Programming Language Classification with OpenVINO

This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub. See the installation guide for instructions to run this tutorial locally on Windows, Linux or macOS. To run without installing anything, click the “launch binder” button.

Binder Github

Overview

This tutorial will be divided in 2 parts:

  1. Create a simple inference pipeline with a pre-trained model using the OpenVINO™ IR format.

  2. Conduct post-training quantization on a pre-trained model using Hugging Face Optimum and benchmark performance.

Feel free to use the notebook outline in Jupyter or your IDE for easy navigation.

Introduction

Task

Programming language classification is the task of identifying which programming language is used in an arbitrary code snippet. This can be useful to label new data to include in a dataset, and potentially serve as an intermediary step when input snippets need to be process based on their programming language.

It is a relatively easy machine learning task given that each programming language has its own formal symbols, syntax, and grammar. However, there are some potential edge cases: - Ambiguous short snippets: For example, TypeScript is a superset of JavaScript, meaning it does everything JavaScript can and more. For a short input snippet, it might be impossible to distinguish between the two. Given we know TypeScript is a superset, and the model doesn’t, we should default to classifying the input as JavaScript in a post-processing step. - Nested programming languages: Some languages are typically used in tandem. For example, most HTML contains CSS and JavaScript, and it is not uncommon to see SQL nested in other scripting languages. For such input, it is unclear what the expected output class should be. - Evolving programming language: Even though programming languages are formal, their symbols, syntax, and grammar can be revised and updated. For example, the walrus operator (:=) was a symbol distinctively used in Golang, but was later introduced in Python 3.8.

Model

The classification model that will be used in this notebook is CodeBERTa-language-id by HuggingFace. This model was fine-tuned from the masked language modeling model CodeBERTa-small-v1 trained on the CodeSearchNet dataset (Husain, 2019).

It supports 6 programming languages: - Go - Java - JavaScript - PHP - Python - Ruby

Part 1: Inference pipeline with OpenVINO

For this section, we will use the HuggingFace Optimum library, which aims to optimize inference on specific hardware and integrates with the OpenVINO toolkit. The code will be very similar to the HuggingFace Transformers, but will allow to automatically convert models to the OpenVINO™ IR format.

Install prerequisites

First, complete the repository installation steps.

Then, the following cell will install: - HuggingFace Optimum with OpenVINO support - HuggingFace Evaluate to benchmark results

!pip install -q "diffusers>=0.17.1" "openvino-dev>=2023.0.0" "nncf>=2.5.0" "gradio" "onnx>=1.11.0" "onnxruntime>=1.14.0" "optimum-intel>=1.9.1" "transformers>=4.31.0" "evaluate"
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 23.3 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
pytorch-lightning 1.6.5 requires protobuf<=3.20.1, but you have protobuf 4.24.0 which is incompatible.

Imports

The import OVModelForSequenceClassification from Optimum is equivalent to AutoModelForSequenceClassification from Transformers

from functools import partial
from pathlib import Path

import pandas as pd
from datasets import load_dataset, Dataset
import evaluate
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from optimum.intel import OVModelForSequenceClassification
from optimum.intel.openvino import OVConfig, OVQuantizer
from huggingface_hub.utils import RepositoryNotFoundError
2023-08-16 01:03:40.095980: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
2023-08-16 01:03:40.129769: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-08-16 01:03:40.709247: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino
No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'

Setting up HuggingFace cache

Resources from HuggingFace will be downloaded in the local folder ./model (next to this notebook) instead of the device global cache for easy cleanup. Learn more here.

MODEL_NAME = "CodeBERTa-language-id"
MODEL_ID = f"huggingface/{MODEL_NAME}"
MODEL_LOCAL_PATH = Path("./model").joinpath(MODEL_NAME)

Select inference device

Select device from dropdown list for running inference using OpenVINO:

import ipywidgets as widgets
from openvino.runtime import Core

core = Core()

device = widgets.Dropdown(
    options=core.available_devices + ["AUTO"],
    value='AUTO',
    description='Device:',
    disabled=False,
)

device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')

Download resources

# try to load resources locally
try:
    model = OVModelForSequenceClassification.from_pretrained(MODEL_LOCAL_PATH, device=device.value)
    tokenizer = AutoTokenizer.from_pretrained(MODEL_LOCAL_PATH)
    print(f"Loaded resources from local path: {MODEL_LOCAL_PATH.absolute()}")

# if not found, download from HuggingFace Hub then save locally
except (RepositoryNotFoundError, OSError):
    print("Downloading resources from HuggingFace Hub")
    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
    tokenizer.save_pretrained(MODEL_LOCAL_PATH)

    # export=True is needed to convert the PyTorch model to OpenVINO
    model = OVModelForSequenceClassification.from_pretrained(MODEL_ID, export=True, device=device.value)
    model.save_pretrained(MODEL_LOCAL_PATH)
    print(f"Ressources cached locally at: {MODEL_LOCAL_PATH.absolute()}")
Downloading resources from HuggingFace Hub
Framework not specified. Using pt to export to ONNX.
Some weights of the model checkpoint at huggingface/CodeBERTa-language-id were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']
- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Using framework PyTorch: 1.13.1+cpu
Overriding 1 configuration item(s)
    - use_cache -> False
Compiling the model...
Set CACHE_DIR to /tmp/tmpsl_db7y_/model_cache
Ressources cached locally at: /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/notebooks/247-code-language-id/model/CodeBERTa-language-id

Create inference pipeline

code_classification_pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers
pip install xformers.

Inference on new input

# change input snippet to test model
input_snippet = "df['speed'] = df.distance / df.time"
output = code_classification_pipe(input_snippet)

print(f"Input snippet:\n  {input_snippet}\n")
print(f"Predicted label: {output[0]['label']}")
print(f"Predicted score: {output[0]['score']:.2}")
Input snippet:
  df['speed'] = df.distance / df.time

Predicted label: python
Predicted score: 0.81

Part 2: OpenVINO post-training quantization with HuggingFace Optimum

In this section, we will quantize a trained model. At a high-level, this process consists of using lower precision numbers in the model, which results in a smaller model size and faster inference at the cost of a potential marginal performance degradation. Learn more.

The HuggingFace Optimum library supports post-training quantization for OpenVINO. Learn more.

Define constants and functions

QUANTIZED_MODEL_LOCAL_PATH = MODEL_LOCAL_PATH.with_name(f"{MODEL_NAME}-quantized")
DATASET_NAME = "code_search_net"
LABEL_MAPPING = {"go": 0, "java": 1, "javascript": 2, "php": 3, "python": 4, "ruby": 5}


def preprocess_function(examples: dict, tokenizer):
    """Preprocess inputs by tokenizing the `func_code_string` column"""
    return tokenizer(
        examples["func_code_string"],
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
    )


def map_labels(example: dict) -> dict:
    """Convert string labels to integers"""
    label_mapping = {"go": 0, "java": 1, "javascript": 2, "php": 3, "python": 4, "ruby": 5}
    example["language"] = label_mapping[example["language"]]
    return example


def get_dataset_sample(dataset_split: str, num_samples: int) -> Dataset:
    """Create a sample with equal representation of each class without downloading the entire data"""
    labels = ["go", "java", "javascript", "php", "python", "ruby"]
    example_per_label = num_samples // len(labels)

    examples = []
    for label in labels:
        subset = load_dataset("code_search_net", split=dataset_split, name=label, streaming=True)
        subset = subset.map(map_labels)
        examples.extend([example for example in subset.shuffle().take(example_per_label)])

    return Dataset.from_list(examples)

Load resources

Note

The base model is loaded using AutoModelForSequenceClassification from Transformers.

tokenizer = AutoTokenizer.from_pretrained(MODEL_LOCAL_PATH)
base_model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)

quantizer = OVQuantizer.from_pretrained(base_model)
quantization_config = OVConfig()
Some weights of the model checkpoint at huggingface/CodeBERTa-language-id were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']
- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).

Load calibration dataset

The get_dataset_sample() function will sample up to num_samples, with an equal number of examples across the 6 programming languages.

Note

Uncomment the method below to download and use the full dataset (5+ Gb).

calibration_sample = get_dataset_sample(dataset_split="train", num_samples=120)
calibration_sample = calibration_sample.map(partial(preprocess_function, tokenizer=tokenizer))

# calibration_sample = quantizer.get_calibration_dataset(
#     DATASET_NAME,
#     preprocess_function=partial(preprocess_function, tokenizer=tokenizer),
#     num_samples=120,
#     dataset_split="train",
#     preprocess_batch=True,
# )
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
    - Avoid using tokenizers before the fork if possible
    - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Map:   0%|          | 0/120 [00:00<?, ? examples/s]

Quantize model

Calling quantizer.quantize(...) will iterate through the calibration dataset to quantize and save the model

quantizer.quantize(
    quantization_config=quantization_config,
    calibration_dataset=calibration_sample,
    save_directory=QUANTIZED_MODEL_LOCAL_PATH,
)
INFO:nncf:Not adding activation input quantizer for operation: 12 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/NNCFEmbedding[token_type_embeddings]/embedding_0
INFO:nncf:Not adding activation input quantizer for operation: 11 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/NNCFEmbedding[word_embeddings]/embedding_0
INFO:nncf:Not adding activation input quantizer for operation: 3 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/ne_0
INFO:nncf:Not adding activation input quantizer for operation: 4 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/int_0
INFO:nncf:Not adding activation input quantizer for operation: 5 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/cumsum_0
INFO:nncf:Not adding activation input quantizer for operation: 13 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/__add___2
INFO:nncf:Not adding activation input quantizer for operation: 6 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/type_as_0
INFO:nncf:Not adding activation input quantizer for operation: 7 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 8 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/__mul___0
INFO:nncf:Not adding activation input quantizer for operation: 9 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/long_0
INFO:nncf:Not adding activation input quantizer for operation: 10 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/__add___1
INFO:nncf:Not adding activation input quantizer for operation: 14 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/NNCFEmbedding[position_embeddings]/embedding_0
INFO:nncf:Not adding activation input quantizer for operation: 15 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/__iadd___0
INFO:nncf:Not adding activation input quantizer for operation: 16 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 17 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEmbeddings[embeddings]/Dropout[dropout]/dropout_0
INFO:nncf:Not adding activation input quantizer for operation: 30 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[0]/RobertaAttention[attention]/RobertaSelfAttention[self]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 33 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[0]/RobertaAttention[attention]/RobertaSelfAttention[self]/matmul_1
INFO:nncf:Not adding activation input quantizer for operation: 39 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[0]/RobertaAttention[attention]/RobertaSelfOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 40 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[0]/RobertaAttention[attention]/RobertaSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 45 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[0]/RobertaOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 46 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[0]/RobertaOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 59 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[1]/RobertaAttention[attention]/RobertaSelfAttention[self]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 62 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[1]/RobertaAttention[attention]/RobertaSelfAttention[self]/matmul_1
INFO:nncf:Not adding activation input quantizer for operation: 68 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[1]/RobertaAttention[attention]/RobertaSelfOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 69 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[1]/RobertaAttention[attention]/RobertaSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 74 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[1]/RobertaOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 75 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[1]/RobertaOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 88 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[2]/RobertaAttention[attention]/RobertaSelfAttention[self]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 91 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[2]/RobertaAttention[attention]/RobertaSelfAttention[self]/matmul_1
INFO:nncf:Not adding activation input quantizer for operation: 97 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[2]/RobertaAttention[attention]/RobertaSelfOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 98 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[2]/RobertaAttention[attention]/RobertaSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 103 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[2]/RobertaOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 104 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[2]/RobertaOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 117 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[3]/RobertaAttention[attention]/RobertaSelfAttention[self]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 120 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[3]/RobertaAttention[attention]/RobertaSelfAttention[self]/matmul_1
INFO:nncf:Not adding activation input quantizer for operation: 126 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[3]/RobertaAttention[attention]/RobertaSelfOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 127 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[3]/RobertaAttention[attention]/RobertaSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 132 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[3]/RobertaOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 133 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[3]/RobertaOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 146 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[4]/RobertaAttention[attention]/RobertaSelfAttention[self]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 149 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[4]/RobertaAttention[attention]/RobertaSelfAttention[self]/matmul_1
INFO:nncf:Not adding activation input quantizer for operation: 155 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[4]/RobertaAttention[attention]/RobertaSelfOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 156 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[4]/RobertaAttention[attention]/RobertaSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 161 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[4]/RobertaOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 162 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[4]/RobertaOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 175 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[5]/RobertaAttention[attention]/RobertaSelfAttention[self]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 178 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[5]/RobertaAttention[attention]/RobertaSelfAttention[self]/matmul_1
INFO:nncf:Not adding activation input quantizer for operation: 184 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[5]/RobertaAttention[attention]/RobertaSelfOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 185 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[5]/RobertaAttention[attention]/RobertaSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Not adding activation input quantizer for operation: 190 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[5]/RobertaOutput[output]/__add___0
INFO:nncf:Not adding activation input quantizer for operation: 191 RobertaForSequenceClassification/RobertaModel[roberta]/RobertaEncoder[encoder]/ModuleList[layer]/RobertaLayer[5]/RobertaOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0
INFO:nncf:Collecting tensor statistics |█               | 33 / 300
INFO:nncf:Collecting tensor statistics |███             | 66 / 300
INFO:nncf:Collecting tensor statistics |█████           | 99 / 300
INFO:nncf:Compiling and loading torch extension: quantized_functions_cpu...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
    - Avoid using tokenizers before the fork if possible
    - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
    - Avoid using tokenizers before the fork if possible
    - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
    - Avoid using tokenizers before the fork if possible
    - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
    - Avoid using tokenizers before the fork if possible
    - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
INFO:nncf:Finished loading torch extension: quantized_functions_cpu
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/nncf_network.py:938: FutureWarning: Old style of accessing NNCF-specific attributes and methods on NNCFNetwork objects is deprecated. Access the NNCF-specific attrs through the NNCFInterface, which is set up as an nncf attribute on the compressed model object.
For instance, instead of compressed_model.get_graph() you should now write compressed_model.nncf.get_graph().
The old style will be removed after NNCF v2.5.0
  warning_deprecated(
Using framework PyTorch: 1.13.1+cpu
Overriding 1 configuration item(s)
    - use_cache -> False
WARNING:nncf:You are setting forward on an NNCF-processed model object.
NNCF relies on custom-wrapping the forward call in order to function properly.
Arbitrary adjustments to the forward function on an NNCFNetwork object have undefined behaviour.
If you need to replace the underlying forward function of the original model so that NNCF should be using that instead of the original forward function that NNCF saved during the compressed model creation, you can do this by calling:
model.nncf.set_original_unbound_forward(fn)
if fn has an unbound 0-th self argument, or
with model.nncf.temporary_bound_original_forward(fn): ...
if fn already had 0-th self argument bound or never had it in the first place.
WARNING:nncf:You are setting forward on an NNCF-processed model object.
NNCF relies on custom-wrapping the forward call in order to function properly.
Arbitrary adjustments to the forward function on an NNCFNetwork object have undefined behaviour.
If you need to replace the underlying forward function of the original model so that NNCF should be using that instead of the original forward function that NNCF saved during the compressed model creation, you can do this by calling:
model.nncf.set_original_unbound_forward(fn)
if fn has an unbound 0-th self argument, or
with model.nncf.temporary_bound_original_forward(fn): ...
if fn already had 0-th self argument bound or never had it in the first place.
Configuration saved in model/CodeBERTa-language-id-quantized/openvino_config.json

Load quantized model

Note

The argument export=True is not required since the quantized model is already in the OpenVINO format.

quantized_model = OVModelForSequenceClassification.from_pretrained(QUANTIZED_MODEL_LOCAL_PATH, device=device.value)
quantized_code_classification_pipe = pipeline("text-classification", model=quantized_model, tokenizer=tokenizer)
Compiling the model...
Set CACHE_DIR to model/CodeBERTa-language-id-quantized/model_cache

Inference on new input using quantized model

input_snippet = "df['speed'] = df.distance / df.time"
output = quantized_code_classification_pipe(input_snippet)

print(f"Input snippet:\n  {input_snippet}\n")
print(f"Predicted label: {output[0]['label']}")
print(f"Predicted score: {output[0]['score']:.2}")
Input snippet:
  df['speed'] = df.distance / df.time

Predicted label: python
Predicted score: 0.82

Load evaluation set

Note

Uncomment the method below to download and use the full dataset (5+ Gb).

validation_sample = get_dataset_sample(dataset_split="validation", num_samples=120)

# validation_sample = load_dataset(DATASET_NAME, split="validation")

Evaluate model

# This class is needed due to a current limitation of the Evaluate library with multiclass metrics
# ref: https://discuss.huggingface.co/t/combining-metrics-for-multiclass-predictions-evaluations/21792/16
class ConfiguredMetric:
    def __init__(self, metric, *metric_args, **metric_kwargs):
        self.metric = metric
        self.metric_args = metric_args
        self.metric_kwargs = metric_kwargs

    def add(self, *args, **kwargs):
        return self.metric.add(*args, **kwargs)

    def add_batch(self, *args, **kwargs):
        return self.metric.add_batch(*args, **kwargs)

    def compute(self, *args, **kwargs):
        return self.metric.compute(*args, *self.metric_args, **kwargs, **self.metric_kwargs)

    @property
    def name(self):
        return self.metric.name

    def _feature_names(self):
        return self.metric._feature_names()

First, an Evaluator object for text-classification and a set of EvaluationModule are instantiated. Then, the evaluator .compute() method is called on both the base code_classification_pipe and the quantized quantized_code_classification_pipeline. Finally, results are displayed.

code_classification_evaluator = evaluate.evaluator("text-classification")
# instantiate an object that can contain multiple `evaluate` metrics
metrics = evaluate.combine([
    ConfiguredMetric(evaluate.load('f1'), average='macro'),
])

base_results = code_classification_evaluator.compute(
    model_or_pipeline=code_classification_pipe,
    data=validation_sample,
    input_column="func_code_string",
    label_column="language",
    label_mapping=LABEL_MAPPING,
    metric=metrics,
)

quantized_results = code_classification_evaluator.compute(
    model_or_pipeline=quantized_code_classification_pipe,
    data=validation_sample,
    input_column="func_code_string",
    label_column="language",
    label_mapping=LABEL_MAPPING,
    metric=metrics,
)

results_df = pd.DataFrame.from_records([base_results, quantized_results], index=["base", "quantized"])
results_df
f1 total_time_in_seconds samples_per_second latency_in_seconds
base 1.0 2.322593 51.666392 0.019355
quantized 1.0 2.647466 45.326357 0.022062

Clean up

Uncomment and run cell below to delete all resources cached locally in ./model

# import os
# import shutil

# try:
#     shutil.rmtree(path=QUANTIZED_MODEL_LOCAL_PATH)
#     shutil.rmtree(path=MODEL_LOCAL_PATH)
#     os.remove(path="./compressed_graph.dot")
#     os.remove(path="./original_graph.dot")
# except FileNotFoundError:
#     print("Directory was already deleted")