openvino.inference_engine.IENetwork¶
- class openvino.inference_engine.IENetwork¶
Bases:
object
OpenVINO Inference Engine Python API is deprecated and will be removed in the 2024.0 release. For instructions on transitioning to the new API, please refer to https://docs.openvino.ai/latest/openvino_2_0_transition_guide.html
- __init__()¶
Methods
__delattr__
(name, /)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattribute__
(name, /)Return getattr(self, name).
__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
__init__
()This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__ne__
(value, /)Return self!=value.
__new__
(**kwargs)IENetwork.__reduce_cython__(self)
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value, /)Implement setattr(self, name, value).
IENetwork.__setstate_cython__(self, __pyx_state)
Size of object in memory, in bytes.
__str__
()Return str(self).
Abstract classes can override this to customize issubclass().
_get_function_capsule
(self)add_outputs
(self, outputs)Marks any intermediate layer as output layer to retrieve the inference results from the specified layers.
get_ov_name_for_tensor
(self, unicode orig_name)reshape
(self, dict input_shapes)Reshapes the network to change spatial dimensions, batch size, or any dimension.
serialize
(self, path_to_xml, unicode path_to_bin)Serializes the network and stores it in files.
Attributes
Batch size of the network.
A dictionary that maps input layer names to InputInfoPtr objects.
Name of the loaded network
A dictionary that maps output layer names to DataPtr objects
- __class__¶
alias of
type
- __delattr__(name, /)¶
Implement delattr(self, name).
- __dir__()¶
Default dir() implementation.
- __eq__(value, /)¶
Return self==value.
- __format__(format_spec, /)¶
Default object formatter.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __gt__(value, /)¶
Return self>value.
- __hash__()¶
Return hash(self).
- __init__()¶
- __init_subclass__()¶
This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
- __le__(value, /)¶
Return self<=value.
- __lt__(value, /)¶
Return self<value.
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __reduce__()¶
IENetwork.__reduce_cython__(self)
- __reduce_ex__(protocol, /)¶
Helper for pickle.
- __repr__()¶
Return repr(self).
- __setattr__(name, value, /)¶
Implement setattr(self, name, value).
- __setstate__()¶
IENetwork.__setstate_cython__(self, __pyx_state)
- __sizeof__()¶
Size of object in memory, in bytes.
- __str__()¶
Return str(self).
- __subclasshook__()¶
Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
- _get_function_capsule(self)¶
- add_outputs(self, outputs)¶
Marks any intermediate layer as output layer to retrieve the inference results from the specified layers.
- Parameters
outputs – List of layers to be set as model outputs. The list can contain strings with layer names to be set as outputs or tuples with layer name as first element and output port id as second element. In case of setting one layer as output, string or tuple with one layer can be provided.
- Returns
None
Usage example:
ie = IECore() net = ie.read_network(model=path_to_xml_file, weights=path_to_bin_file) net.add_outputs(["conv5_1', conv2_1', (split_2, 1)])]
- batch_size¶
Batch size of the network. Provides getter and setter interfaces to get and modify the network batch size. For example:
ie = IECore() net = ie.read_network(model=path_to_xml_file, weights=path_to_bin_file) print(net.batch_size) net.batch_size = 4 print(net.batch_size) print(net.input_info['data'].input_data.shape)
- get_ov_name_for_tensor(self, unicode orig_name: str)¶
- input_info¶
A dictionary that maps input layer names to InputInfoPtr objects.
- name¶
Name of the loaded network
- outputs¶
A dictionary that maps output layer names to DataPtr objects
- reshape(self, dict input_shapes: dict)¶
Reshapes the network to change spatial dimensions, batch size, or any dimension.
- Parameters
input_shapes – A dictionary that maps input layer names to tuples with the target shape
- Returns
None
Note
Before using this method, make sure that the target shape is applicable for the network. Changing the network shape to an arbitrary value may lead to unpredictable behaviour.
Usage example:
ie = IECore() net = ie.read_network(model=path_to_xml_file, weights=path_to_bin_file) input_layer = next(iter(net.input_info)) n, c, h, w = net.input_info[input_layer].input_data.shape net.reshape({input_layer: (n, c, h*2, w*2)})
- serialize(self, path_to_xml, unicode path_to_bin: str = u'')¶
Serializes the network and stores it in files.
- Parameters
path_to_xml – Path to a file, where a serialized model will be stored
path_to_bin – Path to a file, where serialized weights will be stored
- Returns
None
Usage example:
ie = IECore() net = ie.read_network(model=path_to_xml, weights=path_to_bin) net.serialize(path_to_xml, path_to_bin)