Lightweight image generation with aMUSEd and OpenVINO#

This Jupyter notebook can be launched on-line, opening an interactive environment in a browser window. You can also make a local installation. Choose one of the following options:

Google ColabGithub

Amused is a lightweight text to image model based off of the muse architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once.

Amused is a VQVAE token based transformer that can generate an image in fewer forward passes than many diffusion models. In contrast with muse, it uses the smaller text encoder CLIP-L/14 instead of t5-xxl. Due to its small parameter count and few forward pass generation process, amused can generate many images quickly. This benefit is seen particularly at larger batch sizes.

Table of contents:#

Prerequisites#

%pip install -q transformers "diffusers>=0.25.0" "openvino>=2023.2.0" "accelerate>=0.20.3" "gradio>=4.19" "torch>=2.1" "pillow" "torchmetrics" "torch-fidelity" --extra-index-url https://download.pytorch.org/whl/cpu
%pip install -q "nncf>=2.9.0" datasets
Note: you may need to restart the kernel to use updated packages.
Note: you may need to restart the kernel to use updated packages.

Load and run the original pipeline#

import torch
from diffusers import AmusedPipeline


pipe = AmusedPipeline.from_pretrained(
    "amused/amused-256",
)

prompt = "kind smiling ghost"
image = pipe(prompt, generator=torch.Generator("cpu").manual_seed(8)).images[0]
image.save("text2image_256.png")
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/transformers/transformer_2d.py:34: FutureWarning: Transformer2DModelOutput is deprecated and will be removed in version 1.0.0. Importing Transformer2DModelOutput from diffusers.models.transformer_2d is deprecated and this will be removed in a future version. Please use from diffusers.models.modeling_outputs import Transformer2DModelOutput, instead.
  deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
Loading pipeline components...:   0%|          | 0/5 [00:00<?, ?it/s]
0%|          | 0/12 [00:00<?, ?it/s]
image
../_images/amused-lightweight-text-to-image-with-output_6_0.png

Convert the model to OpenVINO IR#

aMUSEd consists of three separately trained components: a pre-trained CLIP-L/14 text encoder, a VQ-GAN, and a U-ViT.

image_png

image_png#

During inference, the U-ViT is conditioned on the text encoder’s hidden states and iteratively predicts values for all masked tokens. The cosine masking schedule determines a percentage of the most confident token predictions to be fixed after every iteration. After 12 iterations, all tokens have been predicted and are decoded by the VQ-GAN into image pixels.

Define paths for converted models:

from pathlib import Path


TRANSFORMER_OV_PATH = Path("models/transformer_ir.xml")
TEXT_ENCODER_OV_PATH = Path("models/text_encoder_ir.xml")
VQVAE_OV_PATH = Path("models/vqvae_ir.xml")

Define the conversion function for PyTorch modules. We use ov.convert_model function to obtain OpenVINO Intermediate Representation object and ov.save_model function to save it as XML file.

import torch

import openvino as ov


def convert(model: torch.nn.Module, xml_path: str, example_input):
    xml_path = Path(xml_path)
    if not xml_path.exists():
        xml_path.parent.mkdir(parents=True, exist_ok=True)
        with torch.no_grad():
            converted_model = ov.convert_model(model, example_input=example_input)
        ov.save_model(converted_model, xml_path, compress_to_fp16=False)

        # cleanup memory
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
        torch.jit._state._clear_class_state()

Convert the Text Encoder#

class TextEncoderWrapper(torch.nn.Module):
    def __init__(self, text_encoder):
        super().__init__()
        self.text_encoder = text_encoder

    def forward(self, input_ids=None, return_dict=None, output_hidden_states=None):
        outputs = self.text_encoder(
            input_ids=input_ids,
            return_dict=return_dict,
            output_hidden_states=output_hidden_states,
        )

        return outputs.text_embeds, outputs.last_hidden_state, outputs.hidden_states


input_ids = pipe.tokenizer(
    prompt,
    return_tensors="pt",
    padding="max_length",
    truncation=True,
    max_length=pipe.tokenizer.model_max_length,
)

input_example = {
    "input_ids": input_ids.input_ids,
    "return_dict": torch.tensor(True),
    "output_hidden_states": torch.tensor(True),
}

convert(TextEncoderWrapper(pipe.text_encoder), TEXT_ENCODER_OV_PATH, input_example)
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4481: FutureWarning: _is_quantized_training_enabled is going to be deprecated in transformers 4.39.0. Please use model.hf_quantizer.is_trainable instead
  warnings.warn(
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:86: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if input_shape[-1] > 1 or self.sliding_window is not None:
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if past_key_values_length > 0:
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:622: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  encoder_states = () if output_hidden_states else None
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:627: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if output_hidden_states:
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:276: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:284: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:316: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:650: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if output_hidden_states:
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:653: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if not return_dict:
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:745: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if not return_dict:
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:1230: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if not return_dict:

Convert the U-ViT transformer#

class TransformerWrapper(torch.nn.Module):
    def __init__(self, transformer):
        super().__init__()
        self.transformer = transformer

    def forward(
        self,
        latents=None,
        micro_conds=None,
        pooled_text_emb=None,
        encoder_hidden_states=None,
    ):
        return self.transformer(
            latents,
            micro_conds=micro_conds,
            pooled_text_emb=pooled_text_emb,
            encoder_hidden_states=encoder_hidden_states,
        )


shape = (1, 16, 16)
latents = torch.full(shape, pipe.scheduler.config.mask_token_id, dtype=torch.long)
latents = torch.cat([latents] * 2)


example_input = {
    "latents": latents,
    "micro_conds": torch.rand([2, 5], dtype=torch.float32),
    "pooled_text_emb": torch.rand([2, 768], dtype=torch.float32),
    "encoder_hidden_states": torch.rand([2, 77, 768], dtype=torch.float32),
}


pipe.transformer.eval()
w_transformer = TransformerWrapper(pipe.transformer)
convert(w_transformer, TRANSFORMER_OV_PATH, example_input)

Convert VQ-GAN decoder (VQVAE)#

Function get_latents is

needed to return real latents for the conversion. Due to the VQVAE implementation autogenerated tensor of the required shape is not suitable. This function repeats part of AmusedPipeline.

def get_latents():
    shape = (1, 16, 16)
    latents = torch.full(shape, pipe.scheduler.config.mask_token_id, dtype=torch.long)
    model_input = torch.cat([latents] * 2)

    model_output = pipe.transformer(
        model_input,
        micro_conds=torch.rand([2, 5], dtype=torch.float32),
        pooled_text_emb=torch.rand([2, 768], dtype=torch.float32),
        encoder_hidden_states=torch.rand([2, 77, 768], dtype=torch.float32),
    )
    guidance_scale = 10.0
    uncond_logits, cond_logits = model_output.chunk(2)
    model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)

    latents = pipe.scheduler.step(
        model_output=model_output,
        timestep=torch.tensor(0),
        sample=latents,
    ).prev_sample

    return latents


class VQVAEWrapper(torch.nn.Module):
    def __init__(self, vqvae):
        super().__init__()
        self.vqvae = vqvae

    def forward(self, latents=None, force_not_quantize=True, shape=None):
        outputs = self.vqvae.decode(
            latents,
            force_not_quantize=force_not_quantize,
            shape=shape.tolist(),
        )

        return outputs


latents = get_latents()
example_vqvae_input = {
    "latents": latents,
    "force_not_quantize": torch.tensor(True),
    "shape": torch.tensor((1, 16, 16, 64)),
}

convert(VQVAEWrapper(pipe.vqvae), VQVAE_OV_PATH, example_vqvae_input)
/tmp/ipykernel_3064357/3779428577.py:34: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  shape=shape.tolist(),
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/vq_model.py:144: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if not force_not_quantize:
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:146: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  assert hidden_states.shape[1] == self.channels
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if hidden_states.shape[0] >= 64:

Compiling models and prepare pipeline#

Select device from dropdown list for running inference using OpenVINO.

import ipywidgets as widgets


core = ov.Core()
device = widgets.Dropdown(
    options=core.available_devices + ["AUTO"],
    value="AUTO",
    description="Device:",
    disabled=False,
)

device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
ov_text_encoder = core.compile_model(TEXT_ENCODER_OV_PATH, device.value)
ov_transformer = core.compile_model(TRANSFORMER_OV_PATH, device.value)
ov_vqvae = core.compile_model(VQVAE_OV_PATH, device.value)

Let’s create callable wrapper classes for compiled models to allow interaction with original AmusedPipeline class. Note that all of wrapper classes return torch.Tensors instead of np.arrays.

from collections import namedtuple


class ConvTextEncoderWrapper(torch.nn.Module):
    def __init__(self, text_encoder, config):
        super().__init__()
        self.config = config
        self.text_encoder = text_encoder

    def forward(self, input_ids=None, return_dict=None, output_hidden_states=None):
        inputs = {
            "input_ids": input_ids,
            "return_dict": return_dict,
            "output_hidden_states": output_hidden_states,
        }

        outs = self.text_encoder(inputs)

        outputs = namedtuple("CLIPTextModelOutput", ("text_embeds", "last_hidden_state", "hidden_states"))

        text_embeds = torch.from_numpy(outs[0])
        last_hidden_state = torch.from_numpy(outs[1])
        hidden_states = list(torch.from_numpy(out) for out in outs.values())[2:]

        return outputs(text_embeds, last_hidden_state, hidden_states)
class ConvTransformerWrapper(torch.nn.Module):
    def __init__(self, transformer, config):
        super().__init__()
        self.config = config
        self.transformer = transformer

    def forward(self, latents=None, micro_conds=None, pooled_text_emb=None, encoder_hidden_states=None, **kwargs):
        outputs = self.transformer(
            {
                "latents": latents,
                "micro_conds": micro_conds,
                "pooled_text_emb": pooled_text_emb,
                "encoder_hidden_states": encoder_hidden_states,
            },
            share_inputs=False,
        )

        return torch.from_numpy(outputs[0])
class ConvVQVAEWrapper(torch.nn.Module):
    def __init__(self, vqvae, dtype, config):
        super().__init__()
        self.vqvae = vqvae
        self.dtype = dtype
        self.config = config

    def decode(self, latents=None, force_not_quantize=True, shape=None):
        inputs = {
            "latents": latents,
            "force_not_quantize": force_not_quantize,
            "shape": torch.tensor(shape),
        }

        outs = self.vqvae(inputs)
        outs = namedtuple("VQVAE", "sample")(torch.from_numpy(outs[0]))

        return outs

And insert wrappers instances in the pipeline:

prompt = "kind smiling ghost"

transformer = pipe.transformer
vqvae = pipe.vqvae
text_encoder = pipe.text_encoder

pipe.__dict__["_internal_dict"]["_execution_device"] = pipe._execution_device  # this is to avoid some problem that can occur in the pipeline
pipe.register_modules(
    text_encoder=ConvTextEncoderWrapper(ov_text_encoder, text_encoder.config),
    transformer=ConvTransformerWrapper(ov_transformer, transformer.config),
    vqvae=ConvVQVAEWrapper(ov_vqvae, vqvae.dtype, vqvae.config),
)

image = pipe(prompt, generator=torch.Generator("cpu").manual_seed(8)).images[0]
image.save("text2image_256.png")
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute _execution_device directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'.
  deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
0%|          | 0/12 [00:00<?, ?it/s]
image
../_images/amused-lightweight-text-to-image-with-output_28_0.png

Quantization#

NNCF enables post-training quantization by adding quantization layers into model graph and then using a subset of the training dataset to initialize the parameters of these additional quantization layers. Quantized operations are executed in INT8 instead of FP32/FP16 making model inference faster.

According to Amused pipeline structure, the vision transformer model takes up significant portion of the overall pipeline execution time. Now we will show you how to optimize the UNet part using NNCF to reduce computation cost and speed up the pipeline. Quantizing the rest of the pipeline does not significantly improve inference performance but can lead to a substantial degradation of generations quality.

We also estimate the quality of generations produced by optimized pipeline with Inception Score which is often used to measure quality of text-to-image generation systems.

The steps are the following:

  1. Create a calibration dataset for quantization.

  2. Run nncf.quantize() on the model.

  3. Save the quantized model using openvino.save_model() function.

  4. Compare inference time and Inception score for original and quantized pipelines.

Please select below whether you would like to run quantization to improve model inference speed.

NOTE: Quantization is time and memory consuming operation. Running quantization code below may take some time.

QUANTIZED_TRANSFORMER_OV_PATH = Path(str(TRANSFORMER_OV_PATH).replace(".xml", "_quantized.xml"))

skip_for_device = "GPU" in device.value
to_quantize = widgets.Checkbox(value=not skip_for_device, description="Quantization", disabled=skip_for_device)
to_quantize
Checkbox(value=True, description='Quantization')
import requests

r = requests.get(
    url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/skip_kernel_extension.py",
)
open("skip_kernel_extension.py", "w").write(r.text)

%load_ext skip_kernel_extension

Prepare calibration dataset#

We use a portion of conceptual_captions dataset from Hugging Face as calibration data. To collect intermediate model inputs for calibration we customize CompiledModel.

%%skip not $to_quantize.value

import datasets
from tqdm.auto import tqdm
from typing import Any, Dict, List
import pickle
import numpy as np


def disable_progress_bar(pipeline, disable=True):
    if not hasattr(pipeline, "_progress_bar_config"):
        pipeline._progress_bar_config = {'disable': disable}
    else:
        pipeline._progress_bar_config['disable'] = disable


class CompiledModelDecorator(ov.CompiledModel):
    def __init__(self, compiled_model: ov.CompiledModel, data_cache: List[Any] = None, keep_prob: float = 0.5):
        super().__init__(compiled_model)
        self.data_cache = data_cache if data_cache is not None else []
        self.keep_prob = keep_prob

    def __call__(self, *args, **kwargs):
        if np.random.rand() <= self.keep_prob:
            self.data_cache.append(*args)
        return super().__call__(*args, **kwargs)


def collect_calibration_data(ov_transformer_model, calibration_dataset_size: int) -> List[Dict]:
    calibration_dataset_filepath = Path(f"calibration_data/{calibration_dataset_size}.pkl")
    if not calibration_dataset_filepath.exists():
        calibration_data = []
        pipe.transformer.transformer = CompiledModelDecorator(ov_transformer_model, calibration_data, keep_prob=1.0)
        disable_progress_bar(pipe)

        dataset = datasets.load_dataset("conceptual_captions", split="train").shuffle(seed=42)

        # Run inference for data collection
        pbar = tqdm(total=calibration_dataset_size)
        for batch in dataset:
            prompt = batch["caption"]
            if len(prompt) > pipe.tokenizer.model_max_length:
                continue
            pipe(prompt, generator=torch.Generator('cpu').manual_seed(0))
            pbar.update(len(calibration_data) - pbar.n)
            if pbar.n >= calibration_dataset_size:
                break

        pipe.transformer.transformer = ov_transformer_model
        disable_progress_bar(pipe, disable=False)

        calibration_dataset_filepath.parent.mkdir(exist_ok=True, parents=True)
        with open(calibration_dataset_filepath, 'wb') as f:
            pickle.dump(calibration_data, f)

    with open(calibration_dataset_filepath, 'rb') as f:
        calibration_data = pickle.load(f)
    return calibration_data

Run model quantization#

Run calibration data collection and quantize the vision transformer model.

%%skip not $to_quantize.value

from nncf.quantization.advanced_parameters import AdvancedSmoothQuantParameters
from nncf.quantization.range_estimator import RangeEstimatorParameters, StatisticsCollectorParameters, StatisticsType, \
    AggregatorType
import nncf

CALIBRATION_DATASET_SIZE = 12 * 25

if not QUANTIZED_TRANSFORMER_OV_PATH.exists():
    calibration_data = collect_calibration_data(ov_transformer, CALIBRATION_DATASET_SIZE)
    quantized_model = nncf.quantize(
        core.read_model(TRANSFORMER_OV_PATH),
        nncf.Dataset(calibration_data),
        model_type=nncf.ModelType.TRANSFORMER,
        subset_size=len(calibration_data),
        # We ignore convolutions to improve quality of generations without significant drop in inference speed
        ignored_scope=nncf.IgnoredScope(types=["Convolution"]),
        # Value of 0.85 was obtained using grid search based on Inception Score computed below
        advanced_parameters=nncf.AdvancedQuantizationParameters(
            smooth_quant_alphas=AdvancedSmoothQuantParameters(matmul=0.85),
            # During activation statistics collection we ignore 1% of outliers which improves quantization quality
            activations_range_estimator_params=RangeEstimatorParameters(
                min=StatisticsCollectorParameters(statistics_type=StatisticsType.MIN,
                                                  aggregator_type=AggregatorType.MEAN_NO_OUTLIERS,
                                                  quantile_outlier_prob=0.01),
                max=StatisticsCollectorParameters(statistics_type=StatisticsType.MAX,
                                                  aggregator_type=AggregatorType.MEAN_NO_OUTLIERS,
                                                  quantile_outlier_prob=0.01)
            )
        )
    )
    ov.save_model(quantized_model, QUANTIZED_TRANSFORMER_OV_PATH)
INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, onnx, openvino
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/datasets/load.py:1491: FutureWarning: The repository for conceptual_captions contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/conceptual_captions
You can avoid this message in future by passing the argument trust_remote_code=True.
Passing trust_remote_code=True will be mandatory to load this dataset from the next major release of datasets.
  warnings.warn(
0%|          | 0/300 [00:00<?, ?it/s]
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute _execution_device directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'.
  deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
Output()
Output()
INFO:nncf:3 ignored nodes were found by types in the NNCFGraph
INFO:nncf:182 ignored nodes were found by name in the NNCFGraph
INFO:nncf:Not adding activation input quantizer for operation: 37 __module.transformer.embed.conv/aten::_convolution/Convolution
INFO:nncf:Not adding activation input quantizer for operation: 2883 __module.transformer.mlm_layer.conv1/aten::_convolution/Convolution
INFO:nncf:Not adding activation input quantizer for operation: 3243 __module.transformer.mlm_layer.conv2/aten::_convolution/Convolution
Output()
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/experimental/tensor/tensor.py:84: RuntimeWarning: invalid value encountered in multiply
  return Tensor(self.data * unwrap_tensor_data(other))
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/experimental/tensor/tensor.py:84: RuntimeWarning: invalid value encountered in multiply
  return Tensor(self.data * unwrap_tensor_data(other))
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/experimental/tensor/tensor.py:84: RuntimeWarning: invalid value encountered in multiply
  return Tensor(self.data * unwrap_tensor_data(other))
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/experimental/tensor/tensor.py:84: RuntimeWarning: invalid value encountered in multiply
  return Tensor(self.data * unwrap_tensor_data(other))
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/experimental/tensor/tensor.py:84: RuntimeWarning: invalid value encountered in multiply
  return Tensor(self.data * unwrap_tensor_data(other))
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/experimental/tensor/tensor.py:84: RuntimeWarning: invalid value encountered in multiply
  return Tensor(self.data * unwrap_tensor_data(other))

Demo generation with quantized pipeline#

%%skip not $to_quantize.value

original_ov_transformer_model = pipe.transformer.transformer
pipe.transformer.transformer = core.compile_model(QUANTIZED_TRANSFORMER_OV_PATH, device.value)

image = pipe(prompt, generator=torch.Generator('cpu').manual_seed(8)).images[0]
image.save('text2image_256_quantized.png')

pipe.transformer.transformer = original_ov_transformer_model

display(image)
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute _execution_device directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'.
  deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
0%|          | 0/12 [00:00<?, ?it/s]
../_images/amused-lightweight-text-to-image-with-output_37_2.png

Compute Inception Scores and inference time#

Below we compute Inception Score of original and quantized pipelines on a small subset of images. Images are generated from prompts of conceptual_captions validation set. We also measure the time it took to generate the images for comparison reasons.

Please note that the validation dataset size is small and serves only as a rough estimate of generation quality.

%%skip not $to_quantize.value

from torchmetrics.image.inception import InceptionScore
from torchvision import transforms as transforms
from itertools import islice
import time

VALIDATION_DATASET_SIZE = 100

def compute_inception_score(ov_transformer_model_path, validation_set_size, batch_size=100):
    original_ov_transformer_model = pipe.transformer.transformer
    pipe.transformer.transformer = core.compile_model(ov_transformer_model_path, device.value)

    disable_progress_bar(pipe)
    dataset = datasets.load_dataset("conceptual_captions", "unlabeled", split="validation").shuffle(seed=42)
    dataset = islice(dataset, validation_set_size)

    inception_score = InceptionScore(normalize=True, splits=1)

    images = []
    infer_times = []
    for batch in tqdm(dataset, total=validation_set_size, desc="Computing Inception Score"):
        prompt = batch["caption"]
        if len(prompt) > pipe.tokenizer.model_max_length:
            continue
        start_time = time.perf_counter()
        image = pipe(prompt, generator=torch.Generator('cpu').manual_seed(0)).images[0]
        infer_times.append(time.perf_counter() - start_time)
        image = transforms.ToTensor()(image)
        images.append(image)

    mean_perf_time = sum(infer_times) / len(infer_times)

    while len(images) > 0:
        images_batch = torch.stack(images[-batch_size:])
        images = images[:-batch_size]
        inception_score.update(images_batch)
    kl_mean, kl_std = inception_score.compute()

    pipe.transformer.transformer = original_ov_transformer_model
    disable_progress_bar(pipe, disable=False)

    return kl_mean, mean_perf_time


original_inception_score, original_time = compute_inception_score(TRANSFORMER_OV_PATH, VALIDATION_DATASET_SIZE)
print(f"Original pipeline Inception Score: {original_inception_score}")
quantized_inception_score, quantized_time = compute_inception_score(QUANTIZED_TRANSFORMER_OV_PATH, VALIDATION_DATASET_SIZE)
print(f"Quantized pipeline Inception Score: {quantized_inception_score}")
print(f"Quantization speed-up: {original_time / quantized_time:.2f}x")
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/datasets/load.py:1491: FutureWarning: The repository for conceptual_captions contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/conceptual_captions
You can avoid this message in future by passing the argument trust_remote_code=True.
Passing trust_remote_code=True will be mandatory to load this dataset from the next major release of datasets.
  warnings.warn(
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: Metric InceptionScore will save all extracted features in buffer. For large datasets this may lead to large memory footprint.
  warnings.warn(*args, **kwargs)  # noqa: B028
Computing Inception Score:   0%|          | 0/100 [00:00<?, ?it/s]
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute _execution_device directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'.
  deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torchmetrics/image/inception.py:176: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1807.)
  return kl.mean(), kl.std()
Original pipeline Inception Score: 11.146076202392578
Computing Inception Score:   0%|          | 0/100 [00:00<?, ?it/s]
Quantized pipeline Inception Score: 9.630992889404297
Quantization speed-up: 2.10x

Interactive inference#

Below you can select which pipeline to run: original or quantized.

quantized_model_present = QUANTIZED_TRANSFORMER_OV_PATH.exists()

use_quantized_model = widgets.Checkbox(
    value=True if quantized_model_present else False,
    description="Use quantized pipeline",
    disabled=not quantized_model_present,
)

use_quantized_model
Checkbox(value=True, description='Use quantized pipeline')
import gradio as gr
import numpy as np

pipe.transformer.transformer = core.compile_model(
    QUANTIZED_TRANSFORMER_OV_PATH if use_quantized_model.value else TRANSFORMER_OV_PATH,
    device.value,
)


def generate(prompt, seed, _=gr.Progress(track_tqdm=True)):
    image = pipe(prompt, generator=torch.Generator("cpu").manual_seed(seed)).images[0]
    return image


demo = gr.Interface(
    generate,
    [
        gr.Textbox(label="Prompt"),
        gr.Slider(0, np.iinfo(np.int32).max, label="Seed", step=1),
    ],
    "image",
    examples=[
        ["happy snowman", 88],
        ["green ghost rider", 0],
        ["kind smiling ghost", 8],
    ],
    allow_flagging="never",
)
try:
    demo.queue().launch(debug=False)
except Exception:
    demo.queue().launch(debug=False, share=True)
# if you are launching remotely, specify server_name and server_port
# demo.launch(server_name='your server name', server_port='server port in int')
# Read more in the docs: https://gradio.app/docs/
Running on local URL:  http://127.0.0.1:7860

To create a public link, set share=True in launch().