MediaPipe Holistic Demo#

This guide shows how to implement MediaPipe graph using OVMS.

Example usage of graph that accepts Mediapipe::ImageFrame as a input:

The demo is based on the upstream Mediapipe holistic demo.

Prerequisites#

Model preparation: Python 3.9 or higher with pip

Model Server deployment: Installed Docker Engine or OVMS binary package according to the baremetal deployment guide

Prepare models#

Clone the repository and enter mediapipe holistic_tracking directory

git clone https://github.com/openvinotoolkit/model_server.git
cd model_server/demos/mediapipe/holistic_tracking

# copy a text file for hand landmark module
curl --create-dirs https://raw.githubusercontent.com/openvinotoolkit/mediapipe/v2023.3/mediapipe/modules/hand_landmark/handedness.txt -o mediapipe/modules/hand_landmark/handedness.txt 

# download the models
curl https://storage.googleapis.com/mediapipe-assets/face_detection_short_range.tflite -o face_detection_short_range/1/face_detection_short_range.tflite --create-dirs
curl https://storage.googleapis.com/mediapipe-assets/face_landmark.tflite -o face_landmark/1/face_landmark.tflite --create-dirs
curl https://storage.googleapis.com/mediapipe-assets/hand_landmark_full.tflite -o hand_landmark_full/1/hand_landmark_full.tflite --create-dirs
curl https://storage.googleapis.com/mediapipe-assets/hand_recrop.tflite -o hand_recrop/1/hand_recrop.tflite --create-dirs
curl https://storage.googleapis.com/mediapipe-assets/iris_landmark.tflite -o iris_landmark/1/iris_landmark.tflite --create-dirs
curl https://storage.googleapis.com/mediapipe-assets/palm_detection_full.tflite -o palm_detection_full/1/palm_detection_full.tflite --create-dirs
curl https://storage.googleapis.com/mediapipe-assets/pose_detection.tflite -o pose_detection/1/pose_detection.tflite --create-dirs
curl https://storage.googleapis.com/mediapipe-assets/pose_landmark_full.tflite -o pose_landmark_full/1/pose_landmark_full.tflite --create-dirs

The models setup should look like this

├── config_holistic.json
├── face_detection_short_range
│   └── 1       └── face_detection_short_range.tflite
├── face_landmark
│   └── 1       └── face_landmark.tflite
├── hand_landmark_full
│   └── 1       └── hand_landmark_full.tflite
├── hand_recrop
│   └── 1       └── hand_recrop.tflite
├── holistic_tracking.pbtxt
├── palm_detection_full
│   └── 1       └── palm_detection_full.tflite
├── pose_detection
│   └── 1       └── pose_detection.tflite
└── pose_landmark_full
    └── 1
        └── pose_landmark_full.tflite

Server Deployment#

Deploying with Docker

Pull the Latest Model Server Image

Pull the latest version of OpenVINO™ Model Server from Docker Hub:

docker pull openvino/model_server:latest
docker run -d -v $PWD/mediapipe:/mediapipe -v $PWD:/models -p 9000:9000 openvino/model_server:latest --config_path /models/config_holistic.json --port 9000
Deploying on Bare Metal

Assuming you have unpacked model server package, make sure to:

  • On Windows: run setupvars script

  • On Linux: set LD_LIBRARY_PATH and PATH environment variables

as mentioned in deployment guide, in every new shell that will start OpenVINO Model Server.

cd demos\mediapipe\holistic_tracking
ovms --config_path config_holistic.json --port 9000

Run client application for holistic tracking - default demo#

pip install -r requirements.txt
# download a sample image for analysis
curl -kL -o girl.jpeg https://cdn.pixabay.com/photo/2019/03/12/20/39/girl-4051811_960_720.jpg
echo girl.jpeg>input_images.txt
# launch the client
python mediapipe_holistic_tracking.py --grpc_port 9000 --images_list input_images.txt
Running demo application.
Start processing:
        Graph name: holisticTracking
(640, 960, 3)
Iteration 0; Processing time: 131.45 ms; speed 7.61 fps
Results saved to :image_0.jpg

Output image#

output

Real time stream analysis#

For demo featuring real time stream application see real_time_stream_analysis