Converting a PyTorch RNN-T Model#
Danger
The code described here has been deprecated! Do not use it to avoid working with a legacy solution. It will be kept for some time to ensure backwards compatibility, but you should not use it in contemporary applications.
This guide describes a deprecated conversion method. The guide on the new and recommended method can be found in the Python tutorials.
This guide covers conversion of RNN-T model from MLCommons repository. Follow the instructions below to export a PyTorch model into ONNX, before converting it to IR:
Step 1. Clone RNN-T PyTorch implementation from MLCommons repository (revision r1.0). Make a shallow clone to pull only RNN-T model without full repository. If you already have a full repository, skip this and go to Step 2:
git clone -b r1.0 -n https://github.com/mlcommons/inference rnnt_for_openvino --depth 1
cd rnnt_for_openvino
git checkout HEAD speech_recognition/rnnt
Step 2. If you already have a full clone of MLCommons inference repository, create a folder for pretrained PyTorch model, where conversion into IR will take place. You will also need to specify the path to your full clone at Step 5. Skip this step if you have a shallow clone.
mkdir rnnt_for_openvino
cd rnnt_for_openvino
Step 3. Download pre-trained weights for PyTorch implementation from here.
For UNIX-like systems, you can use wget
:
wget https://zenodo.org/record/3662521/files/DistributedDataParallel_1576581068.9962234-epoch-100.pt
The link was taken from setup.sh
in the speech_recoginitin/rnnt
subfolder. You will get exactly the same weights as
if you were following the guide.
Step 4. Install required Python packages:
pip3 install torch toml
Step 5. Export RNN-T model into ONNX, using the script below. Copy the code below into a file named
export_rnnt_to_onnx.py
and run it in the current directory rnnt_for_openvino
:
Note
If you already have a full clone of MLCommons inference repository, you need
to specify the mlcommons_inference_path
variable.
import toml
import torch
import sys
def load_and_migrate_checkpoint(ckpt_path):
checkpoint = torch.load(ckpt_path, map_location="cpu")
migrated_state_dict = {}
for key, value in checkpoint['state_dict'].items():
key = key.replace("joint_net", "joint.net")
migrated_state_dict[key] = value
del migrated_state_dict["audio_preprocessor.featurizer.fb"]
del migrated_state_dict["audio_preprocessor.featurizer.window"]
return migrated_state_dict
mlcommons_inference_path = './' # specify relative path for MLCommons inferene
checkpoint_path = 'DistributedDataParallel_1576581068.9962234-epoch-100.pt'
config_toml = 'speech_recognition/rnnt/pytorch/configs/rnnt.toml'
config = toml.load(config_toml)
rnnt_vocab = config['labels']['labels']
sys.path.insert(0, mlcommons_inference_path + 'speech_recognition/rnnt/pytorch')
from model_separable_rnnt import RNNT
model = RNNT(config['rnnt'], len(rnnt_vocab) + 1, feature_config=config['input_eval'])
model.load_state_dict(load_and_migrate_checkpoint(checkpoint_path))
seq_length, batch_size, feature_length = 157, 1, 240
inp = torch.randn([seq_length, batch_size, feature_length])
feature_length = torch.LongTensor([seq_length])
x_padded, x_lens = model.encoder(inp, feature_length)
torch.onnx.export(model.encoder, (inp, feature_length), "rnnt_encoder.onnx", opset_version=12,
input_names=['input', 'feature_length'], output_names=['x_padded', 'x_lens'],
dynamic_axes={'input': {0: 'seq_len', 1: 'batch'}})
symbol = torch.LongTensor([[20]])
hidden = torch.randn([2, batch_size, 320]), torch.randn([2, batch_size, 320])
g, hidden = model.prediction.forward(symbol, hidden)
torch.onnx.export(model.prediction, (symbol, hidden), "rnnt_prediction.onnx", opset_version=12,
input_names=['symbol', 'hidden_in_1', 'hidden_in_2'],
output_names=['g', 'hidden_out_1', 'hidden_out_2'],
dynamic_axes={'symbol': {0: 'batch'}, 'hidden_in_1': {1: 'batch'}, 'hidden_in_2': {1: 'batch'}})
f = torch.randn([batch_size, 1, 1024])
model.joint.forward(f, g)
torch.onnx.export(model.joint, (f, g), "rnnt_joint.onnx", opset_version=12,
input_names=['0', '1'], output_names=['result'], dynamic_axes={'0': {0: 'batch'}, '1': {0: 'batch'}})
python3 export_rnnt_to_onnx.py
After completing this step, the files rnnt_encoder.onnx
, rnnt_prediction.onnx
, and rnnt_joint.onnx
will be saved in the current directory.
Step 6. Run the conversion commands:
mo --input_model rnnt_encoder.onnx --input "input[157,1,240],feature_length->157"
mo --input_model rnnt_prediction.onnx --input "symbol[1,1],hidden_in_1[2,1,320],hidden_in_2[2,1,320]"
mo --input_model rnnt_joint.onnx --input "0[1,1,1024],1[1,1,320]"
Note
The hardcoded value for sequence length = 157 was taken from the MLCommons, but conversion to IR preserves network reshapeability. Therefore, input shapes can be changed manually to any value during either conversion or inference.