("op_name", PartialShape([-1, 3, 100, 100]), Type(np.float32)). Alternatively input can be set by a string or list of strings of the following format. Quoted list of comma-separated input nodes names with shapes, data types, and values for freezing. If operation names are specified, the order of inputs in converted model will be the same as order of specified operation names (applicable for TF2, ONNX, MxNet). The shape and value are specified as comma-separated lists. The data type of input node is specified in braces and can have one of the values: f64 (float64), f32 (float32), f16 (float16), i64 (int64), i32 (int32), u8 (uint8), boolean (bool). Data type is optional. If it's not specified explicitly then there are two options: if input node is a parameter, data type is taken from the original node dtype, if input node is not a parameter, data type is set to f32. Example, to set input_1 with shape [1,100], and Parameter node sequence_len with scalar input with value 150, and boolean input is_training with False value use the following format: "input_1[1,100],sequence_len->150,is_training->False". Another example, use the following format to set input port 0 of the node node_name1 with the shape [3,4] as an input node and freeze output port 1 of the node node_name2 with the value [20,15] of the int32 type and shape [2]: "0:node_name1[3,4],node_name2:1[2]{i32}->[20,15]". --output The name of the output operation of the model or list of names. For TensorFlow*, do not add :0 to this name.The order of outputs in converted model is the same as order of specified operation names. --input_shape Input shape(s) that should be fed to an input node(s) of the model. Input shapes can be defined by passing a list of objects of type PartialShape, Shape, [Dimension, ...] or [int, ...] or by a string of the following format. Shape is defined as a comma-separated list of integer numbers enclosed in parentheses or square brackets, for example [1,3,227,227] or (1,227,227,3), where the order of dimensions depends on the framework input layout of the model. For example, [N,C,H,W] is used for ONNX* models and [N,H,W,C] for TensorFlow* models. The shape can contain undefined dimensions (? or -1) and should fit the dimensions defined in the input operation of the graph. Boundaries of undefined dimension can be specified with ellipsis, for example [1,1..10,128,128]. One boundary can be undefined, for example [1,..100] or [1,3,1..,1..]. If there are multiple inputs in the model, --input_shape should contain definition of shape for each input separated by a comma, for example: [1,3,227,227],[2,4] for a model with two inputs with 4D and 2D shapes. Alternatively, specify shapes with the --input option. --example_input Sample of model input in original framework. For PyTorch it can be torch.Tensor. For Tensorflow it can be tf.Tensor or numpy.ndarray. For PaddlePaddle it can be Paddle Variable. --batch Set batch size. It applies to 1D or higher dimension inputs. The default dimension index for the batch is zero. Use a label 'n' in --layout or --source_layout option to set the batch dimension. For example, "x(hwnc)" defines the third dimension to be the batch. --mean_values Mean values to be used for the input image per channel. Mean values can be set by passing a dictionary, where key is input name and value is mean value. For example mean_values={'data':[255,255,255],'info':[255,255,255]}. Or mean values can be set by a string of the following format. Values to be provided in the (R,G,B) or [R,G,B] format. Can be defined for desired input of the model, for example: "--mean_values data[255,255,255],info[255,255,255]". The exact meaning and order of channels depend on how the original model was trained. --scale_values Scale values to be used for the input image per channel. Scale values can be set by passing a dictionary, where key is input name and value is scale value. For example scale_values={'data':[255,255,255],'info':[255,255,255]}. Or scale values can be set by a string of the following format. Values are provided in the (R,G,B) or [R,G,B] format. Can be defined for desired input of the model, for example: "--scale_values data[255,255,255],info[255,255,255]". The exact meaning and order of channels depend on how the original model was trained. If both --mean_values and --scale_values are specified, the mean is subtracted first and then scale is applied regardless of the order of options in command line. --scale All input values coming from original network inputs will be divided by this value. When a list of inputs is overridden by the --input parameter, this scale is not applied for any input that does not match with the original input of the model. If both --mean_values and --scale are specified, the mean is subtracted first and then scale is applied regardless of the order of options in command line. --reverse_input_channels Switch the input channels order from RGB to BGR (or vice versa). Applied to original inputs of the model if and only if a number of channels equals 3. When --mean_values/--scale_values are also specified, reversing of channels will be applied to user's input data first, so that numbers in --mean_values and --scale_values go in the order of channels used in the original model. In other words, if both options are specified, then the data flow in the model looks as following: Parameter -> ReverseInputChannels -> Mean apply-> Scale apply -> the original body of the model. --source_layout Layout of the input or output of the model in the framework. Layout can be set by passing a dictionary, where key is input name and value is LayoutMap object. Or layout can be set by string of the following format. Layout can be specified in the short form, e.g. nhwc, or in complex form, e.g. "[n,h,w,c]". Example for many names: "in_name1([n,h,w,c]),in_name2(nc),out_name1(n),out_name2(nc)". Layout can be partially defined, "?" can be used to specify undefined layout for one dimension, "..." can be used to specify undefined layout for multiple dimensions, for example "?c??", "nc...", "n...c", etc. --target_layout Same as --source_layout, but specifies target layout that will be in the model after processing by ModelOptimizer. --layout Combination of --source_layout and --target_layout. Can't be used with either of them. If model has one input it is sufficient to specify layout of this input, for example --layout nhwc. To specify layouts of many tensors, names must be provided, for example: --layout "name1(nchw),name2(nc)". It is possible to instruct ModelOptimizer to change layout, for example: --layout "name1(nhwc->nchw),name2(cn->nc)". Also "*" in long layout form can be used to fuse dimensions, for example "[n,c,...]->[n*c,...]". --compress_to_fp16 If the original model has FP32 weights or biases, they are compressed to FP16. All intermediate data is kept in original precision. Option can be specified alone as "--compress_to_fp16", or explicit True/False values can be set, for example: "--compress_to_fp16=False", or "--compress_to_fp16=True" --extensions Paths to libraries (.so or .dll) with extensions, comma-separated list of paths, objects derived from BaseExtension class or lists of objects. For the legacy MO path (if --use_legacy_frontend is used), a directory or a comma-separated list of directories with extensions are supported. To disable all extensions including those that are placed at the default location, pass an empty string. --transform Apply additional transformations. 'transform' can be set by a list of tuples, where the first element is transform name and the second element is transform parameters. For example: [('LowLatency2', {{'use_const_initializer': False}}), ...]"--transform transformation_name1[args],transformation_name2..." where [args] is key=value pairs separated by semicolon. Examples: "--transform LowLatency2" or "--transform Pruning" or "--transform LowLatency2[use_const_initializer=False]" or "--transform "MakeStateful[param_res_names= {'input_name_1':'output_name_1','input_name_2':'output_name_2'}]"" Available transformations: "LowLatency2", "MakeStateful", "Pruning" --transformations_config Use the configuration file with transformations description or pass object derived from BaseExtension class. Transformations file can be specified as relative path from the current directory, as absolute path or as relative path from the mo root directory. --silent Prevent any output messages except those that correspond to log level equals ERROR, that can be set with the following option: --log_level. By default, log level is already ERROR. --log_level Logger level of logging massages from MO. Expected one of ['CRITICAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET']. --version Version of Model Optimizer --progress Enable model conversion progress display. --stream_output Switch model conversion progress display to a multiline mode. --share_weights Map memory of weights instead reading files or share memory from input model. Currently, mapping feature is provided only for ONNX models that do not require fallback to the legacy ONNX frontend for the conversion. PaddlePaddle-specific parameters: --example_output Sample of model output in original framework. For PaddlePaddle it can be Paddle Variable. TensorFlow*-specific parameters: --input_model_is_text TensorFlow*: treat the input model file as a text protobuf format. If not specified, the Model Optimizer treats it as a binary file by default. --input_checkpoint TensorFlow*: variables file to load. --input_meta_graph Tensorflow*: a file with a meta-graph of the model before freezing --saved_model_dir TensorFlow*: directory with a model in SavedModel format of TensorFlow 1.x or 2.x version. --saved_model_tags Group of tag(s) of the MetaGraphDef to load, in string format, separated by ','. For tag-set contains multiple tags, all tags must be passed in. --tensorflow_custom_operations_config_update TensorFlow*: update the configuration file with node name patterns with input/output nodes information. --tensorflow_object_detection_api_pipeline_config TensorFlow*: path to the pipeline configuration file used to generate model created with help of Object Detection API. --tensorboard_logdir TensorFlow*: dump the input graph to a given directory that should be used with TensorBoard. --tensorflow_custom_layer_libraries TensorFlow*: comma separated list of shared libraries with TensorFlow* custom operations implementation. MXNet-specific parameters: --input_symbol Symbol file (for example, model-symbol.json) that contains a topology structure and layer attributes --nd_prefix_name Prefix name for args.nd and argx.nd files. --pretrained_model_name Name of a pretrained MXNet model without extension and epoch number. This model will be merged with args.nd and argx.nd files --save_params_from_nd Enable saving built parameters file from .nd files --legacy_mxnet_model Enable MXNet loader to make a model compatible with the latest MXNet version. Use only if your model was trained with MXNet version lower than 1.0.0 --enable_ssd_gluoncv Enable pattern matchers replacers for converting gluoncv ssd topologies. Caffe*-specific parameters: --input_proto Deploy-ready prototxt file that contains a topology structure and layer attributes --caffe_parser_path Path to Python Caffe* parser generated from caffe.proto --k Path to CustomLayersMapping.xml to register custom layers --disable_omitting_optional Disable omitting optional attributes to be used for custom layers. Use this option if you want to transfer all attributes of a custom layer to IR. Default behavior is to transfer the attributes with default values and the attributes defined by the user to IR. --enable_flattening_nested_params Enable flattening optional params to be used for custom layers. Use this option if you want to transfer attributes of a custom layer to IR with flattened nested parameters. Default behavior is to transfer the attributes without flattening nested parameters. Kaldi-specific parameters: --counts Path to the counts file --remove_output_softmax Removes the SoftMax layer that is the output layer --remove_memory Removes the Memory layer and use additional inputs outputs instead
Fetching example models¶
This notebook uses two models for conversion examples:
Distilbert NLP model from Hugging Face
Resnet50 CV classification model from torchvision
from pathlib import Path
# create a directory for models files
MODEL_DIRECTORY_PATH = Path("model")
MODEL_DIRECTORY_PATH.mkdir(exist_ok=True)
Fetch distilbert NLP model from Hugging Face and export it in ONNX format:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers.onnx import export, FeaturesManager
ONNX_NLP_MODEL_PATH = MODEL_DIRECTORY_PATH / "distilbert.onnx"
# download model
hf_model = AutoModelForSequenceClassification.from_pretrained(
"distilbert-base-uncased-finetuned-sst-2-english"
)
# initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"distilbert-base-uncased-finetuned-sst-2-english"
)
# get model onnx config function for output feature format sequence-classification
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(
hf_model, feature="sequence-classification"
)
# fill onnx config based on pytorch model config
onnx_config = model_onnx_config(hf_model.config)
# export to onnx format
export(
preprocessor=tokenizer,
model=hf_model,
config=onnx_config,
opset=onnx_config.default_onnx_opset,
output=ONNX_NLP_MODEL_PATH,
)
2024-02-09 23:08:18.586507: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0. 2024-02-09 23:08:18.621399: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-02-09 23:08:19.256172: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/distilbert/modeling_distilbert.py:246: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.
mask, torch.tensor(torch.finfo(scores.dtype).min)
(['input_ids', 'attention_mask'], ['logits'])
Fetch Resnet50 CV classification model from torchvision:
from torchvision.models import resnet50, ResNet50_Weights
# create model object
pytorch_model = resnet50(weights=ResNet50_Weights.DEFAULT)
# switch model from training to inference mode
pytorch_model.eval()
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=1000, bias=True)
)
Convert PyTorch model to ONNX format:
import torch
import warnings
ONNX_CV_MODEL_PATH = MODEL_DIRECTORY_PATH / "resnet.onnx"
if ONNX_CV_MODEL_PATH.exists():
print(f"ONNX model {ONNX_CV_MODEL_PATH} already exists.")
else:
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
torch.onnx.export(
model=pytorch_model, args=torch.randn(1, 3, 780, 520), f=ONNX_CV_MODEL_PATH
)
print(f"ONNX model exported to {ONNX_CV_MODEL_PATH}")
ONNX model model/resnet.onnx already exists.
Basic conversion¶
To convert a model to OpenVINO IR, use the following command:
# Model Optimizer CLI
! mo --input_model model/distilbert.onnx --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.bin
# Python conversion API
from openvino.tools import mo
# mo.convert_model returns an openvino.runtime.Model object
ov_model = mo.convert_model(ONNX_NLP_MODEL_PATH)
# then model can be serialized to *.xml & *.bin files
from openvino.runtime import serialize
serialize(ov_model, xml_path=MODEL_DIRECTORY_PATH / "distilbert.xml")
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Model conversion parameters¶
Both Python conversion API and Model Optimizer command-line tool provide
the following capabilities: * overriding original input shapes for
model conversion with input
and input_shape
parameters. Setting
Input Shapes
guide.
* cutting off unwanted parts of a model (such as unsupported operations
and training sub-graphs) using the input
and output
parameters
to define new inputs and outputs of the converted model. Cutting Off
Parts of a Model
guide.
* inserting additional input pre-processing sub-graphs into the
converted model by using the mean_values
, scales_values
,
layout
, and other parameters. Embedding Preprocessing Computation
article.
* compressing the model weights (for example, weights for convolutions
and matrix multiplications) to FP16 data type using compress_to_fp16
compression parameter. Compression of a Model to FP16
guide.
If the out-of-the-box conversion (only the input_model
parameter is
specified) is not successful, it may be required to use the parameters
mentioned above to override input shapes and cut the model.
Setting Input Shapes¶
Model conversion is supported for models with dynamic input shapes that
contain undefined dimensions. However, if the shape of data is not going
to change from one inference request to another, it is recommended to
set up static shapes (when all dimensions are fully defined) for the
inputs. Doing it at this stage, instead of during inference in runtime,
can be beneficial in terms of performance and memory consumption. To set
up static shapes, model conversion API provides the input
and
input_shape
parameters.
For more information refer to Setting Input Shapes guide.
# Model Optimizer CLI
! mo --input_model model/distilbert.onnx --input input_ids,attention_mask --input_shape [1,128],[1,128] --output_dir model
# alternatively
! mo --input_model model/distilbert.onnx --input input_ids[1,128],attention_mask[1,128] --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.bin
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.bin
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(
ONNX_NLP_MODEL_PATH,
input=["input_ids", "attention_mask"],
input_shape=[[1, 128], [1, 128]],
)
# alternatively specify input shapes, using the input parameter
ov_model = mo.convert_model(
ONNX_NLP_MODEL_PATH, input=[("input_ids", [1, 128]), ("attention_mask", [1, 128])]
)
The input_shape parameter allows overriding original input shapes to
ones compatible with a given model. Dynamic shapes, i.e. with dynamic
dimensions, can be replaced in the original model with static shapes for
the converted model, and vice versa. The dynamic dimension can be marked
in the model conversion API parameter as -1
or ?
. For example,
launch model conversion for the ONNX Bert model and specify a dynamic
sequence length dimension for inputs:
# Model Optimizer CLI
! mo --input_model model/distilbert.onnx --input input_ids,attention_mask --input_shape [1,-1],[1,-1] --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.bin
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(
ONNX_NLP_MODEL_PATH,
input=["input_ids", "attention_mask"],
input_shape=[[1, -1], [1, -1]],
)
To optimize memory consumption for models with undefined dimensions in runtime, model conversion API provides the capability to define boundaries of dimensions. The boundaries of undefined dimensions can be specified with ellipsis. For example, launch model conversion for the ONNX Bert model and specify a boundary for the sequence length dimension:
# Model Optimizer CLI
! mo --input_model model/distilbert.onnx --input input_ids,attention_mask --input_shape [1,10..128],[1,10..128] --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.bin
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(
ONNX_NLP_MODEL_PATH,
input=["input_ids", "attention_mask"],
input_shape=[[1, "10..128"], [1, "10..128"]],
)
Cutting Off Parts of a Model¶
The following examples show when model cutting is useful or even required:
A model has pre- or post-processing parts that cannot be translated to existing OpenVINO operations.
A model has a training part that is convenient to be kept in the model but not used during inference.
A model is too complex to be converted at once because it contains many unsupported operations that cannot be easily implemented as custom layers.
A problem occurs with model conversion or inference in OpenVINO Runtime. To identify the issue, limit the conversion scope by an iterative search for problematic areas in the model.
A single custom layer or a combination of custom layers is isolated for debugging purposes.
For a more detailed description, refer to the Cutting Off Parts of a Model guide.
# Model Optimizer CLI
# cut at the end
! mo --input_model model/distilbert.onnx --output /classifier/Gemm --output_dir model
# cut from the beginning
! mo --input_model model/distilbert.onnx --input /distilbert/embeddings/LayerNorm/Add_1,attention_mask --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.bin
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/distilbert.bin
# Python conversion API
from openvino.tools import mo
# cut at the end
ov_model = mo.convert_model(ONNX_NLP_MODEL_PATH, output="/classifier/Gemm")
# cut from the beginning
ov_model = mo.convert_model(
ONNX_NLP_MODEL_PATH,
input=["/distilbert/embeddings/LayerNorm/Add_1", "attention_mask"],
)
Embedding Preprocessing Computation¶
Input data for inference can be different from the training dataset and
requires additional preprocessing before inference. To accelerate the
whole pipeline, including preprocessing and inference, model conversion
API provides special parameters such as mean_values
,
scale_values
, reverse_input_channels
, and layout
. Based on
these parameters, model conversion API generates OpenVINO IR with
additionally inserted sub-graphs to perform the defined preprocessing.
This preprocessing block can perform mean-scale normalization of input
data, reverting data along channel dimension, and changing the data
layout. For more information on preprocessing, refer to the Embedding
Preprocessing Computation
article.
Specifying Layout¶
Layout defines the meaning of dimensions in a shape and can be specified for both inputs and outputs. Some preprocessing requires to set input layouts, for example, setting a batch, applying mean or scales, and reversing input channels (BGR<->RGB). For the layout syntax, check the Layout API overview. To specify the layout, you can use the layout option followed by the layout value.
The following command specifies the NCHW
layout for a Pytorch
Resnet50 model that was exported to the ONNX format:
# Model Optimizer CLI
! mo --input_model model/resnet.onnx --layout nchw --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.bin
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, layout="nchw")
Changing Model Layout¶
Changing the model layout may be necessary if it differs from the one
presented by input data. Use either layout
or source_layout
with
target_layout
to change the layout.
# Model Optimizer CLI
! mo --input_model model/resnet.onnx --layout "nchw->nhwc" --output_dir model
# alternatively use source_layout and target_layout parameters
! mo --input_model model/resnet.onnx --source_layout nchw --target_layout nhwc --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.bin
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.bin
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, layout="nchw->nhwc")
# alternatively use source_layout and target_layout parameters
ov_model = mo.convert_model(
ONNX_CV_MODEL_PATH, source_layout="nchw", target_layout="nhwc"
)
Specifying Mean and Scale Values¶
Model conversion API has the following parameters to specify the values:
mean_values
, scale_values
, scale
. Using these parameters,
model conversion API embeds the corresponding preprocessing block for
mean-value normalization of the input data and optimizes this block so
that the preprocessing takes negligible time for inference.
# Model Optimizer CLI
! mo --input_model model/resnet.onnx --mean_values [123,117,104] --scale 255 --output_dir model
! mo --input_model model/resnet.onnx --mean_values [123,117,104] --scale_values [255,255,255] --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.bin
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.bin
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, mean_values=[123, 117, 104], scale=255)
ov_model = mo.convert_model(
ONNX_CV_MODEL_PATH, mean_values=[123, 117, 104], scale_values=[255, 255, 255]
)
Reversing Input Channels¶
Sometimes, input images for your application can be of the RGB
(or
BGR
) format, and the model is trained on images of the BGR
(or
RGB
) format, which is in the opposite order of color channels. In
this case, it is important to preprocess the input images by reverting
the color channels before inference.
# Model Optimizer CLI
! mo --input_model model/resnet.onnx --reverse_input_channels --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.bin
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, reverse_input_channels=True)
Optionally all relevant floating-point weights can be compressed to FP16 data type during the model conversion, creating a compressed FP16 model. This smaller model occupies about half of the original space in the file system. While the compression may introduce a drop in accuracy, for most models, this decrease is negligible.
# Model Optimizer CLI
! mo --input_model model/resnet.onnx --compress_to_fp16=True --output_dir model
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using tokenizers before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.
Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.0/openvino_2_0_transition_guide.html
[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/notebooks/121-convert-to-openvino/model/resnet.bin
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, compress_to_fp16=True)
Convert Models Represented as Python Objects¶
Python conversion API can pass Python model objects, such as a Pytorch model or TensorFlow Keras model directly, without saving them into files and without leaving the training environment (Jupyter Notebook or training scripts).
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(pytorch_model)
WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11.
convert_model()
accepts all parameters available in the MO
command-line tool. Parameters can be specified by Python classes or
string analogs, similar to the command-line tool.
# Python conversion API
from openvino.tools import mo
ov_model = mo.convert_model(
pytorch_model,
input_shape=[1, 3, 100, 100],
mean_values=[127, 127, 127],
layout="nchw",
)
ov_model = mo.convert_model(pytorch_model, source_layout="nchw", target_layout="nhwc")
ov_model = mo.convert_model(
pytorch_model, compress_to_fp16=True, reverse_input_channels=True
)