Person, vehicle, bike detection with multiple data sources#

The purpose of this demo is to show how to send data from multiple sources (cameras, video files) to a model served in OpenVINO Model Server.

Prerequisites#

Model preparation: Python 3.9 or higher with pip

Model Server deployment: Installed Docker Engine or OVMS binary package according to the baremetal deployment guide

Prepare model files#

curl --create-dir https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/person-vehicle-bike-detection-crossroad-0078/FP32/person-vehicle-bike-detection-crossroad-0078.bin -o model/1/person-vehicle-bike-detection-crossroad-0078.bin

curl --create-dir https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/person-vehicle-bike-detection-crossroad-0078/FP32/person-vehicle-bike-detection-crossroad-0078.xml -o model/1/person-vehicle-bike-detection-crossroad-0078.xml

Server Deployment#

Deploying with Docker
docker run -d -v `pwd`/model:/models -p 9000:9000 openvino/model_server:latest --model_path /models --model_name person-vehicle-detection --port 9000 --shape auto
Deploying on Bare Metal

Assuming you have unpacked model server package, make sure to:

  • On Windows: run setupvars script

  • On Linux: set LD_LIBRARY_PATH and PATH environment variables

as mentioned in deployment guide, in every new shell that will start OpenVINO Model Server.

cd demos\person_vehicle_bike_detection\python
ovms --model_path model --model_name person-vehicle-detection --port 9000 --shape auto

Running the client application#

git clone https://github.com/openvinotoolkit/model_server.git
cd model_server/demos/person_vehicle_bike_detection/python
pip3 install -r requirements.txt
python person_vehicle_bike_detection.py --help

Arguments#

Argument

Description

-h,–help

Show help message and exit

-n NETWORK_NAME, –network_name NETWORK_NAME

Network name

-l INPUT_LAYER, –input_layer INPUT_LAYER

Input layer name

-o OUTPUT_LAYER, –output_layer OUTPUT_LAYER

Output layer name

-d FRAME_SIZE, –frame_size FRAME_SIZE

Input frame width and height that matches used model

-c NUM_CAMERAS, –num_cameras NUM_CAMERAS

Number of cameras to be used

-f FILE, –file FILE

Path to the video file

-i IP, –ip IP

IP address of the ovms

-p PORT, –port PORT

Port of the ovms

Using with video file#

Copy example video file:

git clone "https://github.com/intel-iot-devkit/sample-videos.git"

Set camera count to 0 with -c 0 and provide path to the video file with -f parameter.

python person_vehicle_bike_detection.py -n person-vehicle-detection -l data -o detection_out -d 1024 -c 0 -f sample-videos/person-bicycle-car-detection.mp4 -i localhost -p 9000

Output:

[$(levelname)s ] Video0 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Video0 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Video0 fps: 7, Inf fps: 7, dropped fps: 0

Using with video file and camera#

Set camera count to 1 with -c 1 and provide path to the video file with -f parameter.

python person_vehicle_bike_detection.py -n person-vehicle-detection -l data -o detection_out -d 1024 -c 1 -f sample-videos/person-bicycle-car-detection.mp4 -i localhost -p 9000

Console logs:

[$(levelname)s ] Video1 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Camera0 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Video1 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Camera0 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Video1 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Camera0 fps: 8, Inf fps: 8, dropped fps: 0

NOTE: You should also be seeing the GUI showing the video frame and bounding boxes drawn with the detected class name