Throughput Benchmark Sample#
This sample demonstrates how to estimate performance of a model using Asynchronous Inference Request API in throughput mode. This sample does not have other configurable command-line arguments. Feel free to modify sample’s source code to try out different options.
The reported results may deviate from what benchmark_app
reports. One example is model input precision for computer vision tasks. benchmark_app
sets uint8
, while the sample uses default model precision which is usually float32
.
Before using the sample, refer to the following requirements:
The sample accepts any file format supported by
core.read_model
.The sample has been validated with: yolo-v3-tf and face-detection-0200 models.
To build the sample, use instructions available at Build the Sample Applications section in “Get Started with Samples” guide.
How It Works#
The sample compiles a model for a given device, randomly generates input data, performs asynchronous inference multiple times for a given number of seconds. Then, it processes and reports performance results.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (C) 2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import logging as log
import sys
import statistics
from time import perf_counter
import numpy as np
import openvino as ov
from openvino import get_version
from openvino.utils.types import get_dtype
def fill_tensor_random(tensor):
dtype = get_dtype(tensor.element_type)
rand_min, rand_max = (0, 1) if dtype == bool else (np.iinfo(np.uint8).min, np.iinfo(np.uint8).max)
# np.random.uniform excludes high: add 1 to have it generated
if np.dtype(dtype).kind in ['i', 'u', 'b']:
rand_max += 1
rs = np.random.RandomState(np.random.MT19937(np.random.SeedSequence(0)))
if 0 == tensor.get_size():
raise RuntimeError("Models with dynamic shapes aren't supported. Input tensors must have specific shapes before inference")
tensor.data[:] = rs.uniform(rand_min, rand_max, list(tensor.shape)).astype(dtype)
def main():
log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.INFO, stream=sys.stdout)
log.info('OpenVINO:')
log.info(f"{'Build ':.<39} {get_version()}")
device_name = 'CPU'
if len(sys.argv) == 3:
device_name = sys.argv[2]
elif len(sys.argv) != 2:
log.info(f'Usage: {sys.argv[0]} <path_to_model> <device_name>(default: CPU)')
return 1
# Optimize for throughput. Best throughput can be reached by
# running multiple openvino.runtime.InferRequest instances asyncronously
tput = {'PERFORMANCE_HINT': 'THROUGHPUT'}
# Create Core and use it to compile a model.
# Select the device by providing the name as the second parameter to CLI.
# It is possible to set CUMULATIVE_THROUGHPUT as PERFORMANCE_HINT for AUTO device
core = ov.Core()
compiled_model = core.compile_model(sys.argv[1], device_name, tput)
# AsyncInferQueue creates optimal number of InferRequest instances
ireqs = ov.AsyncInferQueue(compiled_model)
# Fill input data for ireqs
for ireq in ireqs:
for model_input in compiled_model.inputs:
fill_tensor_random(ireq.get_tensor(model_input))
# Warm up
for _ in range(len(ireqs)):
ireqs.start_async()
ireqs.wait_all()
# Benchmark for seconds_to_run seconds and at least niter iterations
seconds_to_run = 10
niter = 10
latencies = []
in_fly = set()
start = perf_counter()
time_point_to_finish = start + seconds_to_run
while perf_counter() < time_point_to_finish or len(latencies) + len(in_fly) < niter:
idle_id = ireqs.get_idle_request_id()
if idle_id in in_fly:
latencies.append(ireqs[idle_id].latency)
else:
in_fly.add(idle_id)
ireqs.start_async()
ireqs.wait_all()
duration = perf_counter() - start
for infer_request_id in in_fly:
latencies.append(ireqs[infer_request_id].latency)
# Report results
fps = len(latencies) / duration
log.info(f'Count: {len(latencies)} iterations')
log.info(f'Duration: {duration * 1e3:.2f} ms')
log.info('Latency:')
log.info(f' Median: {statistics.median(latencies):.2f} ms')
log.info(f' Average: {sum(latencies) / len(latencies):.2f} ms')
log.info(f' Min: {min(latencies):.2f} ms')
log.info(f' Max: {max(latencies):.2f} ms')
log.info(f'Throughput: {fps:.2f} FPS')
if __name__ == '__main__':
main()
// Copyright (C) 2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <algorithm>
#include <condition_variable>
#include <string>
#include <vector>
// clang-format off
#include "openvino/openvino.hpp"
#include "samples/args_helper.hpp"
#include "samples/common.hpp"
#include "samples/latency_metrics.hpp"
#include "samples/slog.hpp"
// clang-format on
using Ms = std::chrono::duration<double, std::ratio<1, 1000>>;
int main(int argc, char* argv[]) {
try {
slog::info << "OpenVINO:" << slog::endl;
slog::info << ov::get_openvino_version();
std::string device_name = "CPU";
if (argc == 3) {
device_name = argv[2];
} else if (argc != 2) {
slog::info << "Usage : " << argv[0] << " <path_to_model> <device_name>(default: CPU)" << slog::endl;
return EXIT_FAILURE;
}
// Optimize for throughput. Best throughput can be reached by
// running multiple ov::InferRequest instances asyncronously
ov::AnyMap tput{{ov::hint::performance_mode.name(), ov::hint::PerformanceMode::THROUGHPUT}};
// Create ov::Core and use it to compile a model.
// Select the device by providing the name as the second parameter to CLI.
// It is possible to set CUMULATIVE_THROUGHPUT as ov::hint::PerformanceMode for AUTO device
ov::Core core;
ov::CompiledModel compiled_model = core.compile_model(argv[1], device_name, tput);
// Create optimal number of ov::InferRequest instances
uint32_t nireq = compiled_model.get_property(ov::optimal_number_of_infer_requests);
std::vector<ov::InferRequest> ireqs(nireq);
std::generate(ireqs.begin(), ireqs.end(), [&] {
return compiled_model.create_infer_request();
});
// Fill input data for ireqs
for (ov::InferRequest& ireq : ireqs) {
for (const ov::Output<const ov::Node>& model_input : compiled_model.inputs()) {
fill_tensor_random(ireq.get_tensor(model_input));
}
}
// Warm up
for (ov::InferRequest& ireq : ireqs) {
ireq.start_async();
}
for (ov::InferRequest& ireq : ireqs) {
ireq.wait();
}
// Benchmark for seconds_to_run seconds and at least niter iterations
std::chrono::seconds seconds_to_run{10};
size_t niter = 10;
std::vector<double> latencies;
std::mutex mutex;
std::condition_variable cv;
std::exception_ptr callback_exception;
struct TimedIreq {
ov::InferRequest& ireq; // ref
std::chrono::steady_clock::time_point start;
bool has_start_time;
};
std::deque<TimedIreq> finished_ireqs;
for (ov::InferRequest& ireq : ireqs) {
finished_ireqs.push_back({ireq, std::chrono::steady_clock::time_point{}, false});
}
auto start = std::chrono::steady_clock::now();
auto time_point_to_finish = start + seconds_to_run;
// Once there’s a finished ireq wake up main thread.
// Compute and save latency for that ireq and prepare for next inference by setting up callback.
// Callback pushes that ireq again to finished ireqs when infrence is completed.
// Start asynchronous infer with updated callback
for (;;) {
std::unique_lock<std::mutex> lock(mutex);
while (!callback_exception && finished_ireqs.empty()) {
cv.wait(lock);
}
if (callback_exception) {
std::rethrow_exception(callback_exception);
}
if (!finished_ireqs.empty()) {
auto time_point = std::chrono::steady_clock::now();
if (time_point > time_point_to_finish && latencies.size() > niter) {
break;
}
TimedIreq timedIreq = finished_ireqs.front();
finished_ireqs.pop_front();
lock.unlock();
ov::InferRequest& ireq = timedIreq.ireq;
if (timedIreq.has_start_time) {
latencies.push_back(std::chrono::duration_cast<Ms>(time_point - timedIreq.start).count());
}
ireq.set_callback(
[&ireq, time_point, &mutex, &finished_ireqs, &callback_exception, &cv](std::exception_ptr ex) {
// Keep callback small. This improves performance for fast (tens of thousands FPS) models
std::unique_lock<std::mutex> lock(mutex);
{
try {
if (ex) {
std::rethrow_exception(ex);
}
finished_ireqs.push_back({ireq, time_point, true});
} catch (const std::exception&) {
if (!callback_exception) {
callback_exception = std::current_exception();
}
}
}
cv.notify_one();
});
ireq.start_async();
}
}
auto end = std::chrono::steady_clock::now();
double duration = std::chrono::duration_cast<Ms>(end - start).count();
// Report results
slog::info << "Count: " << latencies.size() << " iterations" << slog::endl
<< "Duration: " << duration << " ms" << slog::endl
<< "Latency:" << slog::endl;
size_t percent = 50;
LatencyMetrics{latencies, "", percent}.write_to_slog();
slog::info << "Throughput: " << double_to_string(1000 * latencies.size() / duration) << " FPS" << slog::endl;
} catch (const std::exception& ex) {
slog::err << ex.what() << slog::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
You can see the explicit description of each sample step at Integration Steps section of “Integrate OpenVINO™ Runtime with Your Application” guide.
Running#
python throughput_benchmark.py <path_to_model> <device_name>(default: CPU)
throughput_benchmark <path_to_model> <device_name>(default: CPU)
To run the sample, you need to specify a model. You can get a model specific for your inference task from one of model repositories, such as TensorFlow Zoo, HuggingFace, or TensorFlow Hub.
Example#
Download a pre-trained model.
You can convert it by using:
import openvino as ov ov_model = ov.convert_model('./models/googlenet-v1') # or, when model is a Python model object ov_model = ov.convert_model(googlenet-v1)
ovc ./models/googlenet-v1
Perform benchmarking, using the
googlenet-v1
model on aCPU
:python throughput_benchmark.py ./models/googlenet-v1.xml
throughput_benchmark ./models/googlenet-v1.xml
Sample Output#
The application outputs performance results.
[ INFO ] OpenVINO:
[ INFO ] Build ................................. <version>
[ INFO ] Count: 2817 iterations
[ INFO ] Duration: 10012.65 ms
[ INFO ] Latency:
[ INFO ] Median: 13.80 ms
[ INFO ] Average: 14.10 ms
[ INFO ] Min: 8.35 ms
[ INFO ] Max: 28.38 ms
[ INFO ] Throughput: 281.34 FPS
The application outputs performance results.
[ INFO ] OpenVINO:
[ INFO ] Build ................................. <version>
[ INFO ] Count: 1577 iterations
[ INFO ] Duration: 15024.2 ms
[ INFO ] Latency:
[ INFO ] Median: 38.02 ms
[ INFO ] Average: 38.08 ms
[ INFO ] Min: 25.23 ms
[ INFO ] Max: 49.16 ms
[ INFO ] Throughput: 104.96 FPS