Model Server demo with a direct import of TensorFlow model¶
This guide demonstrates how to run inference requests for TensorFlow model with OpenVINO Model Server. As an example, we will use InceptionResNetV2 to perform classification of an image.
Preparing to Run¶
Clone the repository and enter image_classification_using_tf_model directory
git clone https://github.com/openvinotoolkit/model_server.git
cd model_server/demos/image_classification_using_tf_model/python
Download the InceptionResNetV2 model¶
mkdir -p model/1
wget -P model/1 https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_resnet_v2_2018_04_27.tgz
tar xzf model/1/inception_resnet_v2_2018_04_27.tgz -C model/1
Run Openvino Model Server¶
docker run -d -v $PWD/model:/models -p 9000:9000 openvino/model_server:latest --model_path /models --model_name resnet --port 9000
Run the client¶
Install python dependencies:
pip3 install -r requirements.txt
Now you can run the client:
python3 image_classification_using_tf_model.py --help
usage: image_classification_using_tf_model.py [-h] [--grpc_address GRPC_ADDRESS] [--grpc_port GRPC_PORT] --image_input_path IMAGE_INPUT_PATH
Client for OCR pipeline
optional arguments:
-h, --help show this help message and exit
--grpc_address GRPC_ADDRESS
Specify url to grpc service. default:localhost
--grpc_port GRPC_PORT
Specify port to grpc service. default: 9000
--image_input_path IMAGE_INPUT_PATH
Image input path
Exemplary result of running the demo:
python3 image_classification_using_tf_model.py --grpc_port 9000 --image_input_path ../../common/static/images/zebra.jpeg
Image classified as zebra