Converting a PyTorch Cascade RCNN R-101 Model#
Danger
The code described here has been deprecated! Do not use it to avoid working with a legacy solution. It will be kept for some time to ensure backwards compatibility, but you should not use it in contemporary applications.
This guide describes a deprecated conversion method. The guide on the new and recommended method can be found in the Python tutorials.
The goal of this article is to present a step-by-step guide on how to convert a PyTorch Cascade RCNN R-101 model to OpenVINO IR. First, you need to download the model and convert it to ONNX.
Downloading and Converting Model to ONNX#
Clone the repository :
git clone https://github.com/open-mmlab/mmdetection cd mmdetection
Note
To set up an environment, refer to the instructions.
Download the pre-trained model. The model is also available here.
To convert the model to ONNX format, use this script.
python3 tools/deployment/pytorch2onnx.py configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py cascade_rcnn_r101_fpn_1x_coco_20200317-0b6a2fbf.pth --output-file cascade_rcnn_r101_fpn_1x_coco.onnx
The script generates ONNX model file cascade_rcnn_r101_fpn_1x_coco.onnx
in the directory tools/deployment/
. If required, specify the model name or output directory, using --output-file <path-to-dir>/<model-name>.onnx
.
Converting an ONNX Cascade RCNN R-101 Model to OpenVINO IR#
mo --input_model cascade_rcnn_r101_fpn_1x_coco.onnx --mean_values [123.675,116.28,103.53] --scale_values [58.395,57.12,57.375]