Working with Open Model Zoo Models¶
This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub. See the installation guide for instructions to run this tutorial locally on Windows, Linux or macOS. To run without installing anything, click the launch binder button.
This tutorial shows how to download a model from Open Model Zoo, convert it to OpenVINO™ IR format, show information about the model, and benchmark the model.
OpenVINO and Open Model Zoo Tools¶
OpenVINO and Open Model Zoo tools are listed in the table below.
Tool |
Command |
Description |
---|---|---|
Model Downloader |
omz_download er |
Download models from Open Model Zoo. |
Model Converter |
omz_converte r |
Convert Open Model Zoo models to OpenVINO’s IR format. |
Info Dumper |
omz_info_dum per |
Print information about Open Model Zoo models. |
Benchmark Tool |
benchmark_ap p |
Benchmark model performance by computing inference time. |
Preparation¶
Model Name¶
Set model_name
to the name of the Open Model Zoo model to use in
this notebook. Refer to the list of
public
and
Intel
pre-trained models for a full list of models that can be used. Set
model_name
to the model you want to use.
# model_name = "resnet-50-pytorch"
model_name = "mobilenet-v2-pytorch"
Imports¶
import json
import sys
from pathlib import Path
from IPython.display import Markdown, display
from openvino.runtime import Core
sys.path.append("../utils")
from notebook_utils import DeviceNotFoundAlert, NotebookAlert
Settings and Configuration¶
Set the file and directory paths. By default, this notebook downloads
models from Open Model Zoo to the open_model_zoo_models
directory in
your $HOME
directory. On Windows, the $HOME directory is usually
c:\users\username
, on Linux /home/username
. To change the
folder, change base_model_dir
in the cell below.
The following settings can be changed:
base_model_dir
: Models will be downloaded into theintel
andpublic
folders in this directory.omz_cache_dir
: Cache folder for Open Model Zoo. Specifying a cache directory is not required for Model Downloader and Model Converter, but it speeds up subsequent downloads.precision
: If specified, only models with this precision will be downloaded and converted.
base_model_dir = Path("model")
omz_cache_dir = Path("cache")
precision = "FP16"
# Check if an iGPU is available on this system to use with Benchmark App.
ie = Core()
gpu_available = "GPU" in ie.available_devices
print(
f"base_model_dir: {base_model_dir}, omz_cache_dir: {omz_cache_dir}, gpu_availble: {gpu_available}"
)
base_model_dir: model, omz_cache_dir: cache, gpu_availble: False
Download a Model from Open Model Zoo¶
!git clone https://github.com/openvinotoolkit/open_model_zoo.git
%cd open_model_zoo/tools/model_tools
!pip install .
%cd ../../../
Cloning into 'open_model_zoo'... remote: Enumerating objects: 102923, done.[K remote: Counting objects: 100% (647/647), done.[K remote: Compressing objects: 100% (393/393), done.[K remote: Total 102923 (delta 206), reused 614 (delta 199), pack-reused 102276[K Receiving objects: 100% (102923/102923), 303.21 MiB | 4.08 MiB/s, done. Resolving deltas: 100% (70134/70134), done. /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/notebooks/104-model-tools/open_model_zoo/tools/model_tools Processing /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/notebooks/104-model-tools/open_model_zoo/tools/model_tools Installing build dependencies ... - | done Getting requirements to build wheel ... - done Preparing metadata (pyproject.toml) ... - done Requirement already satisfied: openvino-telemetry>=2022.1.0 in /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from omz-tools==1.0.3) (2022.3.0) Requirement already satisfied: pyyaml>=5.4.1 in /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from omz-tools==1.0.3) (6.0) Requirement already satisfied: requests>=2.25.1 in /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from omz-tools==1.0.3) (2.28.1) Requirement already satisfied: charset-normalizer<3,>=2 in /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->omz-tools==1.0.3) (2.1.1) Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->omz-tools==1.0.3) (3.4) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->omz-tools==1.0.3) (1.26.15) Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->omz-tools==1.0.3) (2023.5.7) Building wheels for collected packages: omz-tools Building wheel for omz-tools (pyproject.toml) ... - | / - done Created wheel for omz-tools: filename=omz_tools-1.0.3-py3-none-any.whl size=3404848 sha256=da42cc746b47c4ef3c32de2b9f3906bc605849f8f2f9a2b6c9bb506c775a3429 Stored in directory: /tmp/pip-ephem-wheel-cache-djzwd327/wheels/b1/eb/9f/48d555f6f08975ee2c11f6f483e2e2ea2c83713863d6c0e686 Successfully built omz-tools Installing collected packages: omz-tools Successfully installed omz-tools-1.0.3 /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/notebooks/104-model-tools
Specify, display and run the Model Downloader command to download the model.
## Uncomment the next line to show help in omz_downloader which explains the command-line options.
# !omz_downloader --help
download_command = (
f"omz_downloader --name {model_name} --output_dir {base_model_dir} --cache_dir {omz_cache_dir}"
)
display(Markdown(f"Download command: `{download_command}`"))
display(Markdown(f"Downloading {model_name}..."))
! $download_command
Download command:
omz_downloader --name mobilenet-v2-pytorch --output_dir model --cache_dir cache
Downloading mobilenet-v2-pytorch…
################|| Downloading mobilenet-v2-pytorch ||################
========== Downloading model/public/mobilenet-v2-pytorch/mobilenet_v2-b0353104.pth
Convert a Model to OpenVINO IR format¶
Specify, display and run the Model Converter command to convert the
model to OpenVINO IR format. Model conversion may take a while. The
output of the Model Converter command will be displayed. When the
conversion is successful, the last lines of the output will include:
[ SUCCESS ] Generated IR version 11 model.
For downloaded models
that are already in OpenVINO IR format, conversion will be skipped.
## Uncomment the next line to show Help in omz_converter which explains the command-line options.
# !omz_converter --help
convert_command = f"omz_converter --name {model_name} --precisions {precision} --download_dir {base_model_dir} --output_dir {base_model_dir}"
display(Markdown(f"Convert command: `{convert_command}`"))
display(Markdown(f"Converting {model_name}..."))
! $convert_command
Convert command:
omz_converter --name mobilenet-v2-pytorch --precisions FP16 --download_dir model --output_dir model
Converting mobilenet-v2-pytorch…
========== Converting mobilenet-v2-pytorch to ONNX
Conversion to ONNX command: /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/bin/python -- /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino/model_zoo/internal_scripts/pytorch_to_onnx.py --model-name=mobilenet_v2 --weights=model/public/mobilenet-v2-pytorch/mobilenet_v2-b0353104.pth --import-module=torchvision.models --input-shape=1,3,224,224 --output-file=model/public/mobilenet-v2-pytorch/mobilenet-v2.onnx --input-names=data --output-names=prob
ONNX check passed successfully.
========== Converting mobilenet-v2-pytorch to IR (FP16)
Conversion command: /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/bin/python -- /opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/bin/mo --framework=onnx --output_dir=/tmp/tmpqn77e4wp --model_name=mobilenet-v2-pytorch --input=data '--mean_values=data[123.675,116.28,103.53]' '--scale_values=data[58.624,57.12,57.375]' --reverse_input_channels --output=prob --input_model=model/public/mobilenet-v2-pytorch/mobilenet-v2.onnx '--layout=data(NCHW)' '--input_shape=[1, 3, 224, 224]' --compress_to_fp16=True
Check for a new version of Intel(R) Distribution of OpenVINO(TM) toolkit here https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html?cid=other&source=prod&campid=ww_2023_bu_IOTG_OpenVINO-2022-3&content=upg_all&medium=organic or on https://github.com/openvinotoolkit/openvino
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/latest/openvino_2_0_transition_guide.html
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /tmp/tmpqn77e4wp/mobilenet-v2-pytorch.xml
[ SUCCESS ] BIN file: /tmp/tmpqn77e4wp/mobilenet-v2-pytorch.bin
Get Model Information¶
The Info Dumper prints the following information for Open Model Zoo models:
Model name
Description
Framework that was used to train the model
License URL
Precisions supported by the model
Subdirectory: the location of the downloaded model
Task type
This information can be shown by running
omz_info_dumper --name model_name
in a terminal. The information can
also be parsed and used in scripts.
In the next cell, run Info Dumper and use json
to load the
information in a dictionary.
model_info_output = %sx omz_info_dumper --name $model_name
model_info = json.loads(model_info_output.get_nlstr())
if len(model_info) > 1:
NotebookAlert(
f"There are multiple IR files for the {model_name} model. The first model in the "
"omz_info_dumper output will be used for benchmarking. Change "
"`selected_model_info` in the cell below to select a different model from the list.",
"warning",
)
model_info
[{'name': 'mobilenet-v2-pytorch', 'composite_model_name': None, 'description': 'MobileNet V2 is image classification model pre-trained on ImageNet dataset. This is a PyTorch* implementation of MobileNetV2 architecture as described in the paper "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" <https://arxiv.org/abs/1801.04381>.nThe model input is a blob that consists of a single image of "1, 3, 224, 224" in "RGB" order.nThe model output is typical object classifier for the 1000 different classifications matching with those in the ImageNet database.', 'framework': 'pytorch', 'license_url': 'https://raw.githubusercontent.com/pytorch/vision/master/LICENSE', 'accuracy_config': '/opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino/model_zoo/models/public/mobilenet-v2-pytorch/accuracy-check.yml', 'model_config': '/opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino/model_zoo/models/public/mobilenet-v2-pytorch/model.yml', 'precisions': ['FP16', 'FP32'], 'quantization_output_precisions': ['FP16-INT8', 'FP32-INT8'], 'subdirectory': 'public/mobilenet-v2-pytorch', 'task_type': 'classification', 'input_info': [{'name': 'data', 'shape': [1, 3, 224, 224], 'layout': 'NCHW'}], 'model_stages': []}]
Having information of the model in a JSON file enables extraction of the path to the model directory, and building the path to the OpenVINO IR file.
selected_model_info = model_info[0]
model_path = (
base_model_dir
/ Path(selected_model_info["subdirectory"])
/ Path(f"{precision}/{selected_model_info['name']}.xml")
)
print(model_path, "exists:", model_path.exists())
model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml exists: True
Run Benchmark Tool¶
By default, Benchmark Tool runs inference for 60 seconds in asynchronous mode on CPU. It returns inference speed as latency (milliseconds per image) and throughput values (frames per second).
## Uncomment the next line to show Help in benchmark_app which explains the command-line options.
# !benchmark_app --help
benchmark_command = f"benchmark_app -m {model_path} -t 15"
display(Markdown(f"Benchmark command: `{benchmark_command}`"))
display(Markdown(f"Benchmarking {model_name} on CPU with async inference for 15 seconds..."))
! $benchmark_command
Benchmark command:
benchmark_app -m model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml -t 15
Benchmarking mobilenet-v2-pytorch on CPU with async inference for 15 seconds…
[Step 1/11] Parsing and validating input arguments
[ INFO ] Parsing input parameters
[Step 2/11] Loading OpenVINO Runtime
[ INFO ] OpenVINO:
[ INFO ] Build ................................. 2022.3.0-9052-9752fafe8eb-releases/2022/3
[ INFO ]
[ INFO ] Device info:
[ INFO ] CPU
[ INFO ] Build ................................. 2022.3.0-9052-9752fafe8eb-releases/2022/3
[ INFO ]
[ INFO ]
[Step 3/11] Setting device configuration
[ WARNING ] Performance hint was not explicitly specified in command line. Device(CPU) performance hint will be set to THROUGHPUT.
[Step 4/11] Reading model files
[ INFO ] Loading model files
[ INFO ] Read model took 28.84 ms
[ INFO ] Original model I/O parameters:
[ INFO ] Model inputs:
[ INFO ] data (node: data) : f32 / [N,C,H,W] / [1,3,224,224]
[ INFO ] Model outputs:
[ INFO ] prob (node: prob) : f32 / [...] / [1,1000]
[Step 5/11] Resizing model to match image sizes and given batch
[ INFO ] Model batch size: 1
[Step 6/11] Configuring input of the model
[ INFO ] Model inputs:
[ INFO ] data (node: data) : u8 / [N,C,H,W] / [1,3,224,224]
[ INFO ] Model outputs:
[ INFO ] prob (node: prob) : f32 / [...] / [1,1000]
[Step 7/11] Loading the model to the device
[ INFO ] Compile model took 189.28 ms
[Step 8/11] Querying optimal runtime parameters
[ INFO ] Model:
[ INFO ] NETWORK_NAME: torch_jit
[ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 6
[ INFO ] NUM_STREAMS: 6
[ INFO ] AFFINITY: Affinity.CORE
[ INFO ] INFERENCE_NUM_THREADS: 24
[ INFO ] PERF_COUNT: False
[ INFO ] INFERENCE_PRECISION_HINT: <Type: 'float32'>
[ INFO ] PERFORMANCE_HINT: PerformanceMode.THROUGHPUT
[ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0
[Step 9/11] Creating infer requests and preparing input tensors
[ WARNING ] No input files were given for input 'data'!. This input will be filled with random values!
[ INFO ] Fill input 'data' with random values
[Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 15000 ms duration)
[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).
[ INFO ] First inference took 6.80 ms
[Step 11/11] Dumping statistics report
[ INFO ] Count: 19350 iterations
[ INFO ] Duration: 15004.43 ms
[ INFO ] Latency:
[ INFO ] Median: 4.54 ms
[ INFO ] Average: 4.53 ms
[ INFO ] Min: 2.25 ms
[ INFO ] Max: 12.22 ms
[ INFO ] Throughput: 1289.62 FPS
Benchmark with Different Settings¶
The benchmark_app
tool displays logging information that is not
always necessary. A more compact result is achieved when the output is
parsed with json
.
The following cells show some examples of benchmark_app
with
different parameters. Below are some useful parameters:
-d
A device to use for inference. For example: CPU, GPU, MULTI. Default: CPU.-t
Time expressed in number of seconds to run inference. Default: 60.-api
Use asynchronous (async) or synchronous (sync) inference. Default: async.-b
Batch size. Default: 1.
Run ! benchmark_app --help
to get an overview of all possible
command-line parameters.
In the next cell, define the benchmark_model()
function that calls
benchmark_app
. This makes it easy to try different combinations. In
the cell below that, you display available devices on the system.
Note: In this notebook,
benchmark_app
runs for 15 seconds to give a quick indication of performance. For more accurate performance, it is recommended to run inference for at least one minute by setting thet
parameter to 60 or higher, and runbenchmark_app
in a terminal/command prompt after closing other applications. Copy the benchmark command and paste it in a command prompt where you have activated theopenvino_env
environment.
def benchmark_model(model_xml, device="CPU", seconds=60, api="async", batch=1):
ie = Core()
model_path = Path(model_xml)
if ("GPU" in device) and ("GPU" not in ie.available_devices):
DeviceNotFoundAlert("GPU")
else:
benchmark_command = f"benchmark_app -m {model_path} -d {device} -t {seconds} -api {api} -b {batch}"
display(Markdown(f"**Benchmark {model_path.name} with {device} for {seconds} seconds with {api} inference**"))
display(Markdown(f"Benchmark command: `{benchmark_command}`"))
benchmark_output = %sx $benchmark_command
print("command ended")
benchmark_result = [line for line in benchmark_output
if not (line.startswith(r"[") or line.startswith(" ") or line == "")]
print("\n".join(benchmark_result))
ie = Core()
# Show devices available for OpenVINO Runtime
for device in ie.available_devices:
device_name = ie.get_property(device, "FULL_DEVICE_NAME")
print(f"{device}: {device_name}")
CPU: Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz
benchmark_model(model_path, device="CPU", seconds=15, api="async")
Benchmark mobilenet-v2-pytorch.xml with CPU for 15 seconds with async inference
Benchmark command:
benchmark_app -m model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml -d CPU -t 15 -api async -b 1
command ended
benchmark_model(model_path, device="AUTO", seconds=15, api="async")
Benchmark mobilenet-v2-pytorch.xml with AUTO for 15 seconds with async inference
Benchmark command:
benchmark_app -m model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml -d AUTO -t 15 -api async -b 1
command ended
benchmark_model(model_path, device="GPU", seconds=15, api="async")
benchmark_model(model_path, device="MULTI:CPU,GPU", seconds=15, api="async")