MediaPipe Image Classification Demo#
This guide shows how to implement MediaPipe graph using OVMS.
Example usage of graph that contains only one model - resnet:
Prerequisites#
Model preparation: Python 3.9 or higher with pip
Model Server deployment: Installed Docker Engine or OVMS binary package according to the baremetal deployment guide
Prepare the repository#
Clone the repository and enter mediapipe image_classification directory
git clone https://github.com/openvinotoolkit/model_server.git
cd model_server/demos/mediapipe/image_classification
Download ResNet50 model#
curl --create-dirs https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/resnet50-binary-0001/FP32-INT1/resnet50-binary-0001.bin -o resnetMediapipe/model/1/resnet50-binary-0001.bin
curl --create-dirs https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/resnet50-binary-0001/FP32-INT1/resnet50-binary-0001.xml -o resnetMediapipe/model/1/resnet50-binary-0001.xml
Server Deployment#
Deploying with Docker
docker run -d -v $PWD:/mediapipe -p 9000:9000 openvino/model_server:latest --config_path /mediapipe/config.json --port 9000
Deploying on Bare Metal
Assuming you have unpacked model server package, make sure to:
On Windows: run
setupvars
scriptOn Linux: set
LD_LIBRARY_PATH
andPATH
environment variables
as mentioned in deployment guide, in every new shell that will start OpenVINO Model Server.
cd demos\mediapipe\image_classification
ovms --config_path config.json --port 9000
Run the client:#
cd ../../../client/python/kserve-api/samples
pip install -r requirements.txt
python grpc_infer_resnet.py --model_name resnetMediapipe --grpc_port 9000 --images_numpy_path ../../imgs.npy --transpose_input False --input_name in --output_name out --labels_numpy_path ../../lbs.npy
Image data range: 0.0 : 255.0
Start processing:
Model name: resnetMediapipe
Iterations: 10
Images numpy path: ../../imgs.npy
Numpy file shape: (10, 3, 224, 224)
Iteration 1; Processing time: 14.40 ms; speed 69.46 fps
imagenet top results in a single batch:
0 airliner 404 ; Correct match.
Iteration 2; Processing time: 10.72 ms; speed 93.32 fps
imagenet top results in a single batch:
0 Arctic fox, white fox, Alopex lagopus 279 ; Correct match.
Iteration 3; Processing time: 9.27 ms; speed 107.83 fps
imagenet top results in a single batch:
0 bee 309 ; Correct match.
Iteration 4; Processing time: 8.47 ms; speed 118.02 fps
imagenet top results in a single batch:
0 golden retriever 207 ; Correct match.
Iteration 5; Processing time: 9.17 ms; speed 109.03 fps
imagenet top results in a single batch:
0 gorilla, Gorilla gorilla 366 ; Correct match.
Iteration 6; Processing time: 8.56 ms; speed 116.78 fps
imagenet top results in a single batch:
0 magnetic compass 635 ; Correct match.
Iteration 7; Processing time: 8.39 ms; speed 119.16 fps
imagenet top results in a single batch:
0 peacock 84 ; Correct match.
Iteration 8; Processing time: 8.44 ms; speed 118.44 fps
imagenet top results in a single batch:
0 pelican 144 ; Correct match.
Iteration 9; Processing time: 8.36 ms; speed 119.55 fps
imagenet top results in a single batch:
0 snail 113 ; Correct match.
Iteration 10; Processing time: 9.16 ms; speed 109.19 fps
imagenet top results in a single batch:
0 zebra 340 ; Correct match.
processing time for all iterations
average time: 9.10 ms; average speed: 109.89 fps
median time: 8.50 ms; median speed: 117.65 fps
max time: 14.00 ms; min speed: 71.43 fps
min time: 8.00 ms; max speed: 125.00 fps
time percentile 90: 10.40 ms; speed percentile 90: 96.15 fps
time percentile 50: 8.50 ms; speed percentile 50: 117.65 fps
time standard deviation: 1.76
time variance: 3.09
Classification accuracy: 100.00