Infinite Zoom Stable Diffusion v2 and OpenVINO™

This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub. See the installation guide for instructions to run this tutorial locally on Windows, Linux or macOS.

Github

Stable Diffusion v2 is the next generation of Stable Diffusion model a Text-to-Image latent diffusion model created by the researchers and engineers from Stability AI and LAION.

General diffusion models are machine learning systems that are trained to denoise random gaussian noise step by step, to get to a sample of interest, such as an image. Diffusion models have shown to achieve state-of-the-art results for generating image data. But one downside of diffusion models is that the reverse denoising process is slow. In addition, these models consume a lot of memory because they operate in pixel space, which becomes unreasonably expensive when generating high-resolution images. Therefore, it is challenging to train these models and also use them for inference. OpenVINO brings capabilities to run model inference on Intel hardware and opens the door to the fantastic world of diffusion models for everyone!

In previous notebooks, we already discussed how to run Text-to-Image generation and Image-to-Image generation using Stable Diffusion v1 and controlling its generation process using ControlNet. Now is turn of Stable Diffusion v2.

Stable Diffusion v2: What’s new?

The new stable diffusion model offers a bunch of new features inspired by the other models that have emerged since the introduction of the first iteration. Some of the features that can be found in the new model are: * The model comes with a new robust encoder, OpenCLIP, created by LAION and aided by Stability AI; this version v2 significantly enhances the produced photos over the V1 versions. * The model can now generate images in a 768x768 resolution, offering more information to be shown in the generated images. * The model finetuned with v-objective. The v-parameterization is particularly useful for numerical stability throughout the diffusion process to enable progressive distillation for models. For models that operate at higher resolution, it is also discovered that the v-parameterization avoids color shifting artifacts that are known to affect high resolution diffusion models, and in the video setting it avoids temporal color shifting that sometimes appears with epsilon-prediction used in Stable Diffusion v1. * The model also comes with a new diffusion model capable of running upscaling on the images generated. Upscaled images can be adjusted up to 4 times the original image. Provided as separated model, for more details please check stable-diffusion-x4-upscaler * The model comes with a new refined depth architecture capable of preserving context from prior generation layers in an img2img setting. This structure preservation helps generate images that preserving forms and shadow of objects, but with different content. * The model comes with an updated inpainting module built upon the previous model. This text-guided inpainting makes switching out parts in the image easier than before.

This notebook demonstrates how to convert and run Stable Diffusion v2 model using OpenVINO.

Notebook contains the following steps: 1. Convert PyTorch models to ONNX format. 2. Convert ONNX models to OpenVINO IR format, using Model Optimizer tool. 3. Run Stable Diffusion v2 inpainting pipeline for generation infinity zoom video

Stable Diffusion v2 Infinite Zoom Showcase

In this tutorial we consider how to use Stable Diffusion v2 model for generation sequence of images for infinite zoom video effect. To do this, we will need stabilityai/stable-diffusion-2-inpainting model.

Stable Diffusion Text guided Inpainting

In image editing, inpainting is a process of restoring missing parts of pictures. Most commonly applied to reconstructing old deteriorated images, removing cracks, scratches, dust spots, or red-eyes from photographs.

But with the power of AI and the Stable Diffusion model, inpainting can be used to achieve more than that. For example, instead of just restoring missing parts of an image, it can be used to render something entirely new in any part of an existing picture. Only your imagination limits it.

The workflow diagram explains how Stable Diffusion inpaining pipeline for inpainting works:

sd2-inpainiting

sd2-inpainiting

The pipeline has a lot of common with Text-to-Image generation pipeline discussed in previous section. Additionally to text prompt, pipeline accepts input source image and mask which provides an area of image which should be modified. Masked image encoded by VAE encoder into latent diffusion space and concatenated with randomly generated (on initial step only) or produced by U-Net latent generated image representation and used as input for next step denoising.

Using this inpainting feature, decreasing image by certain margin and masking this border for every new frame we can create interesting Zoom Out video based on our prompt.

Prerequisites

install required packages

!pip install -q "diffusers>=0.14.0" openvino-dev "transformers >= 4.25.1"
[notice] A new release of pip available: 22.3.1 -> 23.0.1
[notice] To update, run: pip install --upgrade pip

Stable Diffusion in Diffusers library

To work with Stable Diffusion v2, we will use Hugging Face Diffusers library. To experiment with Stable Diffusion models for Inpainting use case, Diffusers exposes the StableDiffusionInpaintPipeline similar to the other Diffusers pipelines. The code below demonstrates how to create StableDiffusionInpaintPipeline using stable-diffusion-2-inpainting:

from diffusers import StableDiffusionInpaintPipeline, DPMSolverMultistepScheduler

model_id_inpaint = "stabilityai/stable-diffusion-2-inpainting"

pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(model_id_inpaint)
scheduler_inpaint = DPMSolverMultistepScheduler.from_config(pipe_inpaint.scheduler.config)
Fetching 13 files:   0%|          | 0/13 [00:00<?, ?it/s]
/home/ea/work/transformers/src/transformers/models/clip/feature_extraction_clip.py:28: FutureWarning: The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use CLIPImageProcessor instead.
  warnings.warn(
import gc

text_encoder_inpaint = pipe_inpaint.text_encoder
text_encoder_inpaint.eval()
unet_inpaint = pipe_inpaint.unet
unet_inpaint.eval()
vae_inpaint = pipe_inpaint.vae
vae_inpaint.eval()

del pipe_inpaint
gc.collect();

Convert models to OpenVINO Intermediate representation (IR) format

Conversion part of model stayed remain as in Text-to-Image generation notebook. Except U-Net now has 9 channels, which now calculated like 4 for U-Net generated latents channels + 4 for latent representation of masked image + 1 channel resized mask.

from pathlib import Path
import torch
import numpy as np

sd2_inpainting_model_dir = Path("sd2_inpainting")
sd2_inpainting_model_dir.mkdir(exist_ok=True)
def convert_encoder_onnx(text_encoder: torch.nn.Module, onnx_path:Path):
    """
    Convert Text Encoder model to ONNX.
    Function accepts pipeline, prepares example inputs for ONNX conversion via torch.export,
    Parameters:
        text_encoder (torch.nn.Module): text encoder PyTorch model
        onnx_path (Path): File for storing onnx model
    Returns:
        None
    """
    if not onnx_path.exists():
        input_ids = torch.ones((1, 77), dtype=torch.long)
        # switch model to inference mode
        text_encoder.eval()

        # disable gradients calculation for reducing memory consumption
        with torch.no_grad():
            # export model to ONNX format
            torch.onnx._export(
                text_encoder,  # model instance
                input_ids,  # inputs for model tracing
                onnx_path,  # output file for saving result
                input_names=['tokens'],  # model input name for onnx representation
                output_names=['last_hidden_state', 'pooler_out'],  # model output names for onnx representation
                opset_version=14,  # onnx opset version for export,
                onnx_shape_inference=False
            )
        print('Text Encoder successfully converted to ONNX')


def convert_unet_onnx(unet:torch.nn.Module, onnx_path:Path, num_channels:int = 4, width:int = 64, height:int = 64):
    """
    Convert Unet model to ONNX, then IR format.
    Function accepts pipeline, prepares example inputs for ONNX conversion via torch.export,
    Parameters:
        unet (torch.nn.Module): UNet PyTorch model
        onnx_path (Path): File for storing onnx model
        num_channels (int, optional, 4): number of input channels
        width (int, optional, 64): input width
        height (int, optional, 64): input height
    Returns:
        None
    """
    if not onnx_path.exists():
        # prepare inputs
        encoder_hidden_state = torch.ones((2, 77, 1024))
        latents_shape = (2, num_channels, width, height)
        latents = torch.randn(latents_shape)
        t = torch.from_numpy(np.array(1, dtype=np.float32))

        # model size > 2Gb, it will be represented as onnx with external data files, we will store it in separated directory for avoid a lot of files in current directory
        onnx_path.parent.mkdir(exist_ok=True, parents=True)
        unet.eval()

        with torch.no_grad():
            torch.onnx._export(
                unet,
                (latents, t, encoder_hidden_state), str(onnx_path),
                input_names=['latent_model_input', 't', 'encoder_hidden_states'],
                output_names=['out_sample'],
                onnx_shape_inference=False
            )
        print('U-Net successfully converted to ONNX')


def convert_vae_encoder_onnx(vae: torch.nn.Module, onnx_path: Path, width:int = 512, height:int = 512):
    """
    Convert VAE model to ONNX, then IR format.
    Function accepts pipeline, creates wrapper class for export only necessary for inference part,
    prepares example inputs for ONNX conversion via torch.export,
    Parameters:
        vae (torch.nn.Module): VAE PyTorch model
        onnx_path (Path): File for storing onnx model
        width (int, optional, 512): input width
        height (int, optional, 512): input height
    Returns:
        None
    """
    class VAEEncoderWrapper(torch.nn.Module):
        def __init__(self, vae):
            super().__init__()
            self.vae = vae

        def forward(self, image):
            h = self.vae.encoder(image)
            moments = self.vae.quant_conv(h)
            return moments

    if not onnx_path.exists():
        vae_encoder = VAEEncoderWrapper(vae)
        vae_encoder.eval()
        image = torch.zeros((1, 3, width, height))
        with torch.no_grad():
            torch.onnx.export(vae_encoder, image, onnx_path, input_names=[
                              'init_image'], output_names=['image_latent'])
        print('VAE encoder successfully converted to ONNX')


def convert_vae_decoder_onnx(vae: torch.nn.Module, onnx_path: Path, width:int = 64, height:int = 64):
    """
    Convert VAE model to ONNX, then IR format.
    Function accepts pipeline, creates wrapper class for export only necessary for inference part,
    prepares example inputs for ONNX conversion via torch.export,
    Parameters:
        vae:
        onnx_path (Path): File for storing onnx model
        width (int, optional, 64): input width
        height (int, optional, 64): input height
    Returns:
        None
    """
    class VAEDecoderWrapper(torch.nn.Module):
        def __init__(self, vae):
            super().__init__()
            self.vae = vae

        def forward(self, latents):
            latents = 1 / 0.18215 * latents
            return self.vae.decode(latents)

    if not onnx_path.exists():
        vae_decoder = VAEDecoderWrapper(vae)
        latents = torch.zeros((1, 4, width, height))

        vae_decoder.eval()
        with torch.no_grad():
            torch.onnx.export(vae_decoder, latents, onnx_path, input_names=[
                              'latents'], output_names=['sample'])
        print('VAE decoder successfully converted to ONNX')
TEXT_ENCODER_ONNX_PATH_INPAINT = sd2_inpainting_model_dir / "text_encoder.onnx"
TEXT_ENCODER_OV_PATH_INPAINT = TEXT_ENCODER_ONNX_PATH_INPAINT.with_suffix('.xml')

if not TEXT_ENCODER_OV_PATH_INPAINT.exists():
    convert_encoder_onnx(text_encoder_inpaint, TEXT_ENCODER_ONNX_PATH_INPAINT)
    !mo --input_model $TEXT_ENCODER_ONNX_PATH_INPAINT --compress_to_fp16 --output_dir $sd2_inpainting_model_dir
    print('Text Encoder successfully converted to IR')
else:
    print(f"Text encoder will be loaded from {TEXT_ENCODER_OV_PATH_INPAINT}")

del text_encoder_inpaint
gc.collect();
/tmp/ipykernel_384919/3505677505.py:19: FutureWarning: 'torch.onnx._export' is deprecated in version 1.12.0 and will be removed in version 1.14. Please use torch.onnx.export instead.
  torch.onnx._export(
/home/ea/work/transformers/src/transformers/models/clip/modeling_clip.py:759: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.
  mask.fill_(torch.tensor(torch.finfo(dtype).min))
/home/ea/work/transformers/src/transformers/models/clip/modeling_clip.py:284: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
/home/ea/work/transformers/src/transformers/models/clip/modeling_clip.py:292: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
/home/ea/work/transformers/src/transformers/models/clip/modeling_clip.py:324: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
/home/ea/work/notebooks_env/lib/python3.8/site-packages/torch/onnx/symbolic_helper.py:710: UserWarning: Type cannot be inferred, which might cause exported graph to produce incorrect results.
  warnings.warn(
/home/ea/work/notebooks_env/lib/python3.8/site-packages/torch/onnx/symbolic_opset9.py:5408: UserWarning: Exporting aten::index operator of advanced indexing in opset 14 is achieved by combination of multiple ONNX operators, including Reshape, Transpose, Concat, and Gather. If indices include negative values, the exported graph will produce incorrect results.
  warnings.warn(
Text Encoder successfully converted to ONNX
Warning: One or more of the values of the Constant can't fit in the float16 data type. Those values were casted to the nearest limit value, the model can produce incorrect results.
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/latest/openvino_2_0_transition_guide.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/236-stable-diffusion-v2/sd2_inpainting/text_encoder.xml
[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/236-stable-diffusion-v2/sd2_inpainting/text_encoder.bin
Text Encoder successfully converted to IR
UNET_ONNX_PATH_INPAINT = sd2_inpainting_model_dir / 'unet/unet.onnx'
UNET_OV_PATH_INPAINT = UNET_ONNX_PATH_INPAINT.parents[1] / 'unet.xml'
if not UNET_OV_PATH_INPAINT.exists():
    convert_unet_onnx(unet_inpaint, UNET_ONNX_PATH_INPAINT, num_channels=9, width=64, height=64)
    del unet_inpaint
    gc.collect()
    !mo --input_model $UNET_ONNX_PATH_INPAINT --compress_to_fp16 --output_dir $sd2_inpainting_model_dir
    print('U-Net successfully converted to IR')
else:
    del unet_inpaint
    print(f"U-Net will be loaded from {UNET_OV_PATH_INPAINT}")
gc.collect();
/tmp/ipykernel_384919/3505677505.py:56: FutureWarning: 'torch.onnx._export' is deprecated in version 1.12.0 and will be removed in version 1.14. Please use torch.onnx.export instead.
  torch.onnx._export(
/home/ea/work/diffusers/src/diffusers/models/unet_2d_condition.py:526: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
/home/ea/work/diffusers/src/diffusers/models/resnet.py:185: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  assert hidden_states.shape[1] == self.channels
/home/ea/work/diffusers/src/diffusers/models/resnet.py:190: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  assert hidden_states.shape[1] == self.channels
/home/ea/work/diffusers/src/diffusers/models/resnet.py:112: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  assert hidden_states.shape[1] == self.channels
/home/ea/work/diffusers/src/diffusers/models/resnet.py:125: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if hidden_states.shape[0] >= 64:
/home/ea/work/diffusers/src/diffusers/models/unet_2d_condition.py:651: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if not return_dict:
U-Net successfully converted to ONNX
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/latest/openvino_2_0_transition_guide.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/236-stable-diffusion-v2/sd2_inpainting/unet.xml
[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/236-stable-diffusion-v2/sd2_inpainting/unet.bin
U-Net successfully converted to IR
VAE_ENCODER_ONNX_PATH_INPAINT = sd2_inpainting_model_dir / 'vae_encoder.onnx'
VAE_ENCODER_OV_PATH_INPAINT = VAE_ENCODER_ONNX_PATH_INPAINT.with_suffix('.xml')

if not VAE_ENCODER_OV_PATH_INPAINT.exists():
    convert_vae_encoder_onnx(vae_inpaint, VAE_ENCODER_ONNX_PATH_INPAINT, 512, 512)
    !mo --input_model $VAE_ENCODER_ONNX_PATH_INPAINT --compress_to_fp16 --output_dir $sd2_inpainting_model_dir
    print('VAE encoder successfully converted to IR')
else:
    print(f"VAE encoder will be loaded from {VAE_ENCODER_OV_PATH_INPAINT}")

VAE_DECODER_ONNX_PATH_INPAINT = sd2_inpainting_model_dir / 'vae_decoder.onnx'
VAE_DECODER_OV_PATH_INPAINT = VAE_DECODER_ONNX_PATH_INPAINT.with_suffix('.xml')
if not VAE_DECODER_OV_PATH_INPAINT.exists():
    convert_vae_decoder_onnx(vae_inpaint, VAE_DECODER_ONNX_PATH_INPAINT, 64, 64)
    !mo --input_model $VAE_DECODER_ONNX_PATH_INPAINT --compress_to_fp16 --output_dir $sd2_inpainting_model_dir
    print('VAE decoder successfully converted to IR')
else:
    print(f"VAE decoder will be loaded from {VAE_DECODER_OV_PATH_INPAINT}")

del vae_inpaint
gc.collect();
/home/ea/work/notebooks_env/lib/python3.8/site-packages/torch/onnx/_internal/jit_utils.py:258: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
  _C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/home/ea/work/notebooks_env/lib/python3.8/site-packages/torch/onnx/utils.py:687: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
  _C._jit_pass_onnx_graph_shape_type_inference(
/home/ea/work/notebooks_env/lib/python3.8/site-packages/torch/onnx/utils.py:1178: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
  _C._jit_pass_onnx_graph_shape_type_inference(
VAE encoder successfully converted to ONNX
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/latest/openvino_2_0_transition_guide.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/236-stable-diffusion-v2/sd2_inpainting/vae_encoder.xml
[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/236-stable-diffusion-v2/sd2_inpainting/vae_encoder.bin
VAE encoder successfully converted to IR
/home/ea/work/notebooks_env/lib/python3.8/site-packages/torch/onnx/_internal/jit_utils.py:258: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  _C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/home/ea/work/notebooks_env/lib/python3.8/site-packages/torch/onnx/utils.py:687: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  _C._jit_pass_onnx_graph_shape_type_inference(
/home/ea/work/notebooks_env/lib/python3.8/site-packages/torch/onnx/utils.py:1178: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
  _C._jit_pass_onnx_graph_shape_type_inference(
VAE decoder successfully converted to ONNX
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/latest/openvino_2_0_transition_guide.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/236-stable-diffusion-v2/sd2_inpainting/vae_decoder.xml
[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/236-stable-diffusion-v2/sd2_inpainting/vae_decoder.bin
VAE decoder successfully converted to IR

Prepare Inference pipeline

As it was descussed previously, Inpainting inference pipeline is based on Text-to-Image inference pipeline with addition mask processing step. We will reuse OVStableDiffusionPipeline basic utilities in OVStableDiffusionInpaintingPipeline class.

import inspect
from typing import List, Optional, Union, Dict

import PIL
import cv2

from transformers import CLIPTokenizer
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from openvino.runtime import Model


def prepare_mask_and_masked_image(image:PIL.Image.Image, mask:PIL.Image.Image):
    """
    Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
    converted to ``np.array`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
    ``image`` and ``1`` for the ``mask``.

    The ``image`` will be converted to ``np.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
    binarized (``mask > 0.5``) and cast to ``np.float32`` too.

    Args:
        image (Union[np.array, PIL.Image]): The image to inpaint.
            It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array``
        mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
            It can be a ``PIL.Image``, or a ``height x width`` ``np.array``.

    Returns:
        tuple[np.array]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
            dimensions: ``batch x channels x height x width``.
    """
    if isinstance(image, (PIL.Image.Image, np.ndarray)):
        image = [image]

    if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
        image = [np.array(i.convert("RGB"))[None, :] for i in image]
        image = np.concatenate(image, axis=0)
    elif isinstance(image, list) and isinstance(image[0], np.ndarray):
        image = np.concatenate([i[None, :] for i in image], axis=0)

    image = image.transpose(0, 3, 1, 2)
    image = image.astype(np.float32) / 127.5 - 1.0

    # preprocess mask
    if isinstance(mask, (PIL.Image.Image, np.ndarray)):
        mask = [mask]

    if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
        mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
        mask = mask.astype(np.float32) / 255.0
    elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
        mask = np.concatenate([m[None, None, :] for m in mask], axis=0)

    mask[mask < 0.5] = 0
    mask[mask >= 0.5] = 1

    masked_image = image * (mask < 0.5)

    return mask, masked_image
class OVStableDiffusionInpaintingPipeline(DiffusionPipeline):
    def __init__(
        self,
        vae_decoder: Model,
        text_encoder: Model,
        tokenizer: CLIPTokenizer,
        unet: Model,
        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
        vae_encoder: Model = None,
    ):
        """
        Pipeline for text-to-image generation using Stable Diffusion.
        Parameters:
            vae_decoder (Model):
                Variational Auto-Encoder (VAE) Model to decode images to and from latent representations.
            text_encoder (Model):
                Frozen text-encoder. Stable Diffusion uses the text portion of
                [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
                the clip-vit-large-patch14(https://huggingface.co/openai/clip-vit-large-patch14) variant.
            tokenizer (CLIPTokenizer):
                Tokenizer of class CLIPTokenizer(https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
            unet (Model): Conditional U-Net architecture to denoise the encoded image latents.
            vae_encoder (Model):
                Variational Auto-Encoder (VAE) Model to encode images to latent representation.
            scheduler (SchedulerMixin):
                A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of
                DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.
        """
        super().__init__()
        self.scheduler = scheduler
        self.vae_decoder = vae_decoder
        self.vae_encoder = vae_encoder
        self.text_encoder = text_encoder
        self.unet = unet
        self._text_encoder_output = text_encoder.output(0)
        self._unet_output = unet.output(0)
        self._vae_d_output = vae_decoder.output(0)
        self._vae_e_output = vae_encoder.output(0) if vae_encoder is not None else None
        self.height = self.unet.input(0).shape[2] * 8
        self.width = self.unet.input(0).shape[3] * 8
        self.tokenizer = tokenizer

    def prepare_mask_latents(
        self,
        mask,
        masked_image,
        height=512,
        width=512,
        do_classifier_free_guidance=True,
    ):
        """
        Prepare mask as Unet nput and encode input masked image to latent space using vae encoder

        Parameters:
          mask (np.array): input mask array
          masked_image (np.array): masked input image tensor
          heigh (int, *optional*, 512): generated image height
          width (int, *optional*, 512): generated image width
          do_classifier_free_guidance (bool, *optional*, True): whether to use classifier free guidance or not
        Returns:
          mask (np.array): resized mask tensor
          masked_image_latents (np.array): masked image encoded into latent space using VAE
        """
        mask = torch.nn.functional.interpolate(torch.from_numpy(mask), size=(height // 8, width // 8))
        mask = mask.numpy()

        # encode the mask image into latents space so we can concatenate it to the latents
        moments = self.vae_encoder(masked_image)[self._vae_e_output]
        mean, logvar = np.split(moments, 2, axis=1)
        std = np.exp(logvar * 0.5)
        masked_image_latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215

        mask = np.concatenate([mask] * 2) if do_classifier_free_guidance else mask
        masked_image_latents = (
            np.concatenate([masked_image_latents] * 2)
            if do_classifier_free_guidance
            else masked_image_latents
        )
        return mask, masked_image_latents

    def __call__(
        self,
        prompt: Union[str, List[str]],
        image: PIL.Image.Image,
        mask_image: PIL.Image.Image,
        negative_prompt: Union[str, List[str]] = None,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        eta: Optional[float] = 0,
        output_type: Optional[str] = "pil",
        seed: Optional[int] = None,
    ):
        """
        Function invoked when calling the pipeline for generation.
        Parameters:
            prompt (str or List[str]):
                The prompt or prompts to guide the image generation.
            image (PIL.Image.Image):
                 Source image for inpainting.
            mask_image (PIL.Image.Image):
                 Mask area for inpainting
            negative_prompt (str or List[str]):
                The negative prompt or prompts to guide the image generation.
            num_inference_steps (int, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (float, *optional*, defaults to 7.5):
                Guidance scale as defined in Classifier-Free Diffusion Guidance(https://arxiv.org/abs/2207.12598).
                guidance_scale is defined as `w` of equation 2.
                Higher guidance scale encourages to generate images that are closely linked to the text prompt,
                usually at the expense of lower image quality.
            eta (float, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [DDIMScheduler], will be ignored for others.
            output_type (`str`, *optional*, defaults to "pil"):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): PIL.Image.Image or np.array.
            seed (int, *optional*, None):
                Seed for random generator state initialization.
        Returns:
            Dictionary with keys:
                sample - the last generated image PIL.Image.Image or np.array
        """
        if seed is not None:
            np.random.seed(seed)
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
        # get prompt text embeddings
        text_embeddings = self._encode_prompt(
            prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
        )
        # prepare mask
        mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
        # set timesteps
        accepts_offset = "offset" in set(
            inspect.signature(self.scheduler.set_timesteps).parameters.keys()
        )
        extra_set_kwargs = {}
        if accepts_offset:
            extra_set_kwargs["offset"] = 1

        self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, 1)
        latent_timestep = timesteps[:1]

        # get the initial random noise unless the user supplied it
        latents, meta = self.prepare_latents(None, latent_timestep)
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            do_classifier_free_guidance=do_classifier_free_guidance,
        )

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        for t in self.progress_bar(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = (
                np.concatenate([latents] * 2)
                if do_classifier_free_guidance
                else latents
            )
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
            latent_model_input = np.concatenate(
                [latent_model_input, mask, masked_image_latents], axis=1
            )
            # predict the noise residual
            noise_pred = self.unet(
                [latent_model_input, np.array(t, dtype=np.float32), text_embeddings]
            )[self._unet_output]
            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
                noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(
                torch.from_numpy(noise_pred),
                t,
                torch.from_numpy(latents),
                **extra_step_kwargs,
            )["prev_sample"].numpy()
        # scale and decode the image latents with vae
        image = self.vae_decoder(latents)[self._vae_d_output]

        image = self.postprocess_image(image, meta, output_type)
        return {"sample": image}

    def _encode_prompt(self, prompt:Union[str, List[str]], num_images_per_prompt:int = 1, do_classifier_free_guidance:bool = True, negative_prompt:Union[str, List[str]] = None):
        """
        Encodes the prompt into text encoder hidden states.

        Parameters:
            prompt (str or list(str)): prompt to be encoded
            num_images_per_prompt (int): number of images that should be generated per prompt
            do_classifier_free_guidance (bool): whether to use classifier free guidance or not
            negative_prompt (str or list(str)): negative prompt to be encoded
        Returns:
            text_embeddings (np.ndarray): text encoder hidden states
        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # tokenize input prompts
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids

        text_embeddings = self.text_encoder(
            text_input_ids)[self._text_encoder_output]

        # duplicate text embeddings for each generation per prompt
        if num_images_per_prompt != 1:
            bs_embed, seq_len, _ = text_embeddings.shape
            text_embeddings = np.tile(
                text_embeddings, (1, num_images_per_prompt, 1))
            text_embeddings = np.reshape(
                text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1))

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            max_length = text_input_ids.shape[-1]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            else:
                uncond_tokens = negative_prompt
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            uncond_embeddings = self.text_encoder(uncond_input.input_ids)[self._text_encoder_output]

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1))
            uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1))

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])

        return text_embeddings

    def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None):
        """
        Function for getting initial latents for starting generation

        Parameters:
            image (PIL.Image.Image, *optional*, None):
                Input image for generation, if not provided randon noise will be used as starting point
            latent_timestep (torch.Tensor, *optional*, None):
                Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
        Returns:
            latents (np.ndarray):
                Image encoded in latent space
        """
        latents_shape = (1, 4, self.height // 8, self.width // 8)
        noise = np.random.randn(*latents_shape).astype(np.float32)
        if image is None:
            # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
            if isinstance(self.scheduler, LMSDiscreteScheduler):
                noise = noise * self.scheduler.sigmas[0].numpy()
            return noise, {}
        input_image, meta = preprocess(image)
        moments = self.vae_encoder(input_image)[self._vae_e_output]
        mean, logvar = np.split(moments, 2, axis=1)
        std = np.exp(logvar * 0.5)
        latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
        latents = self.scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
        return latents, meta

    def postprocess_image(self, image:np.ndarray, meta:Dict, output_type:str = "pil"):
        """
        Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),
        normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format

        Parameters:
            image (np.ndarray):
                Generated image
            meta (Dict):
                Metadata obtained on latents preparing step, can be empty
            output_type (str, *optional*, pil):
                Output format for result, can be pil or numpy
        Returns:
            image (List of np.ndarray or PIL.Image.Image):
                Postprocessed images
        """
        if "padding" in meta:
            pad = meta["padding"]
            (_, end_h), (_, end_w) = pad[1:3]
            h, w = image.shape[2:]
            unpad_h = h - end_h
            unpad_w = w - end_w
            image = image[:, :, :unpad_h, :unpad_w]
        image = np.clip(image / 2 + 0.5, 0, 1)
        image = np.transpose(image, (0, 2, 3, 1))
        # 9. Convert to PIL
        if output_type == "pil":
            image = self.numpy_to_pil(image)
            if "src_height" in meta:
                orig_height, orig_width = meta["src_height"], meta["src_width"]
                image = [img.resize((orig_width, orig_height),
                                    PIL.Image.Resampling.LANCZOS) for img in image]
        else:
            if "src_height" in meta:
                orig_height, orig_width = meta["src_height"], meta["src_width"]
                image = [cv2.resize(img, (orig_width, orig_width))
                         for img in image]
        return image

    def get_timesteps(self, num_inference_steps:int, strength:float):
        """
        Helper function for getting scheduler timesteps for generation
        In case of image-to-image generation, it updates number of steps according to strength

        Parameters:
           num_inference_steps (int):
              number of inference steps for generation
           strength (float):
               value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
               Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
        """
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start

Zoom Video Generation

For achieving zoom effect, we will use inpainting to expand images beyond their original borders. We run our OVStableDiffusionInpaintingPipeline in the loop, where each next frame will add edges to previous. The frame generation process illustrated on diagram below:

frame generation)

frame generation)

After processing current frame, we decrease size of current image by mask size pixels from each side and use it as input for next step. Changing size of mask we can influence the size of painting area and image scaling.

There are 2 zooming directions: * Zoom Out - move away from object * Zoom In - move closer to object

Zoom In will be processed in the same way like Zoom Out, but after generation is finished, we record frames in reversed order.

def generate_video(
    pipe:OVStableDiffusionInpaintingPipeline,
    prompt:Union[str, List[str]],
    negative_prompt:Union[str, List[str]],
    guidance_scale:float = 7.5,
    num_inference_steps:int = 20,
    num_frames:int = 20,
    mask_width:int = 128,
    seed:int = 9999,
    zoom_in:bool = False,
):
    """
    Zoom video generation function

    Parameters:
      pipe (OVStableDiffusionInpaintingPipeline): inpainting pipeline.
      prompt (str or List[str]): The prompt or prompts to guide the image generation.
      negative_prompt (str or List[str]): The negative prompt or prompts to guide the image generation.
      guidance_scale (float, *optional*, defaults to 7.5):
                Guidance scale as defined in Classifier-Free Diffusion Guidance(https://arxiv.org/abs/2207.12598).
                guidance_scale is defined as `w` of equation 2.
                Higher guidance scale encourages to generate images that are closely linked to the text prompt,
                usually at the expense of lower image quality.
      num_inference_steps (int, *optional*, defaults to 50): The number of denoising steps for each frame. More denoising steps usually lead to a higher quality image at the expense of slower inference.
      num_frames (int, *optional*, 20): number frames for video.
      mask_width (int, *optional*, 128): size of border mask for inpainting on each step.
      seed (int, *optional*, None): Seed for random generator state initialization.
      zoom_in (bool, *optional*, False): zoom mode Zoom In or Zoom Out.
    Returns:
      output_path (str): Path where generated video loacated.
    """

    height = 512
    width = height

    current_image = PIL.Image.new(mode="RGBA", size=(height, width))
    mask_image = np.array(current_image)[:, :, 3]
    mask_image = PIL.Image.fromarray(255 - mask_image).convert("RGB")
    current_image = current_image.convert("RGB")

    init_images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=current_image,
        guidance_scale=guidance_scale,
        mask_image=mask_image,
        seed=seed,
        num_inference_steps=num_inference_steps,
    )["sample"]

    image_grid(init_images, rows=1, cols=1)

    num_outpainting_steps = num_frames
    num_interpol_frames = 30

    current_image = init_images[0]
    all_frames = []
    all_frames.append(current_image)

    for i in range(num_outpainting_steps):
        print(f"Generating image: {i + 1} / {num_outpainting_steps}")

        prev_image_fix = current_image

        prev_image = shrink_and_paste_on_blank(current_image, mask_width)

        current_image = prev_image

        # create mask (black image with white mask_width width edges)
        mask_image = np.array(current_image)[:, :, 3]
        mask_image = PIL.Image.fromarray(255 - mask_image).convert("RGB")

        # inpainting step
        current_image = current_image.convert("RGB")
        images = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=current_image,
            guidance_scale=guidance_scale,
            mask_image=mask_image,
            seed=seed,
            num_inference_steps=num_inference_steps,
        )["sample"]
        current_image = images[0]
        current_image.paste(prev_image, mask=prev_image)

        # interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
        for j in range(num_interpol_frames - 1):
            interpol_image = current_image
            interpol_width = round((1 - (1 - 2 * mask_width / height) ** (1 - (j + 1) / num_interpol_frames)) * height / 2)
            interpol_image = interpol_image.crop(
                (
                    interpol_width,
                    interpol_width,
                    width - interpol_width,
                    height - interpol_width,
                )
            )

            interpol_image = interpol_image.resize((height, width))

            # paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
            interpol_width2 = round((1 - (height - 2 * mask_width) / (height - 2 * interpol_width)) / 2 * height)
            prev_image_fix_crop = shrink_and_paste_on_blank(prev_image_fix, interpol_width2)
            interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop)
            all_frames.append(interpol_image)
        all_frames.append(current_image)

    video_file_name = f"infinite_zoom_{'in' if zoom_in else 'out'}"
    fps = 30
    save_path = video_file_name + ".mp4"
    write_video(save_path, all_frames, fps, reversed_order=zoom_in)
    return save_path
def shrink_and_paste_on_blank(current_image:PIL.Image.Image, mask_width:int):
    """
    Decreases size of current_image by mask_width pixels from each side,
    then adds a mask_width width transparent frame,
    so that the image the function returns is the same size as the input.

    Parameters:
        current_image (PIL.Image): input image to transform
        mask_width (int): width in pixels to shrink from each side
    Returns:
       prev_image (PIL.Image): resized image with extended borders
    """

    height = current_image.height
    width = current_image.width

    # shrink down by mask_width
    prev_image = current_image.resize((height - 2 * mask_width, width - 2 * mask_width))
    prev_image = prev_image.convert("RGBA")
    prev_image = np.array(prev_image)

    # create blank non-transparent image
    blank_image = np.array(current_image.convert("RGBA")) * 0
    blank_image[:, :, 3] = 1

    # paste shrinked onto blank
    blank_image[
        mask_width : height - mask_width, mask_width : width - mask_width, :
    ] = prev_image
    prev_image = PIL.Image.fromarray(blank_image)

    return prev_image


def image_grid(imgs:List[PIL.Image.Image], rows:int, cols:int):
    """
    Insert images to grid

    Parameters:
        imgs (List[PIL.Image.Image]): list of images for making grid
        rows (int): number of rows in grid
        cols (int): number of columns in grid
    Returns:
        grid (PIL.Image): image with input images collage
    """
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = PIL.Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


def write_video(file_path:str, frames:List[PIL.Image.Image], fps:float, reversed_order:bool = True, gif:bool = True):
    """
    Writes frames to an mp4 video file and optionaly to gif

    Parameters:
        file_path (str): Path to output video, must end with .mp4
        frames (List of PIL.Image): list of frames
        fps (float): Desired frame rate
        reversed_order (bool): if order of images to be reversed (default = True)
        gif (bool): save frames to gif format (default = True)
    Returns:
        None
    """
    if reversed_order:
        frames.reverse()

    w, h = frames[0].size
    fourcc = cv2.VideoWriter_fourcc("m", "p", "4", "v")
    # fourcc = cv2.VideoWriter_fourcc(*'avc1')
    writer = cv2.VideoWriter(file_path, fourcc, fps, (w, h))

    for frame in frames:
        np_frame = np.array(frame.convert("RGB"))
        cv_frame = cv2.cvtColor(np_frame, cv2.COLOR_RGB2BGR)
        writer.write(cv_frame)

    writer.release()
    if gif:
        frames[0].save(
            file_path.replace(".mp4", ".gif"),
            save_all=True,
            append_images=frames[1:],
            duratiobn=len(frames) / fps,
            loop=0,
        )

Configure Inference Pipeline

Configuration steps: 1. Load models on device 2. Configure tokenizer and scheduler 3. Create instance of OvStableDiffusionInpaintingPipeline class

from openvino.runtime import Core

core = Core()

tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14')

text_enc_inpaint = core.compile_model(TEXT_ENCODER_OV_PATH_INPAINT, "CPU")
unet_model_inpaint = core.compile_model(UNET_OV_PATH_INPAINT, "CPU")
vae_decoder_inpaint = core.compile_model(VAE_DECODER_OV_PATH_INPAINT, "CPU")
vae_encoder_inpaint = core.compile_model(VAE_ENCODER_OV_PATH_INPAINT, "CPU")

ov_pipe_inpaint = OVStableDiffusionInpaintingPipeline(
    tokenizer=tokenizer,
    text_encoder=text_enc_inpaint,
    unet=unet_model_inpaint,
    vae_encoder=vae_encoder_inpaint,
    vae_decoder=vae_decoder_inpaint,
    scheduler=scheduler_inpaint,
)

Run Infinite Zoom video generation

import ipywidgets as widgets

zoom_prompt = widgets.Textarea(value="valley in the Alps at sunset, epic vista, beautiful landscape, 4k, 8k", description='positive prompt', layout=widgets.Layout(width="auto"))
zoom_negative_prompt = widgets.Textarea(value="lurry, bad art, blurred, text, watermark", description='negative prompt', layout=widgets.Layout(width="auto"))
zoom_num_steps = widgets.IntSlider(min=1, max=50, value=20, description='steps:')
zoom_num_frames = widgets.IntSlider(min=1, max=50, value=3, description='frames:')
mask_width = widgets.IntSlider(min=32, max=256, value=128, description='edge size:')
zoom_seed = widgets.IntSlider(min=0, max=10000000, description='seed: ', value=9999)
zoom_in = widgets.Checkbox(
    value=False,
    description='zoom in',
    disabled=False
)

widgets.VBox([zoom_prompt, zoom_negative_prompt, zoom_seed, zoom_num_steps, zoom_num_frames, mask_width, zoom_in])
VBox(children=(Textarea(value='valley in the Alps at sunset, epic vista, beautiful landscape, 4k, 8k', descrip…
output_file = generate_video(ov_pipe_inpaint, zoom_prompt.value, zoom_negative_prompt.value, 7.5, zoom_num_steps.value, zoom_num_frames.value, mask_width.value, zoom_seed.value, zoom_in.value)
0%|          | 0/20 [00:00<?, ?it/s]
Generating image: 1 / 3
0%|          | 0/20 [00:00<?, ?it/s]
Generating image: 2 / 3
0%|          | 0/20 [00:00<?, ?it/s]
Generating image: 3 / 3
0%|          | 0/20 [00:00<?, ?it/s]
import IPython.display

IPython.display.HTML(f'<img src="{output_file.replace(".mp4", ".gif")}">')