openvino.inference_engine.PreProcessInfo¶
- class openvino.inference_engine.PreProcessInfo¶
Bases:
object
OpenVINO Inference Engine Python API is deprecated and will be removed in the 2024.0 release. For instructions on transitioning to the new API, please refer to https://docs.openvino.ai/latest/openvino_2_0_transition_guide.html
This class stores pre-process information for the input
- __init__()¶
Methods
__delattr__
(name, /)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattribute__
(name, /)Return getattr(self, name).
__getitem__
(key, /)Return self[key].
__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
__init__
()This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__ne__
(value, /)Return self!=value.
__new__
(**kwargs)PreProcessInfo.__reduce_cython__(self)
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value, /)Implement setattr(self, name, value).
PreProcessInfo.__setstate_cython__(self, __pyx_state)
Size of object in memory, in bytes.
__str__
()Return str(self).
Abstract classes can override this to customize issubclass().
get_number_of_channels
(self)Returns a number of channels to preprocess
init
(self, size_t number_of_channels)Initializes with given number of channels
set_mean_image
(self, Blob mean_image)Sets mean image values if operation is applicable.
set_mean_image_for_channel
(self, ...)Sets mean image values if operation is applicable.
Attributes
Color format to be used in on-demand color conversions applied to input before inference
Mean Variant to be applied for input before inference if needed.
Resize Algorithm to be applied for input before inference if needed. .. note::.
- __class__¶
alias of
type
- __delattr__(name, /)¶
Implement delattr(self, name).
- __dir__()¶
Default dir() implementation.
- __eq__(value, /)¶
Return self==value.
- __format__(format_spec, /)¶
Default object formatter.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__(key, /)¶
Return self[key].
- __gt__(value, /)¶
Return self>value.
- __hash__()¶
Return hash(self).
- __init__()¶
- __init_subclass__()¶
This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
- __le__(value, /)¶
Return self<=value.
- __lt__(value, /)¶
Return self<value.
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __reduce__()¶
PreProcessInfo.__reduce_cython__(self)
- __reduce_ex__(protocol, /)¶
Helper for pickle.
- __repr__()¶
Return repr(self).
- __setattr__(name, value, /)¶
Implement setattr(self, name, value).
- __setstate__()¶
PreProcessInfo.__setstate_cython__(self, __pyx_state)
- __sizeof__()¶
Size of object in memory, in bytes.
- __str__()¶
Return str(self).
- __subclasshook__()¶
Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
- color_format¶
Color format to be used in on-demand color conversions applied to input before inference
Usage example:
net = ie_core.read_network(model=path_to_xml_file, weights=path_to_bin_file) net.input_info['data'].preprocess_info.color_format = ColorFormat.BGR
- get_number_of_channels(self)¶
Returns a number of channels to preprocess
- init(self, size_t number_of_channels)¶
Initializes with given number of channels
- mean_variant¶
Mean Variant to be applied for input before inference if needed.
Usage example:
net = ie_core.read_network(model=path_to_xml_file, weights=path_to_bin_file) net.input_info['data'].preprocess_info.mean_variant = MeanVariant.MEAN_IMAGE
- resize_algorithm¶
Resize Algorithm to be applied for input before inference if needed. .. note:
It's need to set your input via the set_blob method.
Usage example:
net = ie_core.read_network(model=path_to_xml_file, weights=path_to_bin_file) net.input_info['data'].preprocess_info.resize_algorithm = ResizeAlgorithm.RESIZE_BILINEAR exec_net = ie_core.load_network(net, 'CPU') tensor_desc = ie.TensorDesc("FP32", [1, 3, image.shape[2], image.shape[3]], "NCHW") img_blob = ie.Blob(tensor_desc, image) request = exec_net.requests[0] request.set_blob('data', img_blob) request.infer()
- set_mean_image(self, Blob mean_image)¶
Sets mean image values if operation is applicable. Also sets the mean type to MEAN_IMAGE for all channels
- set_mean_image_for_channel(self, Blob mean_image, size_t channel)¶
Sets mean image values if operation is applicable. Also sets the mean type to MEAN_IMAGE for a particular channel