SoftVC VITS Singing Voice Conversion and OpenVINO™#
This Jupyter notebook can be launched on-line, opening an interactive environment in a browser window. You can also make a local installation. Choose one of the following options:
This tutorial is based on SoftVC VITS Singing Voice Conversion project. The purpose of this project was to enable developers to have their beloved anime characters perform singing tasks. The developers’ intention was to focus solely on fictional characters and avoid any involvement of real individuals, anything related to real individuals deviates from the developer’s original intention.
The singing voice conversion model uses SoftVC content encoder to extract speech features from the source audio. These feature vectors are directly fed into VITS without the need for conversion to a text-based intermediate representation. As a result, the pitch and intonations of the original audio are preserved.
In this tutorial we will use the base model flow.
Table of contents:
Installation Instructions#
This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.
Prerequisites#
%pip install -qU "pip<24.1" # to fix fairseq install problem
%pip install -q "openvino>=2023.2.0"
!git clone https://github.com/svc-develop-team/so-vits-svc -b 4.1-Stable
%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu tqdm librosa "torch>=2.1.0" "torchaudio>=2.1.0" faiss-cpu "gradio>=4.19" "numpy>=1.23.5" "fairseq==0.12.2" praat-parselmouth
Download pretrained models and configs. We use a recommended encoder ContentVec and models from a collection of so-vits-svc-4.0 models made by the Pony Preservation Project for example. You can choose any other pretrained model from this or another project or prepare your own.
# Fetch `notebook_utils` module
import requests
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
open("notebook_utils.py", "w").write(r.text)
from notebook_utils import download_file, device_widget
# ContentVec
download_file(
"https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt",
"checkpoint_best_legacy_500.pt",
directory="so-vits-svc/pretrain/",
)
# pretrained models and configs from a collection of so-vits-svc-4.0 models. You can use other models.
download_file(
"https://huggingface.co/therealvul/so-vits-svc-4.0/resolve/main/Rainbow%20Dash%20(singing)/kmeans_10000.pt",
"kmeans_10000.pt",
directory="so-vits-svc/logs/44k/",
)
download_file(
"https://huggingface.co/therealvul/so-vits-svc-4.0/resolve/main/Rainbow%20Dash%20(singing)/config.json",
"config.json",
directory="so-vits-svc/configs/",
)
download_file(
"https://huggingface.co/therealvul/so-vits-svc-4.0/resolve/main/Rainbow%20Dash%20(singing)/G_30400.pth",
"G_30400.pth",
directory="so-vits-svc/logs/44k/",
)
download_file(
"https://huggingface.co/therealvul/so-vits-svc-4.0/resolve/main/Rainbow%20Dash%20(singing)/D_30400.pth",
"D_30400.pth",
directory="so-vits-svc/logs/44k/",
)
# a wav sample
download_file(
"https://huggingface.co/datasets/santifiorino/spinetta/resolve/main/spinetta/000.wav",
"000.wav",
directory="so-vits-svc/raw/",
)
Use the original model to run an inference#
Change directory to so-vits-svc
in purpose not to brake internal
relative paths.
%cd so-vits-svc
Define the Sovits Model.
from inference.infer_tool import Svc
model = Svc("logs/44k/G_30400.pth", "configs/config.json", device="cpu")
Define kwargs
and make an inference.
kwargs = {
"raw_audio_path": "raw/000.wav", # path to a source audio
"spk": "Rainbow Dash (singing)", # speaker ID in which the source audio should be converted.
"tran": 0,
"slice_db": -40,
"cluster_infer_ratio": 0,
"auto_predict_f0": False,
"noice_scale": 0.4,
}
audio = model.slice_inference(**kwargs)
And let compare the original audio with the result.
import IPython.display as ipd
# original
ipd.Audio("raw/000.wav", rate=model.target_sample)
# result
ipd.Audio(audio, rate=model.target_sample)
Convert to OpenVINO IR model#
Model components are PyTorch modules, that can be converted with
ov.convert_model
function directly. We also use ov.save_model
function to serialize the result of conversion. Svc
is not a model,
it runs model inference inside. In base scenario only SynthesizerTrn
named net_g_ms
is used. It is enough to convert only this model and
we should re-assign forward
method on infer
method for this
purpose.
SynthesizerTrn
uses several models inside it’s flow,
i.e. TextEncoder
, Generator
, ResidualCouplingBlock
, etc.,
but in our case OpenVINO allows to convert whole pipeline by one step
without need to look inside.
import openvino as ov
import torch
from pathlib import Path
dummy_c = torch.randn(1, 256, 813)
dummy_f0 = torch.randn(1, 813)
dummy_uv = torch.ones(1, 813)
dummy_g = torch.tensor([[0]])
model.net_g_ms.forward = model.net_g_ms.infer
net_g_kwargs = {
"c": dummy_c,
"f0": dummy_f0,
"uv": dummy_uv,
"g": dummy_g,
"noice_scale": torch.tensor(0.35), # need to wrap numeric and boolean values for conversion
"seed": torch.tensor(52468),
"predict_f0": torch.tensor(False),
"vol": torch.tensor(0),
}
core = ov.Core()
net_g_model_xml_path = Path("models/ov_net_g_model.xml")
if not net_g_model_xml_path.exists():
converted_model = ov.convert_model(model.net_g_ms, example_input=net_g_kwargs)
net_g_model_xml_path.parent.mkdir(parents=True, exist_ok=True)
ov.save_model(converted_model, net_g_model_xml_path)
Run the OpenVINO model#
Select a device from dropdown list for running inference using OpenVINO.
import openvino as ov
core = ov.Core()
device = device_widget()
device
We should create a wrapper for net_g_ms
model to keep it’s
interface. Then replace net_g_ms
original model by the converted IR
model. We use ov.compile_model
to make it ready to use for loading
on a device.
class NetGModelWrapper:
def __init__(self, net_g_model_xml_path):
super().__init__()
self.net_g_model = core.compile_model(net_g_model_xml_path, device.value)
def infer(self, c, *, f0, uv, g, noice_scale=0.35, seed=52468, predict_f0=False, vol=None):
if vol is None: # None is not allowed as an input
results = self.net_g_model((c, f0, uv, g, noice_scale, seed, predict_f0))
else:
results = self.net_g_model((c, f0, uv, g, noice_scale, seed, predict_f0, vol))
return torch.from_numpy(results[0]), torch.from_numpy(results[1])
model.net_g_ms = NetGModelWrapper(net_g_model_xml_path)
audio = model.slice_inference(**kwargs)
Check result. Is it identical to that created by the original model.
import IPython.display as ipd
ipd.Audio(audio, rate=model.target_sample)
Interactive inference#
import gradio as gr
src_audio = gr.Audio(label="Source Audio", type="filepath")
output_audio = gr.Audio(label="Output Audio", type="numpy")
title = "SoftVC VITS Singing Voice Conversion with Gradio"
description = f'Gradio Demo for SoftVC VITS Singing Voice Conversion and OpenVINO™. Upload a source audio, then click the "Submit" button to inference. Audio sample rate should be {model.target_sample}'
def infer(src_audio, tran, slice_db, noice_scale):
kwargs["raw_audio_path"] = src_audio
kwargs["tran"] = tran
kwargs["slice_db"] = slice_db
kwargs["noice_scale"] = noice_scale
audio = model.slice_inference(**kwargs)
return model.target_sample, audio
demo = gr.Interface(
infer,
[
src_audio,
gr.Slider(-100, 100, value=0, label="Pitch shift", step=1),
gr.Slider(
-80,
-20,
value=-30,
label="Slice db",
step=10,
info="The default is -30, noisy audio can be -30, dry sound can be -50 to preserve breathing.",
),
gr.Slider(
0,
1,
value=0.4,
label="Noise scale",
step=0.1,
info="Noise level will affect pronunciation and sound quality, which is more metaphysical",
),
],
output_audio,
title=title,
description=description,
examples=[["raw/000.wav", 0, -30, 0.4, False]],
)
try:
demo.queue().launch(debug=False)
except Exception:
demo.queue().launch(share=True, debug=False)
# if you are launching remotely, specify server_name and server_port
# demo.launch(server_name='your server name', server_port='server port in int')
# Read more in the docs: https://gradio.app/docs/