Single Face Analysis Pipeline Demo#

This document presents a models ensemble as an example of DAG Scheduler implementation. It describes how to combine several models to perform multiple inference operations with a single prediction call. When you need to execute several predictions on the same data, you can create a pipeline, which combines the results from several models.

diagram

Prerequisites#

Model preparation: Python 3.9 or higher with pip

Model Server deployment: Installed Docker Engine or OVMS binary package according to the baremetal deployment guide

Prepare models#

In this example the following models are used:

age-gender-recognition-retail-0013

emotions-recognition-retail-0003

Clone the repository and enter single_face_analysis_pipeline directory

git clone https://github.com/openvinotoolkit/model_server.git
cd model_server/demos/single_face_analysis_pipeline/python

You can prepare the workspace that contains all the above by just running

You can prepare the workspace that contains all the above by running

	curl --create-dir https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013.xml -o workspace/age-gender-recognition-retail-0013/1/age-gender-recognition-retail-0013.xml
	curl --create-dir https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013.bin -o workspace/age-gender-recognition-retail-0013/1/age-gender-recognition-retail-0013.bin
	curl --create-dir https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/emotions-recognition-retail-0003/FP32/emotions-recognition-retail-0003.xml -o workspace/emotions-recognition-retail-0003/1/emotions-recognition-retail-0003.xml
	curl --create-dir https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/emotions-recognition-retail-0003/FP32/emotions-recognition-retail-0003.bin -o workspace/emotions-recognition-retail-0003/1/emotions-recognition-retail-0003.bin
	cp config.json workspace/.

Final directory structure#

You should have workspace directory ready with the following content.

workspace/
├── age-gender-recognition-retail-0013
│   └── 1
│       ├── age-gender-recognition-retail-0013.bin
│       └── age-gender-recognition-retail-0013.xml
├── config.json
└── emotions-recognition-retail-0003
    └── 1
        ├── emotions-recognition-retail-0003.bin
        └── emotions-recognition-retail-0003.xml

Server Deployment#

Deploying with Docker
docker run -p 9000:9000 -d -v ${PWD}/workspace:/workspace openvino/model_server --config_path /workspace/config.json --port 9000
Deploying on Bare Metal

Assuming you have unpacked model server package, make sure to:

  • On Windows: run setupvars script

  • On Linux: set LD_LIBRARY_PATH and PATH environment variables

as mentioned in deployment guide, in every new shell that will start OpenVINO Model Server.

cd demos\single_face_analysis_pipeline\python
ovms --config_path workspace/config.json --port 9001

Requesting the Service#

Exemplary client single_face_analysis_pipeline.py can be used to request pipeline deployed in previous step.

pip3 install -r requirements.txt

Now you can create directory for text images and run the client:

python single_face_analysis_pipeline.py --image_path ../../common/static/images/faces/face1.jpg --grpc_port 9000
Age results: [[[21.099792]]]
Gender results: Female: 0.9483401 ; Male: 0.051659837
Emotion results: Natural: 0.02335789 ; Happy: 0.9449672 ; Sad: 0.001236845 ; Surprise: 0.028111042 ; Angry: 0.0023269346

Next step#

For more advanced use case with extracting and analysing multiple faces on the same image see multi_faces_analysis_pipeline demo.