OpenVINO Model Pass#
ov::pass::ModelPass
is used for transformations that take entire ov::Model
as an input and process it.
Template for ModelPass transformation class
// template_model_transformation.hpp
class ov::pass::MyModelTransformation : public ov::pass::ModelPass {
public:
OPENVINO_MODEL_PASS_RTTI("MyModelTransformation");
bool run_on_model(const std::shared_ptr<ov::Model>& f) override;
};
// template_function_transformation.cpp
bool ov::pass::MyModelTransformation::run_on_model(const std::shared_ptr<ov::Model>& f) {
RUN_ON_MODEL_SCOPE(MyModelTransformation);
// Example transformation code
NodeVector nodes;
// Traverse OpenVINO transformation function in topological order
for (auto& node : f->get_ordered_ops()) {
// Check that number of input and output ports are equal to 1
if (node->inputs().size() == 1 && node->outputs().size() == 1) {
// Check that input and output shape a fully defined (not dynamic) and number of consumers equal to 1
Input<Node> input = node->input(0);
Output<Node> output = node->output(0);
if (input.get_partial_shape().is_static() && output.get_partial_shape().is_static() &&
output.get_target_inputs().size() == 1) {
nodes.push_back(node);
}
}
}
// Print types and names for collected nodes
for (auto& node : nodes) {
std::cout << "Type: " << node->get_type_info().name << std::endl
<< "Name: " << node->get_friendly_name() << std::endl;
}
// Return false because we didn't change the OpenVINO transformation function
return false;
}
'''
``ModelPass`` can be used as a base class for transformation classes that take entire ``Model`` and proceed with it.
To create transformation, you need to:
1. Define a class with ``ModelPass`` as a parent.
2. Redefine the run_on_model method that will receive ``Model`` as an argument.
'''
from openvino.runtime.passes import ModelPass
from snippets import get_model
class MyModelPass(ModelPass):
def __init__(self):
super().__init__()
def run_on_model(self, model):
for op in model.get_ops():
print(op.get_friendly_name())
'''
This example defines transformation that prints all model operation names.
The next example shows ModelPass-based transformation usage.
You create ``Model`` with ``Relu``, ``Parameter`` and ``Result`` nodes. After running this code, you will see the names of the nodes.
In order to run this script, you need to export PYTHONPATH as the path to binary OpenVINO python models.
'''
from openvino.runtime.passes import Manager, GraphRewrite, BackwardGraphRewrite, Serialize
from openvino import Model, PartialShape
from openvino.runtime import opset13 as ops
from openvino.runtime.passes import ModelPass, Matcher, MatcherPass, WrapType
class MyModelPass(ModelPass):
def __init__(self):
super().__init__()
def run_on_model(self, model):
for op in model.get_ops():
print(op.get_friendly_name())
manager = Manager()
manager.register_pass(MyModelPass())
manager.run_passes(get_model())
Using ov::pass::ModelPass
, you need to override the run_on_model
method where you will write the transformation code.
Return value is true
if the original model has changed during transformation (new operation was added, or operations replacement was made, or node attributes were changed); otherwise, it is false
.
Also ov::pass::ModelPass
based transformations can be executed via ov::pass::Manager
.