SparseFillEmptyRows#
Versioned name: SparseFillEmptyRows-16
Category: Sparse
Short description: Fills empty rows of an input sparse tensor with a default value.
Detailed description:
Operation SparseFillEmptyRows is an implementation of tf.raw_ops.SparseFillEmptyRows for 2D sparse tensors only.
The input sparse tensor is represented by the three inputs:
indicesvaluesdense_shape
For each row in the input 2D sparse tensor, this operator checks if the row is empty. If the row is empty, the operator adds an entry with the specified default value at index [row, 0]. The input may have empty columns at the end, which will not be affected by this operation.
The output sparse tensor will be in row-major order and will have the same dense shape as the dense_shape input, but with updated output_indices and output_values.
This operator also returns a boolean vector indicating which rows were filled with the default value: empty_row_indicator[i] = True if row i was an empty row.
Attributes: SparseFillEmptyRows-16 operation has no attributes.
Inputs:
1:
values1D tensor containing the values of type T to be inserted at the specified indices. Required.2:
dense_shape1D tensor of type T_IDX indicating the shape of the 2D dense tensor. Required.- 3:
indices2D tensor of type T_IDX and non-negative values indicating the positions at whichvaluesare placed in the sparse tensor. Required. It is of shape
[M, 2], where:Mis the same as the length of thevaluesinput.The second dimension is always 2, as only 2D sparse tensors are supported.
- 3:
4:
default_valuea scalar of type T to be inserted into the empty rows. Required.
Outputs:
- 1:
output_indices2D tensor of type T_IDX indicating the positions at whichoutput_valuesare placed in the sparse tensor. It is of shape
[M', 2], where:M'is the length of the updatedoutput_values.The second dimension is always 2, as only 2D sparse tensors are supported.
- 1:
2:
output_values1D tensor containing the values of type T to be inserted at the specified indices.3:
empty_row_indicator1D tensor of typebooleanindicating True for rows which were empty before executing the operation.
Types
T: any numeric type.
T_IDX:
int32orint64.
Example
Example 1: sparse tensor input with shape [5, 6].
Input sparse tensor:
indices = [[0, 1], [0, 3], [2, 0], [3, 1]]values = [a, b, c, d]dense_shape = [5, 6]
Rows 1 and 4 are empty. The output sparse tensor will be:
output_indices = [[0, 1], [0, 3], [1, 0], [2, 0], [3, 1], [4, 0]]output_values = [a, b, default_value, c, d, default_value]empty_row_indicator = [False, True, False, False, True]
The output sparse tensor will be in row-major order and will have the same dense shape as the dense_shape input.
<layer ... type="SparseFillEmptyRows" ... >
<input>
<port id="0" precision="FP32"> <!-- values are: [1, 3] -->
<dim>2</dim>
</port>
<port id="1" precision="I32"> <!-- dense_shape value is: [3, 3] -->
<dim>2</dim>
</port>
<port id="2" precision="I32"> <!-- indices value is: [[0, 0], [2, 2]] -->
<dim>2</dim>
<dim>2</dim>
</port>
<port id="3" precision="FP32"> <!-- default_value is: 42 -->
<dim>0</dim>
</port>
</input>
<output>
<port id="4" precision="I32"> <!-- output_indices -->
<dim>3</dim>
<dim>2</dim>
</port>
<port id="5" precision="FP32"> <!-- output_values -->
<dim>3</dim>
</port>
<port id="6" precision="BOOL"> <!-- empty_row_indicator -->
<dim>3</dim>
</port>
</output>
</layer>