[LEGACY] Extending Model Optimizer with Caffe Python Layers

Danger

The code described here has been deprecated! Do not use it to avoid working with a legacy solution. It will be kept for some time to ensure backwards compatibility, but you should not use it in contemporary applications.

This guide describes a deprecated TensorFlow conversion method. The guide on the new and recommended method, using a new frontend, can be found in the Frontend Extensions article.

This article provides instructions on how to support a custom Caffe operation written only in Python. For example, the Faster-R-CNN model implemented in Caffe contains a custom proposal layer written in Python. The layer is described in the Faster-R-CNN prototxt in the following way:

layer {
  name: 'proposal'
  type: 'Python'
  bottom: 'rpn_cls_prob_reshape'
  bottom: 'rpn_bbox_pred'
  bottom: 'im_info'
  top: 'rois'
  python_param {
    module: 'rpn.proposal_layer'
    layer: 'ProposalLayer'
    param_str: "'feat_stride': 16"
  }
}

This article describes only a procedure on how to extract operator attributes in Model Optimizer. The rest of the operation enabling pipeline and information on how to support other Caffe operations (written in C++) is described in the Customize Model Optimizer guide.

Writing Extractor for Caffe Python Layer

Custom Caffe Python layers have an attribute type (defining the type of the operation) equal to Python and two mandatory attributes module and layer in the python_param dictionary. The module defines the Python module name with the layer implementation, while layer value is an operation type defined by a user. In order to extract attributes for such an operation it is necessary to implement extractor class inherited from the CaffePythonFrontExtractorOp class instead of FrontExtractorOp class, used for standard framework layers. The op class attribute value should be set to the module + "." + layer value so the extractor is triggered for this kind of operation.

Below is a simplified example of the extractor for the custom operation Proposal from the mentioned Faster-R-CNN model. The full code with additional checks can be found here.

The sample code uses operation ProposalOp which corresponds to Proposal operation described in the Available Operations Sets page. For a detailed explanation of the extractor, refer to the source code below.

from openvino.tools.mo.ops.proposal import ProposalOp
from openvino.tools.mo.front.extractor import CaffePythonFrontExtractorOp


class ProposalPythonFrontExtractor(CaffePythonFrontExtractorOp):
    op = 'rpn.proposal_layer.ProposalLayer'  # module + "." + layer
    enabled = True  # extractor is enabled

    @staticmethod
    def extract_proposal_params(node, defaults):
        param = node.pb.python_param  # get the protobuf message representation of the layer attributes
        # parse attributes from the layer protobuf message to a Python dictionary
        attrs = CaffePythonFrontExtractorOp.parse_param_str(param.param_str)
        update_attrs = defaults

        # the operation expects ratio and scale values to be called "ratio" and "scale" while Caffe uses different names
        if 'ratios' in attrs:
            attrs['ratio'] = attrs['ratios']
            del attrs['ratios']
        if 'scales' in attrs:
            attrs['scale'] = attrs['scales']
            del attrs['scales']

        update_attrs.update(attrs)
        ProposalOp.update_node_stat(node, update_attrs)  # update the node attributes

    @classmethod
    def extract(cls, node):
        # define default values for the Proposal layer attributes
        defaults = {
            'feat_stride': 16,
            'base_size': 16,
            'min_size': 16,
            'ratio': [0.5, 1, 2],
            'scale': [8, 16, 32],
            'pre_nms_topn': 6000,
            'post_nms_topn': 300,
            'nms_thresh': 0.7
        }
        cls.extract_proposal_params(node, defaults)
        return cls.enabled