Model Accuracy

The following two tables present the absolute accuracy drop calculated as the accuracy difference between OV-accuracy and the original frame work accuracy for FP32, and the same for INT8, BF16 and FP16 representations of a model on three platform architectures. Please also refer to notes below The following two tables present the absolute accuracy drop calculated as the accuracy difference between OV-accuracy and the original frame work accuracy for FP32, and the same for INT8, BF16 and FP16 representations of a model on three platform architectures. Please also refer to notes below the table for more information.

  • A - Intel® Core™ i9-9000K (AVX2), INT8 and FP32

  • B - Intel® Xeon® 6338, (VNNI), INT8 and FP32

  • C - Intel(R) Xeon 8490H (VNNI, AMX), INT8, BF16, FP32

  • D - Intel® Flex-170, INT8 and FP16

Model Accuracy for INT8

OpenVINO™ Model name

dataset

Metric Name

A, INT8

B, INT8

C, INT8

D, INT8

bert-base-cased

SST-2_bert_cased_padded

spearman@cosine

3.17%

2.68%

3.00%

2.73%

bert-large-uncased-whole-word-masking-squad-0001

SQUAD_v1_1_bert_msl384_mql64_ds128_lowercase

F1

0.07%

-0.03%

0.13%

0.11%

efficientdet-d0

COCO2017_detection_91cl

coco_precision

-0.84%

-0.59%

-0.62%

-0.63%

mask_rcnn_resnet50_atrous_coco

COCO2017_detection_91cl_bkgr

coco_orig_precision

0.03%

0.08%

0.11%

0.07%

mobilenet-v2

ImageNet2012

accuracy @ top1

%

-0.97%

-0.97%

-0.95%

resnet-50

ImageNet2012

accuracy @ top1

-0.20%

-0.19%

-0.13%

-0.15%

ssd-resnet34-1200

COCO2017_detection_80cl_bkgr

map

-0.03%

-0.06%

-0.01%

0.04%

ssd-mobilenet-v1-coco

COCO2017_detection_80cl_bkgr

coco-precision

-2.97%

-0.29%

-0.31%

-0.26%

unet-camvid-onnx-0001

CamVid_12cl

mean_iou @ mean

-6.32%

6.40%

6.41%

6.40%

yolo_v3_tiny

COCO2017_detection_80cl

map

%

-0.23%

-0.24%

-0.66%

yolo_v8n

COCO2017_detection_80cl

map

-0.02%

-0.03%

-0.06%

-0.06%

chatGLM2-6b

lambada openai

ppl

17.38

17.41

17.17

Llama-2-7b-chat

Wiki, StackExch, Crawl

ppl

3.24

3.24

3.25

Stable-Diffusion-V2-1

LIAON-5B

CLIP

Mistral-7b

proprietary Mistral.ai

ppl

3.29

3.47

3.49

Model Accuracy for BF16, FP32 and FP16 (FP16: Flex-170 only. BF16: Xeon(R) 8490H only)

OpenVINO™ Model name

dataset

Metric Name

A, FP32

B, FP32

C, FP32

C, BF16

D, FP16

bert-base-cased

SST-2_bert_cased_padded

spearman@cosine

0.00%

0.00%

0.00%

-0.09%

0.00%

bert-large-uncased-whole-word-masking-squad-0001

SQUAD_v1_1_bert_msl384_mql64_ds128_lowercase

F1

0.04%

0.04%

0.04%

0.06%

0.04%

efficientdet-d0

COCO2017_detection_91cl

coco_precision

-0.02%

-0.02%

-0.02%

-0.02%

-0.03%

mask_rcnn_resnet50_atrous_coco

COCO2017_detection_91cl_bkgr

coco_orig_precision

-0.01%

-0.01%

%

-0.18%

0.02%

mobilenet-v2

ImageNet2012

accuracy @ top1

0.00%

0.00%

0.00%

-0.04%

0.02%

resnet-50

ImageNet2012

accuracy @ top1

0.02%

0.02%

0.00%

0.01%

0.01%

ssd-resnet34-1200

COCO2017_detection_80cl_bkgr

map

0.00%

0.00%

0.00%

-0.02%

0.02%

ssd-mobilenet-v1-coco

COCO2017_detection_80cl_bkgr

coco-precision

0.01%

0.01%

0.01%

0.05%

-0.03%

unet-camvid-onnx-0001

CamVid_12cl

mean_iou @ mean

0.00%

0.00%

0.00%

-0.03%

-0.03%

yolo_v3_tiny

COCO2017_detection_80cl

map

%

0.00%

0.00%

0.00%

-0.02%

yolo_v8n

COCO2017_detection_80cl

map

0.00%

0.00%

0.00%

0.05%

-0.03%

chatGLM2-6b

lambada openai

ppl

17.48

17.56

17.49

Llama-2-7b-chat

Wiki, StackExch, Crawl

ppl

3.26

3.26

Stable-Diffusion-V2-1

LIAON-5B

CLIP

22.48

Mistral-7b

proprietary Mistral.ai

ppl

3.19

3.18

Notes: For all accuracy metrics except perplexity a “-“, (minus sign), indicates an accuracy drop. For perplexity (ppl) the values do not indicate a deviation from a reference but are the actual measured accuracy for the model.