class ov::op::v1::MaxPool

Overview

Batched max pooling operation. More…

#include <max_pool.hpp>

class MaxPool: public ov::op::util::MaxPoolBase
{
public:
    // construction

    MaxPool();
    MaxPool(, , , , , , );

    // methods

    "MaxPool""opset1"op::util::MaxPoolBase OPENVINO_OP(, , );
    virtual boolAttributeVisitor& visit_attributes();
    virtual void validate_and_infer_types();
    virtual std::shared_ptr<Node>const OutputVector& clone_with_new_inputs() const;

    virtual OPENVINO_SUPPRESS_DEPRECATED_START boolconst HostTensorVector&const HostTensorVector& evaluate(
        ,

        ) const;

    virtual OPENVINO_SUPPRESS_DEPRECATED_END bool has_evaluate() const;
};

Inherited Members

public:
    // typedefs

    typedef DiscreteTypeInfo type_info_t;
    typedef std::map<std::string, Any> RTMap;

    // methods

    virtual void validate_and_infer_types();
    void constructor_validate_and_infer_types();
    virtual boolAttributeVisitor& visit_attributes();
    virtual const ov::op::AutoBroadcastSpec& get_autob() const;
    virtual bool has_evaluate() const;
    virtual boolconst ov::HostTensorVector&const ov::HostTensorVector& evaluate(, ) const;

    virtual boolconst ov::HostTensorVector&const ov::HostTensorVector&const EvaluationContext& evaluate(
        ,
        ,

        ) const;

    virtual boolov::TensorVector&const ov::TensorVector& evaluate(, ) const;

    virtual boolov::TensorVector&const ov::TensorVector&const ov::EvaluationContext& evaluate(
        ,
        ,

        ) const;

    virtual boolov::TensorVector& evaluate_lower() const;
    virtual boolov::TensorVector& evaluate_upper() const;
    virtual boolTensorLabelVector& evaluate_label() const;
    virtual boolOutputVector&const OutputVector& constant_fold(, );
    virtual OutputVector decompose_op() const;
    virtual const type_info_t& get_type_info() const = 0;
    const char \* get_type_name() const;
    voidconst NodeVector& set_arguments();
    voidconst OutputVector& set_arguments();
    voidsize_tconst Output<Node>& set_argument(, );
    voidsize_tconst element::Type&const PartialShape& set_output_type(, , );
    voidsize_t set_output_size();
    void invalidate_values();
    virtual void revalidate_and_infer_types();
    virtual std::string description() const;
    const std::string& get_name() const;
    voidconst std::string& set_friendly_name();
    const std::string& get_friendly_name() const;
    virtual bool is_dynamic() const;
    size_t get_instance_id() const;
    virtual std::ostream&std::ostream&uint32_t write_description(, ) const;
    const std::vector<std::shared_ptr<Node>>& get_control_dependencies() const;
    const std::vector<Node \*>& get_control_dependents() const;
    voidstd::shared_ptr<Node> add_control_dependency();
    voidstd::shared_ptr<Node> remove_control_dependency();
    void clear_control_dependencies();
    void clear_control_dependents();
    voidconst std::shared_ptr<const Node>& add_node_control_dependencies();
    voidconst std::shared_ptr<const Node>& add_node_control_dependents();
    voidstd::shared_ptr<Node> transfer_control_dependents();
    size_t get_output_size() const;
    const element::Type&size_t get_output_element_type() const;
    const element::Type& get_element_type() const;
    const Shape&size_t get_output_shape() const;
    const PartialShape&size_t get_output_partial_shape() const;
    Output<const Node> get_default_output() const;
    Output<Node> get_default_output();
    virtual size_t get_default_output_index() const;
    size_t no_default_index() const;
    const Shape& get_shape() const;
    descriptor::Tensor&size_t get_output_tensor() const;
    descriptor::Tensor&size_t get_input_tensor() const;
    std::set<Input<Node>>size_t get_output_target_inputs() const;
    size_t get_input_size() const;
    const element::Type&size_t get_input_element_type() const;
    const Shape&size_t get_input_shape() const;
    const PartialShape&size_t get_input_partial_shape() const;
    Node \*size_t get_input_node_ptr() const;
    std::shared_ptr<Node>size_t get_input_node_shared_ptr() const;
    Output<Node>size_t get_input_source_output() const;
    virtual std::shared_ptr<Node>const OutputVector& clone_with_new_inputs() const = 0;
    std::shared_ptr<Node>const OutputVector& copy_with_new_inputs() const;

    std::shared_ptr<Node>const OutputVector&const std::vector<std::shared_ptr<Node>>& copy_with_new_inputs(
        ,

        ) const;

    boolstd::shared_ptr<const Node> has_same_type() const;
    RTMap& get_rt_info();
    const RTMap& get_rt_info() const;
    NodeVectorbool get_users() const;
    boolconst Node& operator < () const;
    std::vector<Input<Node>> inputs();
    std::vector<Input<const Node>> inputs() const;
    std::vector<Output<Node>> input_values() const;
    std::vector<Output<Node>> outputs();
    std::vector<Output<const Node>> outputs() const;
    Input<Node>size_t input();
    Input<const Node>size_t input() const;
    Output<Node>size_t input_value() const;
    Output<Node>size_t output();
    Output<const Node>size_t output() const;

    virtual boolov::pass::pattern::Matcher \*const Output<Node>&const Output<Node>& match_value(
        ,
        ,

        );

    virtual boolov::pass::pattern::Matcher \*const Output<Node>& match_node(, );
    static _OPENVINO_HIDDEN_METHODconst ::ov::Node::type_info_t& get_type_info_static();
    virtual const ::ov::Node::type_info_t& get_type_info() const;
    "MaxPoolBase""util" OPENVINO_OP(, );
    virtual void validate_and_infer_types();
    const Shape& get_kernel() const;
    voidconst Shape& set_kernel();
    const Strides& get_strides() const;
    voidconst Strides& set_strides();
    const Shape& get_pads_begin() const;
    voidconst Shape& set_pads_begin();
    const Shape& get_pads_end() const;
    voidconst Shape& set_adding_above();
    voidShape set_pads_end();
    PadType get_auto_pad() const;
    voidconst PadType set_auto_pad();
    op::RoundingType get_rounding_type() const;
    voidop::RoundingType set_rounding_type();

Detailed Documentation

Batched max pooling operation.

Construction

MaxPool()

Constructs a batched max pooling operation.

MaxPool(, , , , , , )

Constructs a batched max pooling operation.

Parameters:

arg

The node producing the input data batch tensor.

strides

The strides.

pads_begin

The beginning of padding shape.

pads_end

The end of padding shape.

kernel

The kernel shape.

rounding_type

Whether to use ceiling or floor rounding type while computing output shape.

auto_pad

The pad type for automatically computing padding sizes.

Methods

virtual void validate_and_infer_types()

Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.

Throws if the node is invalid.

virtual OPENVINO_SUPPRESS_DEPRECATED_START boolconst HostTensorVector&const HostTensorVector& evaluate(
    ,

    ) const

Evaluates the op on input_values putting results in output_values.

Deprecated Use evaluate with ov::Tensor instead

Parameters:

output_values

Tensors for the outputs to compute. One for each result

input_values

Tensors for the inputs. One for each inputs.

Returns:

true if successful

virtual OPENVINO_SUPPRESS_DEPRECATED_END bool has_evaluate() const

Allows to get information about availability of evaluate method for the current operation.