Model Accuracy¶
The following table presents the absolute accuracy drop calculated as the accuracy difference between FP32 and INT8 representations of a model on two platforms
A - Intel® Core™ i9-9000K (AVX2)
B - Intel® Xeon® 6338, (VNNI)
C - Intel® Flex-170
OpenVINO™ Model name |
dataset |
Metric Name |
A |
B |
C |
---|---|---|---|---|---|
bert-base-cased |
SST-2_bert_cased_padded |
accuracy |
0.11% |
1.15% |
0.57% |
bert-large-uncased-whole-word-masking-squad-0001 |
SQUAD_v1_1_bert_msl384_mql64_ds128_lowercase |
F1 |
0.51% |
0.55% |
0.68% |
deeplabv3 |
VOC2012_segm |
mean_iou |
0.44% |
0.06% |
0.04% |
densenet-121 |
ImageNet2012 |
accuracy @ top1 |
0.31% |
0.32% |
0.30% |
efficientdet-d0 |
COCO2017_detection_91cl |
coco_precision |
0.88% |
0.62% |
0.50% |
faster_rcnn_resnet50_coco |
COCO2017_detection_91cl_bkgr |
coco_precision |
0.19% |
0.19% |
0.20% |
googlenet-v4 |
ImageNet2012_bkgr |
accuracy @ top1 |
0.07% |
0.09% |
0.26% |
mobilenet-ssd |
VOC2007_detection |
map |
0.47% |
0.14% |
0.48% |
mobilenet-v2 |
ImageNet2012 |
accuracy @ top1 |
0.50% |
0.18% |
0.20% |
resnet-18 |
ImageNet2012 |
accuracy @ top1 |
0.27% |
0.24% |
0.29% |
resnet-50 |
ImageNet2012 |
accuracy @ top1 |
0.13% |
0.12% |
0.13% |
ssd-resnet34-1200 |
COCO2017_detection_80cl_bkgr |
map |
0.08% |
0.09% |
0.06% |
unet-camvid-onnx-0001 |
CamVid_12cl |
mean_iou @ mean |
0.33% |
0.33% |
0.30% |
yolo_v3_tiny |
COCO2017_detection_80cl |
map |
0.01% |
0.07% |
0.12% |
yolo_v4 |
COCO2017_detection_80cl |
map |
0.05% |
0.06% |
0.01% |