efficientdet-d0-tf#
Use Case and High-Level Description#
The efficientdet-d0-tf
model is one of the EfficientDet
models designed to perform object detection. This model was pre-trained in TensorFlow*.
All the EfficientDet models have been pre-trained on the Common Objects in Context (COCO) image database.
For details about this family of models, check out the Google AutoML repository.
Steps to Reproduce Conversion to Frozen Graph#
Clone the original repository
git clone https://github.com/google/automl.git
cd automl
Checkout the commit that the conversion was tested on:
git checkout 341af7d4da7805c3a874877484e133f33c420ec5
Navigate to efficientdet source code directory
cd efficientdet
Install dependencies
pip install -r requirements.txt
Download model checkpoint archive using this link and unzip it.
Run following command:
python model_inspect.py --runmode=saved_model --model_name=efficientdet-d0 --ckpt_path=CHECKPOINT_DIR --saved_model_dir=OUTPUT_DIR
where
CHECKPOINT_DIR
- directory where model checkpoint stored,OUTPUT_DIR
- directory where converted model should be stored.
Specification#
Metric |
Value |
---|---|
Type |
Object detection |
GFLOPs |
2.54 |
MParams |
3.9 |
Source framework |
TensorFlow* |
Accuracy#
Metric |
Converted model |
---|---|
31.95% |
Input#
Original Model#
Image, name - image_arrays
, shape - 1, 512, 512, 3
, format is B, H, W, C
, where:
B
- batch sizeH
- heightW
- widthC
- channel
Channel order is RGB
.
Converted Model#
Image, name - image_arrays/placeholder_port_0
, shape - 1, 512, 512, 3
, format is B, H, W, C
, where:
B
- batch sizeH
- heightW
- widthC
- channel
Channel order is BGR
.
Output#
Original Model#
The array of summary detection information, name: detections
, shape: 1, 100, 7
in the format 1, N, 7
, where N
is the number of detected
bounding boxes. For each detection, the description has the format:
[image_id
, y_min
, x_min
, y_max
, x_max
, confidence
, label
], where:
image_id
- ID of the image in the batch(
x_min
,y_min
) - coordinates of the top left bounding box corner(
x_max
,y_max
) - coordinates of the bottom right bounding box cornerconfidence
- confidence for the predicted classlabel
- predicted class ID, in range [1, 91], mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl.txt
file
Converted Model#
The array of summary detection information, name: detections
, shape: 1, 1, 100, 7
in the format 1, 1, N, 7
, where N
is the number of detected
bounding boxes. For each detection, the description has the format:
[image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
], where:
image_id
- ID of the image in the batchlabel
- predicted class ID, in range [0, 90], mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl.txt
fileconf
- confidence for the predicted class(
x_min
,y_min
) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1])(
x_max
,y_max
) - coordinates of the bottom right bounding box corner (coordinates stored in normalized format, in range [0, 1])
Download a Model and Convert it into OpenVINO™ IR Format#
You can download models and if necessary convert them into OpenVINO™ IR format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
omz_downloader --name <model_name>
An example of using the Model Converter:
omz_converter --name <model_name>
Demo usage#
The model can be used in the following demos provided by the Open Model Zoo to show its capabilities:
Legal Information#
The original model is distributed under the
Apache License, Version 2.0.
A copy of the license is provided in <omz_dir>/models/public/licenses/APACHE-2.0-TF-AutoML.txt
.