Video Subtitle Generation using Whisper and OpenVINO™¶
This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub. See the installation guide for instructions to run this tutorial locally on Windows, Linux or macOS. To run without installing anything, click the “Open in Colab” button.
Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. It is a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification.
asr-training-data-desktop.svg¶
You can find more information about this model in the research paper, OpenAI blog, model card and GitHub repository.
In this notebook, we will use Whisper with OpenVINO to generate subtitles in a sample video. Notebook contains the following steps: 1. Download the model. 2. Instantiate the PyTorch model pipeline. 3. Export the ONNX model and convert it to OpenVINO IR, using model conversion API. 4. Run the Whisper pipeline with OpenVINO models.
Table of contents:
Prerequisites ⇑¶
Clone and install the model repository.
!pip install -q "openvino-dev>=2023.0.0"
!pip install -q "python-ffmpeg<=1.0.16" moviepy transformers onnx
!pip install -q -I "git+https://github.com/garywu007/pytube.git"
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 23.3 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 23.3 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
ppgan 2.1.0 requires librosa==0.8.1, but you have librosa 0.9.2 which is incompatible.
ppgan 2.1.0 requires opencv-python<=4.6.0.66, but you have opencv-python 4.8.0.76 which is incompatible.
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 23.3 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
from pathlib import Path
REPO_DIR = Path("whisper")
if not REPO_DIR.exists():
!git clone https://github.com/openai/whisper.git -b v20230124
!cd whisper && pip install .
Cloning into 'whisper'... remote: Enumerating objects: 589, done.[K remote: Counting objects: 100% (367/367), done.[K remote: Compressing objects: 100% (82/82), done.[K remote: Total 589 (delta 320), reused 288 (delta 285), pack-reused 222[K Receiving objects: 100% (589/589), 8.14 MiB | 4.18 MiB/s, done. Resolving deltas: 100% (357/357), done. Note: switching to '55f690af7914c672c69733b7e04ef5a41b2b2774'. You are in 'detached HEAD' state. You can look around, make experimental changes and commit them, and you can discard any commits you make in this state without impacting any branches by switching back to a branch. If you want to create a new branch to retain commits you create, you may do so (now or later) by using -c with the switch command. Example: git switch -c <new-branch-name> Or undo this operation with: git switch - Turn off this advice by setting config variable advice.detachedHead to false Processing /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/notebooks/227-whisper-subtitles-generation/whisper Preparing metadata (setup.py) ... - done Requirement already satisfied: numpy in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openai-whisper==20230124) (1.23.5) Requirement already satisfied: torch in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openai-whisper==20230124) (1.13.1+cpu) Requirement already satisfied: tqdm in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openai-whisper==20230124) (4.66.1) Collecting more-itertools (from openai-whisper==20230124) Obtaining dependency information for more-itertools from https://files.pythonhosted.org/packages/5a/cb/6dce742ea14e47d6f565589e859ad225f2a5de576d7696e0623b784e226b/more_itertools-10.1.0-py3-none-any.whl.metadata Using cached more_itertools-10.1.0-py3-none-any.whl.metadata (33 kB) Requirement already satisfied: transformers>=4.19.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openai-whisper==20230124) (4.31.0) Collecting ffmpeg-python==0.2.0 (from openai-whisper==20230124) Using cached ffmpeg_python-0.2.0-py3-none-any.whl (25 kB) Requirement already satisfied: future in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ffmpeg-python==0.2.0->openai-whisper==20230124) (0.18.3) Requirement already satisfied: filelock in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers>=4.19.0->openai-whisper==20230124) (3.12.2) Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers>=4.19.0->openai-whisper==20230124) (0.16.4) Requirement already satisfied: packaging>=20.0 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers>=4.19.0->openai-whisper==20230124) (23.1) Requirement already satisfied: pyyaml>=5.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers>=4.19.0->openai-whisper==20230124) (6.0.1) Requirement already satisfied: regex!=2019.12.17 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers>=4.19.0->openai-whisper==20230124) (2023.8.8) Requirement already satisfied: requests in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers>=4.19.0->openai-whisper==20230124) (2.31.0) Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers>=4.19.0->openai-whisper==20230124) (0.13.3) Requirement already satisfied: safetensors>=0.3.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers>=4.19.0->openai-whisper==20230124) (0.3.2) Requirement already satisfied: typing-extensions in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch->openai-whisper==20230124) (4.7.1) Requirement already satisfied: fsspec in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from huggingface-hub<1.0,>=0.14.1->transformers>=4.19.0->openai-whisper==20230124) (2023.6.0) Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers>=4.19.0->openai-whisper==20230124) (3.2.0) Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers>=4.19.0->openai-whisper==20230124) (3.4) Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers>=4.19.0->openai-whisper==20230124) (1.26.16) Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers>=4.19.0->openai-whisper==20230124) (2023.7.22) Using cached more_itertools-10.1.0-py3-none-any.whl (55 kB) Building wheels for collected packages: openai-whisper Building wheel for openai-whisper (setup.py) ... - | done Created wheel for openai-whisper: filename=openai_whisper-20230124-py3-none-any.whl size=1179305 sha256=4fcfbe9ab46c8d5e7a7fa0c52e896e59bdbc043a743c686acc001c6ed8dc5e65 Stored in directory: /tmp/pip-ephem-wheel-cache-5a4nqoja/wheels/0c/9d/b6/d90fb003a36a5e4026f7e998e937791cc6a6c6e9abea61d48d Successfully built openai-whisper DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 23.3 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063 Installing collected packages: more-itertools, ffmpeg-python, openai-whisper Successfully installed ffmpeg-python-0.2.0 more-itertools-10.1.0 openai-whisper-20230124
Instantiate model ⇑¶
Whisper is a Transformer based encoder-decoder model, also referred to as a sequence-to-sequence model. It maps a sequence of audio spectrogram features to a sequence of text tokens. First, the raw audio inputs are converted to a log-Mel spectrogram by action of the feature extractor. Then, the Transformer encoder encodes the spectrogram to form a sequence of encoder hidden states. Finally, the decoder autoregressively predicts text tokens, conditional on both the previous tokens and the encoder hidden states.
You can see the model architecture in the diagram below:
whisper_architecture.svg¶
There are several models of different sizes and capabilities trained by
the authors of the model. In this tutorial, we will use the base
model, but the same actions are also applicable to other models from
Whisper family.
import whisper
model = whisper.load_model("base")
model.to("cpu")
model.eval()
pass
Convert model to OpenVINO Intermediate Representation (IR) format. ⇑¶
For best results with OpenVINO, it is recommended to convert the model
to OpenVINO IR format. OpenVINO supports PyTorch via ONNX conversion. We
will use torch.onnx.export
for exporting the ONNX model from
PyTorch. We need to provide initialized model object and example of
inputs for shape inference. We will use mo.convert_model
functionality to convert the ONNX models. The mo.convert_model
Python function returns an OpenVINO model ready to load on device and
start making predictions. We can save it on disk for next usage with
openvino.runtime.serialize
.
Convert Whisper Encoder to OpenVINO IR ⇑¶
import torch
from openvino.tools import mo
from openvino.runtime import serialize
mel = torch.zeros((1, 80, 3000))
audio_features = model.encoder(mel)
torch.onnx.export(
model.encoder,
mel,
"whisper_encoder.onnx",
input_names=["mel"],
output_names=["output_features"]
)
encoder_model = mo.convert_model("whisper_encoder.onnx", compress_to_fp16=True)
serialize(encoder_model, xml_path="whisper_encoder.xml")
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-475/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/whisper/model.py:153: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
Convert Whisper decoder to OpenVINO IR ⇑¶
To reduce computational complexity, the decoder uses cached key/value projections in attention modules from the previous steps. We need to modify this process for correct tracing to ONNX.
import torch
from typing import Optional, Union, List, Dict
from functools import partial
positional_embeddings_size = model.decoder.positional_embedding.shape[0]
def save_to_cache(cache: Dict[str, torch.Tensor], module: str, output: torch.Tensor):
"""
Saving cached attention hidden states for previous tokens.
Parameters:
cache: dictionary with cache.
module: current attention module name.
output: predicted hidden state.
Returns:
output: cached attention hidden state for specified attention module.
"""
if module not in cache or output.shape[1] > positional_embeddings_size:
# save as-is, for the first token or cross attention
cache[module] = output
else:
cache[module] = torch.cat([cache[module], output], dim=1).detach()
return cache[module]
def attention_forward(
attention_module,
x: torch.Tensor,
xa: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
kv_cache: Optional[dict] = None,
idx: int = 0
):
"""
Override for forward method of decoder attention module with storing cache values explicitly.
Parameters:
attention_module: current attention module
x: input token ids.
xa: input audio features (Optional).
mask: mask for applying attention (Optional).
kv_cache: dictionary with cached key values for attention modules.
idx: idx for search in kv_cache.
Returns:
attention module output tensor
updated kv_cache
"""
q = attention_module.query(x)
if kv_cache is None or xa is None:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = attention_module.key(x if xa is None else xa)
v = attention_module.value(x if xa is None else xa)
if kv_cache is not None:
k = save_to_cache(kv_cache, f'k_{idx}', k)
v = save_to_cache(kv_cache, f'v_{idx}', v)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache.get(f'k_{idx}', save_to_cache(
kv_cache, f'k_{idx}', attention_module.key(xa)))
v = kv_cache.get(f'v_{idx}', save_to_cache(
kv_cache, f'v_{idx}', attention_module.value(xa)))
wv, qk = attention_module.qkv_attention(q, k, v, mask)
return attention_module.out(wv), kv_cache
def block_forward(
residual_block,
x: torch.Tensor,
xa: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
kv_cache: Optional[dict] = None,
idx: int = 0
):
"""
Override for residual block forward method for providing kv_cache to attention module.
Parameters:
residual_block: current residual block.
x: input token_ids.
xa: input audio features (Optional).
mask: attention mask (Optional).
kv_cache: cache for storing attention key values.
idx: index of current residual block for search in kv_cache.
Returns:
x: residual block output
kv_cache: updated kv_cache
"""
x0, kv_cache = residual_block.attn(residual_block.attn_ln(
x), mask=mask, kv_cache=kv_cache, idx=f'{idx}a')
x = x + x0
if residual_block.cross_attn:
x1, kv_cache = residual_block.cross_attn(
residual_block.cross_attn_ln(x), xa, kv_cache=kv_cache, idx=f'{idx}c')
x = x + x1
x = x + residual_block.mlp(residual_block.mlp_ln(x))
return x, kv_cache
# update forward functions
for idx, block in enumerate(model.decoder.blocks):
block.forward = partial(block_forward, block, idx=idx)
block.attn.forward = partial(attention_forward, block.attn)
if block.cross_attn:
block.cross_attn.forward = partial(attention_forward, block.cross_attn)
def decoder_forward(decoder, x: torch.Tensor, xa: torch.Tensor, kv_cache: Optional[dict] = None):
"""
Override for decoder forward method.
Parameters:
x: torch.LongTensor, shape = (batch_size, <= n_ctx) the text tokens
xa: torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
the encoded audio features to be attended on
kv_cache: Dict[str, torch.Tensor], attention modules hidden states cache from previous steps
"""
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
x = decoder.token_embedding(
x) + decoder.positional_embedding[offset: offset + x.shape[-1]]
x = x.to(xa.dtype)
for block in decoder.blocks:
x, kv_cache = block(x, xa, mask=decoder.mask, kv_cache=kv_cache)
x = decoder.ln(x)
logits = (
x @ torch.transpose(decoder.token_embedding.weight.to(x.dtype), 1, 0)).float()
return logits, kv_cache
# override decoder forward
model.decoder.forward = partial(decoder_forward, model.decoder)
tokens = torch.ones((5, 3), dtype=torch.int64)
logits, kv_cache = model.decoder(tokens, audio_features, kv_cache={})
kv_cache = {k: v for k, v in kv_cache.items()}
tokens = torch.ones((5, 1), dtype=torch.int64)
outputs = [f"out_{k}" for k in kv_cache.keys()]
inputs = [f"in_{k}" for k in kv_cache.keys()]
dynamic_axes = {
"tokens": {0: "beam_size", 1: "seq_len"},
"audio_features": {0: "beam_size"},
"logits": {0: "beam_size", 1: "seq_len"}}
dynamic_outs = {o: {0: "beam_size", 1: "prev_seq_len"} for o in outputs}
dynamic_inp = {i: {0: "beam_size", 1: "prev_seq_len"} for i in inputs}
dynamic_axes.update(dynamic_outs)
dynamic_axes.update(dynamic_inp)
torch.onnx.export(
model.decoder, {'x': tokens, 'xa': audio_features, 'kv_cache': kv_cache},
'whisper_decoder.onnx',
input_names=["tokens", "audio_features"] + inputs,
output_names=["logits"] + outputs,
dynamic_axes=dynamic_axes
)
/tmp/ipykernel_2070841/1737529362.py:18: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
if module not in cache or output.shape[1] > positional_embeddings_size:
The decoder model autoregressively predicts the next token guided by encoder hidden states and previously predicted sequence. This means that the shape of inputs which depends on the previous step (inputs for tokens and attention hidden states from previous step) are dynamic. For efficient utilization of memory, you define an upper bound for dynamic input shapes.
input_shapes = "tokens[1..5 -1],audio_features[1..5 1500 512]"
for k, v in kv_cache.items():
if k.endswith('a'):
input_shapes += f",in_{k}[1..5 -1 512]"
decoder_model = mo.convert_model(
input_model="whisper_decoder.onnx",
compress_to_fp16=True,
input=input_shapes)
serialize(decoder_model, "whisper_decoder.xml")
Prepare inference pipeline ⇑¶
The image below illustrates the pipeline of video transcribing using the Whisper model.

whisper_pipeline.png¶
To run the PyTorch Whisper model, we just need to call the
model.transcribe(audio, **parameters)
function. We will try to reuse
original model pipeline for audio transcribing after replacing the
original models with OpenVINO IR versions.
class OpenVINOAudioEncoder(torch.nn.Module):
"""
Helper for inference Whisper encoder model with OpenVINO
"""
def __init__(self, core, model_path, device='CPU'):
super().__init__()
self.model = core.read_model(model_path)
self.compiled_model = core.compile_model(self.model, device)
self.output_blob = self.compiled_model.output(0)
def forward(self, mel: torch.Tensor):
"""
Inference OpenVINO whisper encoder model.
Parameters:
mel: input audio fragment mel spectrogram.
Returns:
audio_features: torch tensor with encoded audio features.
"""
return torch.from_numpy(self.compiled_model(mel)[self.output_blob])
from openvino.runtime import Core, Tensor
class OpenVINOTextDecoder(torch.nn.Module):
"""
Helper for inference OpenVINO decoder model
"""
def __init__(self, core: Core, model_path: Path, device: str = 'CPU'):
super().__init__()
self._core = core
self.model = core.read_model(model_path)
self._input_names = [inp.any_name for inp in self.model.inputs]
self.compiled_model = core.compile_model(self.model, device)
self.device = device
def init_past_inputs(self, feed_dict):
"""
Initialize cache input for first step.
Parameters:
feed_dict: Dictonary with inputs for inference
Returns:
feed_dict: updated feed_dict
"""
beam_size = feed_dict['tokens'].shape[0]
audio_len = feed_dict['audio_features'].shape[2]
previous_seq_len = 0
for name in self._input_names:
if name in ['tokens', 'audio_features']:
continue
feed_dict[name] = Tensor(np.zeros(
(beam_size, previous_seq_len, audio_len), dtype=np.float32))
return feed_dict
def preprocess_kv_cache_inputs(self, feed_dict, kv_cache):
"""
Transform kv_cache to inputs
Parameters:
feed_dict: dictionary with inputs for inference
kv_cache: dictionary with cached attention hidden states from previous step
Returns:
feed_dict: updated feed dictionary with additional inputs
"""
if not kv_cache:
return self.init_past_inputs(feed_dict)
for k, v in kv_cache.items():
new_k = f'in_{k}'
if new_k in self._input_names:
feed_dict[new_k] = Tensor(v.numpy())
return feed_dict
def postprocess_outputs(self, outputs):
"""
Transform model output to format expected by the pipeline
Parameters:
outputs: outputs: raw inference results.
Returns:
logits: decoder predicted token logits
kv_cache: cached attention hidden states
"""
logits = None
kv_cache = {}
for output_t, out in outputs.items():
if 'logits' in output_t.get_names():
logits = torch.from_numpy(out)
else:
tensor_name = output_t.any_name
kv_cache[tensor_name.replace(
'out_', '')] = torch.from_numpy(out)
return logits, kv_cache
def forward(self, x: torch.Tensor, xa: torch.Tensor, kv_cache: Optional[dict] = None):
"""
Inference decoder model.
Parameters:
x: torch.LongTensor, shape = (batch_size, <= n_ctx) the text tokens
xa: torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
the encoded audio features to be attended on
kv_cache: Dict[str, torch.Tensor], attention modules hidden states cache from previous steps
Returns:
logits: decoder predicted logits
kv_cache: updated kv_cache with current step hidden states
"""
feed_dict = {'tokens': Tensor(x.numpy()), 'audio_features': Tensor(xa.numpy())}
feed_dict = (self.preprocess_kv_cache_inputs(feed_dict, kv_cache))
res = self.compiled_model(feed_dict)
return self.postprocess_outputs(res)
from whisper.decoding import DecodingTask, Inference, DecodingOptions, DecodingResult
class OpenVINOInference(Inference):
"""
Wrapper for inference interface
"""
def __init__(self, model: "Whisper", initial_token_length: int):
self.model: "Whisper" = model
self.initial_token_length = initial_token_length
self.kv_cache = {}
def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor) -> torch.Tensor:
"""
getting logits for given tokens sequence and audio features and save kv_cache
Parameters:
tokens: input tokens
audio_features: input audio features
Returns:
logits: predicted by decoder logits
"""
if tokens.shape[-1] > self.initial_token_length:
# only need to use the last token except in the first forward pass
tokens = tokens[:, -1:]
logits, self.kv_cache = self.model.decoder(
tokens, audio_features, kv_cache=self.kv_cache)
return logits
def cleanup_caching(self):
"""
Reset kv_cache to initial state
"""
self.kv_cache = {}
def rearrange_kv_cache(self, source_indices):
"""
Update hidden states cache for selected sequences
Parameters:
source_indicies: sequences indicies
Returns:
None
"""
for module, tensor in self.kv_cache.items():
# update the key/value cache to contain the selected sequences
self.kv_cache[module] = tensor[source_indices]
class OpenVINODecodingTask(DecodingTask):
"""
Class for decoding using OpenVINO
"""
def __init__(self, model: "Whisper", options: DecodingOptions):
super().__init__(model, options)
self.inference = OpenVINOInference(model, len(self.initial_tokens))
@torch.no_grad()
def decode(model: "Whisper", mel: torch.Tensor, options: DecodingOptions = DecodingOptions()) -> Union[DecodingResult, List[DecodingResult]]:
"""
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
Parameters
----------
model: Whisper
the Whisper model instance
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
A tensor containing the Mel spectrogram(s)
options: DecodingOptions
A dataclass that contains all necessary options for decoding 30-second segments
Returns
-------
result: Union[DecodingResult, List[DecodingResult]]
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
"""
single = mel.ndim == 2
if single:
mel = mel.unsqueeze(0)
result = OpenVINODecodingTask(model, options).run(mel)
if single:
result = result[0]
return result
del model.decoder
del model.encoder
core = Core()
Select inference device ⇑¶
Select device from dropdown list for running inference using OpenVINO:
import ipywidgets as widgets
device = widgets.Dropdown(
options=core.available_devices + ["AUTO"],
value='AUTO',
description='Device:',
disabled=False,
)
device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
from collections import namedtuple
Parameter = namedtuple('Parameter', ['device'])
model.encoder = OpenVINOAudioEncoder(core, 'whisper_encoder.xml', device=device.value)
model.decoder = OpenVINOTextDecoder(core, 'whisper_decoder.xml', device=device.value)
model.decode = partial(decode, model)
def parameters():
return iter([Parameter(torch.device('cpu'))])
model.parameters = parameters
def logits(model, tokens: torch.Tensor, audio_features: torch.Tensor):
"""
Override for logits extraction method
Parameters:
toekns: input tokens
audio_features: input audio features
Returns:
logits: decoder predicted logits
"""
return model.decoder(tokens, audio_features, None)[0]
model.logits = partial(logits, model)
Define audio preprocessing ⇑¶
The model expects mono-channel audio with a 16000 Hz sample rate, represented in floating point range. When the audio from the input video does not meet these requirements, we will need to apply preprocessing.
import io
from pathlib import Path
import numpy as np
from scipy.io import wavfile
from pytube import YouTube
from moviepy.editor import VideoFileClip
def resample(audio, src_sample_rate, dst_sample_rate):
"""
Resample audio to specific sample rate
Parameters:
audio: input audio signal
src_sample_rate: source audio sample rate
dst_sample_rate: destination audio sample rate
Returns:
resampled_audio: input audio signal resampled with dst_sample_rate
"""
if src_sample_rate == dst_sample_rate:
return audio
duration = audio.shape[0] / src_sample_rate
resampled_data = np.zeros(shape=(int(duration * dst_sample_rate)), dtype=np.float32)
x_old = np.linspace(0, duration, audio.shape[0], dtype=np.float32)
x_new = np.linspace(0, duration, resampled_data.shape[0], dtype=np.float32)
resampled_audio = np.interp(x_new, x_old, audio)
return resampled_audio.astype(np.float32)
def audio_to_float(audio):
"""
convert audio signal to floating point format
"""
return audio.astype(np.float32) / np.iinfo(audio.dtype).max
def get_audio(video_file):
"""
Extract audio signal from a given video file, then convert it to float,
then mono-channel format and resample it to the expected sample rate
Parameters:
video_file: path to input video file
Returns:
resampled_audio: mono-channel float audio signal with 16000 Hz sample rate
extracted from video
"""
input_video = VideoFileClip(str(video_file))
input_video.audio.write_audiofile(video_file.stem + '.wav', verbose=False, logger=None)
input_audio_file = video_file.stem + '.wav'
sample_rate, audio = wavfile.read(
io.BytesIO(open(input_audio_file, 'rb').read()))
audio = audio_to_float(audio)
if audio.ndim == 2:
audio = audio.mean(axis=1)
resampled_audio = resample(audio, sample_rate, 16000)
return resampled_audio
Run video transcription pipeline ⇑¶
Now, we are ready to start transcription. We select a video from YouTube that we want to transcribe. Be patient, as downloading the video may take some time.
import ipywidgets as widgets
VIDEO_LINK = "https://youtu.be/kgL5LBM-hFI"
link = widgets.Text(
value=VIDEO_LINK,
placeholder="Type link for video",
description="Video:",
disabled=False
)
link
Text(value='https://youtu.be/kgL5LBM-hFI', description='Video:', placeholder='Type link for video')
print(f"Downloading video {link.value} started")
output_file = Path("downloaded_video.mp4")
yt = YouTube(link.value)
yt.streams.get_highest_resolution().download(filename=output_file)
print(f"Video saved to {output_file}")
Downloading video https://youtu.be/kgL5LBM-hFI started
Video saved to downloaded_video.mp4
audio = get_audio(output_file)
Select the task for the model:
transcribe - generate audio transcription in the source language (automatically detected).
translate - generate audio transcription with translation to English language.
task = widgets.Select(
options=["transcribe", "translate"],
value="translate",
description="Select task:",
disabled=False
)
task
Select(description='Select task:', index=1, options=('transcribe', 'translate'), value='translate')
transcription = model.transcribe(audio, beam_size=5, best_of=5, task=task.value)
def format_timestamp(seconds: float):
"""
format time in srt-file excpected format
"""
assert seconds >= 0, "non-negative timestamp expected"
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
return (f"{hours}:" if hours > 0 else "00:") + f"{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def prepare_srt(transcription):
"""
Format transcription into srt file format
"""
segment_lines = []
for segment in transcription["segments"]:
segment_lines.append(str(segment["id"] + 1) + "\n")
time_start = format_timestamp(segment["start"])
time_end = format_timestamp(segment["end"])
time_str = f"{time_start} --> {time_end}\n"
segment_lines.append(time_str)
segment_lines.append(segment["text"] + "\n\n")
return segment_lines
“The results will be saved in the downloaded_video.srt
file. SRT is
one of the most popular formats for storing subtitles and is compatible
with many modern video players. This file can be used to embed
transcription into videos during playback or by injecting them directly
into video files using ffmpeg
.
srt_lines = prepare_srt(transcription)
# save transcription
with output_file.with_suffix(".srt").open("w") as f:
f.writelines(srt_lines)
Now let us see the results.
widgets.Video.from_file(output_file, loop=False, width=800, height=800)
Video(value=b'x00x00x00x18ftypmp42x00x00x00x00isommp42x00x00Aimoovx00x00x00lmvhd...', height='800…
print("".join(srt_lines))
1
00:00:00,000 --> 00:00:05,000
Oh, what's that?
2
00:00:05,000 --> 00:00:09,000
Oh, wow.
3
00:00:09,000 --> 00:00:10,000
Hello, humans.
4
00:00:13,000 --> 00:00:15,000
Focus on me.
5
00:00:15,000 --> 00:00:18,000
Focus on the guard.
6
00:00:18,000 --> 00:00:22,000
Don't tell anyone what you've seen in here.
7
00:00:22,000 --> 00:00:30,000
Have you seen what's in there?