Live 3D Human Pose Estimation with OpenVINO#

This Jupyter notebook can be launched on-line, opening an interactive environment in a browser window. You can also make a local installation. Choose one of the following options:

BinderGithub

This notebook demonstrates live 3D Human Pose Estimation with OpenVINO via a webcam. We utilize the model human-pose-estimation-3d-0001 from Open Model Zoo. At the end of this notebook, you will see live inference results from your webcam (if available). Alternatively, you can also upload a video file to test out the algorithms. Make sure you have properly installed theJupyter extensionand been using JupyterLab to run the demo as suggested in the ``README.md``

NOTE: To use a webcam, you must run this Jupyter notebook on a computer with a webcam. If you run on a remote server, the webcam will not work. However, you can still do inference on a video file in the final step. This demo utilizes the Python interface in ``Three.js`` integrated with WebGL to process data from the model inference. These results are processed and displayed in the notebook.

To ensure that the results are displayed correctly, run the code in a recommended browser on one of the following operating systems: Ubuntu, Windows: Chrome macOS: Safari

Table of contents:#

Prerequisites#

The ``pythreejs`` extension may not display properly when using a Jupyter Notebook release. Therefore, it is recommended to use Jupyter Lab instead.

%pip install pythreejs "openvino-dev>=2024.0.0" "opencv-python" "torch" "onnx" --extra-index-url https://download.pytorch.org/whl/cpu
Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu
Collecting pythreejs
  Using cached pythreejs-2.4.2-py3-none-any.whl.metadata (5.4 kB)
Collecting openvino-dev>=2024.0.0
  Using cached openvino_dev-2024.1.0-15008-py3-none-any.whl.metadata (16 kB)
Collecting opencv-python
  Using cached opencv_python-4.10.0.82-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)
Collecting torch
  Using cached https://download.pytorch.org/whl/cpu/torch-2.3.1%2Bcpu-cp38-cp38-linux_x86_64.whl (190.4 MB)
Collecting onnx
  Using cached onnx-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (16 kB)
Requirement already satisfied: ipywidgets>=7.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pythreejs) (8.1.3)
Collecting ipydatawidgets>=1.1.1 (from pythreejs)
  Using cached ipydatawidgets-4.3.5-py2.py3-none-any.whl.metadata (1.4 kB)
Collecting numpy (from pythreejs)
  Using cached numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.6 kB)
Requirement already satisfied: traitlets in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pythreejs) (5.14.3)
Requirement already satisfied: defusedxml>=0.7.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino-dev>=2024.0.0) (0.7.1)
Collecting networkx<=3.1.0 (from openvino-dev>=2024.0.0)
  Using cached networkx-3.1-py3-none-any.whl.metadata (5.3 kB)
Collecting openvino-telemetry>=2023.2.1 (from openvino-dev>=2024.0.0)
  Using cached openvino_telemetry-2024.1.0-py3-none-any.whl.metadata (2.3 kB)
Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino-dev>=2024.0.0) (24.0)
Requirement already satisfied: pyyaml>=5.4.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino-dev>=2024.0.0) (6.0.1)
Requirement already satisfied: requests>=2.25.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino-dev>=2024.0.0) (2.32.0)
Collecting openvino==2024.1.0 (from openvino-dev>=2024.0.0)
  Using cached openvino-2024.1.0-15008-cp38-cp38-manylinux2014_x86_64.whl.metadata (8.8 kB)
Collecting filelock (from torch)
  Using cached filelock-3.14.0-py3-none-any.whl.metadata (2.8 kB)
Requirement already satisfied: typing-extensions>=4.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (4.12.1)
Collecting sympy (from torch)
  Using cached sympy-1.12.1-py3-none-any.whl.metadata (12 kB)
Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (3.1.4)
Collecting fsspec (from torch)
  Using cached fsspec-2024.6.0-py3-none-any.whl.metadata (11 kB)
Collecting protobuf>=3.20.2 (from onnx)
  Using cached protobuf-5.27.0-cp38-abi3-manylinux2014_x86_64.whl.metadata (592 bytes)
Collecting traittypes>=0.2.0 (from ipydatawidgets>=1.1.1->pythreejs)
  Using cached traittypes-0.2.1-py2.py3-none-any.whl.metadata (1.0 kB)
Requirement already satisfied: comm>=0.1.3 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (0.2.2)
Requirement already satisfied: ipython>=6.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (8.12.3)
Requirement already satisfied: widgetsnbextension~=4.0.11 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (4.0.11)
Requirement already satisfied: jupyterlab-widgets~=3.0.11 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (3.0.11)
Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->openvino-dev>=2024.0.0) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->openvino-dev>=2024.0.0) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->openvino-dev>=2024.0.0) (2.2.1)
Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->openvino-dev>=2024.0.0) (2024.6.2)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch) (2.1.5)
Collecting mpmath<1.4.0,>=1.1.0 (from sympy->torch)
  Using cached https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB)
Requirement already satisfied: backcall in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.0)
Requirement already satisfied: decorator in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (5.1.1)
Requirement already satisfied: jedi>=0.16 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.19.1)
Requirement already satisfied: matplotlib-inline in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.1.7)
Requirement already satisfied: pickleshare in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.7.5)
Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (3.0.46)
Requirement already satisfied: pygments>=2.4.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.18.0)
Requirement already satisfied: stack-data in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.6.3)
Requirement already satisfied: pexpect>4.3 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (4.9.0)
Requirement already satisfied: parso<0.9.0,>=0.8.3 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.8.4)
Requirement already satisfied: ptyprocess>=0.5 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.7.0)
Requirement already satisfied: wcwidth in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.13)
Requirement already satisfied: executing>=1.2.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.0.1)
Requirement already satisfied: asttokens>=2.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.4.1)
Requirement already satisfied: pure-eval in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.2)
Requirement already satisfied: six>=1.12.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from asttokens>=2.1.0->stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (1.16.0)
Using cached pythreejs-2.4.2-py3-none-any.whl (3.4 MB)
Using cached openvino_dev-2024.1.0-15008-py3-none-any.whl (4.7 MB)
Using cached openvino-2024.1.0-15008-cp38-cp38-manylinux2014_x86_64.whl (38.7 MB)
Using cached opencv_python-4.10.0.82-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62.5 MB)
Using cached onnx-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB)
Using cached ipydatawidgets-4.3.5-py2.py3-none-any.whl (271 kB)
Using cached networkx-3.1-py3-none-any.whl (2.1 MB)
Using cached numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)
Using cached openvino_telemetry-2024.1.0-py3-none-any.whl (23 kB)
Using cached protobuf-5.27.0-cp38-abi3-manylinux2014_x86_64.whl (309 kB)
Using cached filelock-3.14.0-py3-none-any.whl (12 kB)
Using cached fsspec-2024.6.0-py3-none-any.whl (176 kB)
Using cached sympy-1.12.1-py3-none-any.whl (5.7 MB)
Using cached traittypes-0.2.1-py2.py3-none-any.whl (8.6 kB)
Installing collected packages: openvino-telemetry, mpmath, traittypes, sympy, protobuf, numpy, networkx, fsspec, filelock, torch, openvino, opencv-python, onnx, openvino-dev, ipydatawidgets, pythreejs
Successfully installed filelock-3.14.0 fsspec-2024.6.0 ipydatawidgets-4.3.5 mpmath-1.3.0 networkx-3.1 numpy-1.24.4 onnx-1.16.1 opencv-python-4.10.0.82 openvino-2024.1.0 openvino-dev-2024.1.0 openvino-telemetry-2024.1.0 protobuf-5.27.0 pythreejs-2.4.2 sympy-1.12.1 torch-2.3.1+cpu traittypes-0.2.1
Note: you may need to restart the kernel to use updated packages.

Imports#

import collections
import time
from pathlib import Path

import cv2
import ipywidgets as widgets
import numpy as np
from IPython.display import clear_output, display
import openvino as ov

# Fetch `notebook_utils` module
import requests

r = requests.get(
    url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
with open("notebook_utils.py", "w") as f:
    f.write(r.text)

r = requests.get(
    url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/engine3js.py",
)
with open("engine3js.py", "w") as f:
    f.write(r.text)

import notebook_utils as utils
import engine3js as engine

The model#

Download the model#

We use omz_downloader, which is a command line tool from the openvino-dev package. omz_downloader automatically creates a directory structure and downloads the selected model.

# directory where model will be downloaded
base_model_dir = "model"

# model name as named in Open Model Zoo
model_name = "human-pose-estimation-3d-0001"
# selected precision (FP32, FP16)
precision = "FP32"

BASE_MODEL_NAME = f"{base_model_dir}/public/{model_name}/{model_name}"
model_path = Path(BASE_MODEL_NAME).with_suffix(".pth")
onnx_path = Path(BASE_MODEL_NAME).with_suffix(".onnx")

ir_model_path = f"model/public/{model_name}/{precision}/{model_name}.xml"
model_weights_path = f"model/public/{model_name}/{precision}/{model_name}.bin"

if not model_path.exists():
    download_command = f"omz_downloader " f"--name {model_name} " f"--output_dir {base_model_dir}"
    ! $download_command
################|| Downloading human-pose-estimation-3d-0001 ||################

========== Downloading model/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.tar.gz


========== Unpacking model/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.tar.gz

Convert Model to OpenVINO IR format#

The selected model comes from the public directory, which means it must be converted into OpenVINO Intermediate Representation (OpenVINO IR). We use omz_converter to convert the ONNX format model to the OpenVINO IR format.

if not onnx_path.exists():
    convert_command = (
        f"omz_converter " f"--name {model_name} " f"--precisions {precision} " f"--download_dir {base_model_dir} " f"--output_dir {base_model_dir}"
    )
    ! $convert_command
========== Converting human-pose-estimation-3d-0001 to ONNX
Conversion to ONNX command: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/bin/python -- /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/omz_tools/internal_scripts/pytorch_to_onnx.py --model-path=model/public/human-pose-estimation-3d-0001 --model-name=PoseEstimationWithMobileNet --model-param=is_convertible_by_mo=True --import-module=model --weights=model/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.pth --input-shape=1,3,256,448 --input-names=data --output-names=features,heatmaps,pafs --output-file=model/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.onnx

ONNX check passed successfully.

========== Converting human-pose-estimation-3d-0001 to IR (FP32)
Conversion command: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/bin/python -- /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/.venv/bin/mo --framework=onnx --output_dir=model/public/human-pose-estimation-3d-0001/FP32 --model_name=human-pose-estimation-3d-0001 --input=data '--mean_values=data[128.0,128.0,128.0]' '--scale_values=data[255.0,255.0,255.0]' --output=features,heatmaps,pafs --input_model=model/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.onnx '--layout=data(NCHW)' '--input_shape=[1, 3, 256, 448]' --compress_to_fp16=False

[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API.
Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/notebooks/3D-pose-estimation-webcam/model/public/human-pose-estimation-3d-0001/FP32/human-pose-estimation-3d-0001.xml
[ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-697/.workspace/scm/ov-notebook/notebooks/3D-pose-estimation-webcam/model/public/human-pose-estimation-3d-0001/FP32/human-pose-estimation-3d-0001.bin

Select inference device#

select device from dropdown list for running inference using OpenVINO

core = ov.Core()

device = widgets.Dropdown(
    options=core.available_devices + ["AUTO"],
    value="AUTO",
    description="Device:",
    disabled=False,
)

device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')

Load the model#

Converted models are located in a fixed structure, which indicates vendor, model name and precision.

First, initialize the inference engine, OpenVINO Runtime. Then, read the network architecture and model weights from the .bin and .xml files to compile for the desired device. An inference request is then created to infer the compiled model.

# initialize inference engine
core = ov.Core()
# read the network and corresponding weights from file
model = core.read_model(model=ir_model_path, weights=model_weights_path)
# load the model on the specified device
compiled_model = core.compile_model(model=model, device_name=device.value)
infer_request = compiled_model.create_infer_request()
input_tensor_name = model.inputs[0].get_any_name()

# get input and output names of nodes
input_layer = compiled_model.input(0)
output_layers = list(compiled_model.outputs)

The input for the model is data from the input image and the outputs are heat maps, PAF (part affinity fields) and features.

input_layer.any_name, [o.any_name for o in output_layers]
('data', ['features', 'heatmaps', 'pafs'])

Processing#

Model Inference#

Frames captured from video files or the live webcam are used as the input for the 3D model. This is how you obtain the output heat maps, PAF (part affinity fields) and features.

def model_infer(scaled_img, stride):
    """
    Run model inference on the input image

    Parameters:
        scaled_img: resized image according to the input size of the model
        stride: int, the stride of the window
    """

    # Remove excess space from the picture
    img = scaled_img[
        0 : scaled_img.shape[0] - (scaled_img.shape[0] % stride),
        0 : scaled_img.shape[1] - (scaled_img.shape[1] % stride),
    ]

    img = np.transpose(img, (2, 0, 1))[None,]
    infer_request.infer({input_tensor_name: img})
    # A set of three inference results is obtained
    results = {name: infer_request.get_tensor(name).data[:] for name in {"features", "heatmaps", "pafs"}}
    # Get the results
    results = (results["features"][0], results["heatmaps"][0], results["pafs"][0])

    return results

Draw 2D Pose Overlays#

We need to define some connections between the joints in advance, so that we can draw the structure of the human body in the resulting image after obtaining the inference results. Joints are drawn as circles and limbs are drawn as lines. The code is based on the 3D Human Pose Estimation Demo from Open Model Zoo.

# 3D edge index array
body_edges = np.array(
    [
        [0, 1],
        [0, 9],
        [9, 10],
        [10, 11],  # neck - r_shoulder - r_elbow - r_wrist
        [0, 3],
        [3, 4],
        [4, 5],  # neck - l_shoulder - l_elbow - l_wrist
        [1, 15],
        [15, 16],  # nose - l_eye - l_ear
        [1, 17],
        [17, 18],  # nose - r_eye - r_ear
        [0, 6],
        [6, 7],
        [7, 8],  # neck - l_hip - l_knee - l_ankle
        [0, 12],
        [12, 13],
        [13, 14],  # neck - r_hip - r_knee - r_ankle
    ]
)


body_edges_2d = np.array(
    [
        [0, 1],  # neck - nose
        [1, 16],
        [16, 18],  # nose - l_eye - l_ear
        [1, 15],
        [15, 17],  # nose - r_eye - r_ear
        [0, 3],
        [3, 4],
        [4, 5],  # neck - l_shoulder - l_elbow - l_wrist
        [0, 9],
        [9, 10],
        [10, 11],  # neck - r_shoulder - r_elbow - r_wrist
        [0, 6],
        [6, 7],
        [7, 8],  # neck - l_hip - l_knee - l_ankle
        [0, 12],
        [12, 13],
        [13, 14],  # neck - r_hip - r_knee - r_ankle
    ]
)


def draw_poses(frame, poses_2d, scaled_img, use_popup):
    """
    Draw 2D pose overlays on the image to visualize estimated poses.
    Joints are drawn as circles and limbs are drawn as lines.

    :param frame: the input image
    :param poses_2d: array of human joint pairs
    """
    for pose in poses_2d:
        pose = np.array(pose[0:-1]).reshape((-1, 3)).transpose()
        was_found = pose[2] > 0

        pose[0], pose[1] = (
            pose[0] * frame.shape[1] / scaled_img.shape[1],
            pose[1] * frame.shape[0] / scaled_img.shape[0],
        )

        # Draw joints.
        for edge in body_edges_2d:
            if was_found[edge[0]] and was_found[edge[1]]:
                cv2.line(
                    frame,
                    tuple(pose[0:2, edge[0]].astype(np.int32)),
                    tuple(pose[0:2, edge[1]].astype(np.int32)),
                    (255, 255, 0),
                    4,
                    cv2.LINE_AA,
                )
        # Draw limbs.
        for kpt_id in range(pose.shape[1]):
            if pose[2, kpt_id] != -1:
                cv2.circle(
                    frame,
                    tuple(pose[0:2, kpt_id].astype(np.int32)),
                    3,
                    (0, 255, 255),
                    -1,
                    cv2.LINE_AA,
                )

    return frame

Main Processing Function#

Run 3D pose estimation on the specified source. It could be either a webcam feed or a video file.

def run_pose_estimation(source=0, flip=False, use_popup=False, skip_frames=0):
    """
    2D image as input, using OpenVINO as inference backend,
    get joints 3D coordinates, and draw 3D human skeleton in the scene

    :param source:      The webcam number to feed the video stream with primary webcam set to "0", or the video path.
    :param flip:        To be used by VideoPlayer function for flipping capture image.
    :param use_popup:   False for showing encoded frames over this notebook, True for creating a popup window.
    :param skip_frames: Number of frames to skip at the beginning of the video.
    """

    focal_length = -1  # default
    stride = 8
    player = None
    skeleton_set = None

    try:
        # create video player to play with target fps  video_path
        # get the frame from camera
        # You can skip first N frames to fast forward video. change 'skip_first_frames'
        player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_frames)
        # start capturing
        player.start()

        input_image = player.next()
        # set the window size
        resize_scale = 450 / input_image.shape[1]
        windows_width = int(input_image.shape[1] * resize_scale)
        windows_height = int(input_image.shape[0] * resize_scale)

        # use visualization library
        engine3D = engine.Engine3js(grid=True, axis=True, view_width=windows_width, view_height=windows_height)

        if use_popup:
            # display the 3D human pose in this notebook, and origin frame in popup window
            display(engine3D.renderer)
            title = "Press ESC to Exit"
            cv2.namedWindow(title, cv2.WINDOW_KEEPRATIO | cv2.WINDOW_AUTOSIZE)
        else:
            # set the 2D image box, show both human pose and image in the notebook
            imgbox = widgets.Image(format="jpg", height=windows_height, width=windows_width)
            display(widgets.HBox([engine3D.renderer, imgbox]))

        skeleton = engine.Skeleton(body_edges=body_edges)

        processing_times = collections.deque()

        while True:
            # grab the frame
            frame = player.next()
            if frame is None:
                print("Source ended")
                break

            # resize image and change dims to fit neural network input
            # (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/human-pose-estimation-3d-0001)
            scaled_img = cv2.resize(frame, dsize=(model.inputs[0].shape[3], model.inputs[0].shape[2]))

            if focal_length < 0:  # Focal length is unknown
                focal_length = np.float32(0.8 * scaled_img.shape[1])

            # inference start
            start_time = time.time()
            # get results
            inference_result = model_infer(scaled_img, stride)

            # inference stop
            stop_time = time.time()
            processing_times.append(stop_time - start_time)
            # Process the point to point coordinates of the data
            poses_3d, poses_2d = engine.parse_poses(inference_result, 1, stride, focal_length, True)

            # use processing times from last 200 frames
            if len(processing_times) > 200:
                processing_times.popleft()

            processing_time = np.mean(processing_times) * 1000
            fps = 1000 / processing_time

            if len(poses_3d) > 0:
                # From here, you can rotate the 3D point positions using the function "draw_poses",
                # or you can directly make the correct mapping below to properly display the object image on the screen
                poses_3d_copy = poses_3d.copy()
                x = poses_3d_copy[:, 0::4]
                y = poses_3d_copy[:, 1::4]
                z = poses_3d_copy[:, 2::4]
                poses_3d[:, 0::4], poses_3d[:, 1::4], poses_3d[:, 2::4] = (
                    -z + np.ones(poses_3d[:, 2::4].shape) * 200,
                    -y + np.ones(poses_3d[:, 2::4].shape) * 100,
                    -x,
                )

                poses_3d = poses_3d.reshape(poses_3d.shape[0], 19, -1)[:, :, 0:3]
                people = skeleton(poses_3d=poses_3d)

                try:
                    engine3D.scene_remove(skeleton_set)
                except Exception:
                    pass

                engine3D.scene_add(people)
                skeleton_set = people

                # draw 2D
                frame = draw_poses(frame, poses_2d, scaled_img, use_popup)

            else:
                try:
                    engine3D.scene_remove(skeleton_set)
                    skeleton_set = None
                except Exception:
                    pass

            cv2.putText(
                frame,
                f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)",
                (10, 30),
                cv2.FONT_HERSHEY_COMPLEX,
                0.7,
                (0, 0, 255),
                1,
                cv2.LINE_AA,
            )

            if use_popup:
                cv2.imshow(title, frame)
                key = cv2.waitKey(1)
                # escape = 27, use ESC to exit
                if key == 27:
                    break
            else:
                # encode numpy array to jpg
                imgbox.value = cv2.imencode(
                    ".jpg",
                    frame,
                    params=[cv2.IMWRITE_JPEG_QUALITY, 90],
                )[1].tobytes()

            engine3D.renderer.render(engine3D.scene, engine3D.cam)

    except KeyboardInterrupt:
        print("Interrupted")
    except RuntimeError as e:
        print(e)
    finally:
        clear_output()
        if player is not None:
            # stop capturing
            player.stop()
        if use_popup:
            cv2.destroyAllWindows()
        if skeleton_set:
            engine3D.scene_remove(skeleton_set)

Run#

Run, using a webcam as the video input. By default, the primary webcam is set with source=0. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set flip=True when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set use_popup=True.

NOTE:

1. To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server (e.g. Binder), the webcam will not work.

2. Popup mode may not work if you run this notebook on a remote computer (e.g. Binder).

If you do not have a webcam, you can still run this demo with a video file. Any format supported by OpenCV will work.

Using the following method, you can click and move your mouse over the picture on the left to interact.

USE_WEBCAM = False

cam_id = 0
video_path = "https://github.com/intel-iot-devkit/sample-videos/raw/master/face-demographics-walking.mp4"

source = cam_id if USE_WEBCAM else video_path

run_pose_estimation(source=source, flip=isinstance(source, int), use_popup=False)