Hello Image Classification¶
This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub. See the installation guide for instructions to run this tutorial locally on Windows, Linux or macOS. To run without installing anything, click the “launch binder” button.
This basic introduction to OpenVINO™ shows how to do inference with an image classification model.
A pre-trained MobileNetV3 model from Open Model Zoo is used in this tutorial. For more information about how OpenVINO IR models are created, refer to the TensorFlow to OpenVINO tutorial.
Table of contents:
# Install openvino package
!pip install -q "openvino==2023.1.0.dev20230811"
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
openvino-dev 2023.0.0 requires openvino==2023.0.0, but you have openvino 2023.1.0.dev20230811 which is incompatible.
Imports¶
from pathlib import Path
import sys
import cv2
import matplotlib.pyplot as plt
import numpy as np
import openvino as ov
sys.path.append("../utils")
from notebook_utils import download_file
Download the Model and data samples¶
base_artifacts_dir = Path('./artifacts').expanduser()
model_name = "v3-small_224_1.0_float"
model_xml_name = f'{model_name}.xml'
model_bin_name = f'{model_name}.bin'
model_xml_path = base_artifacts_dir / model_xml_name
base_url = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/models/mobelinet-v3-tf/FP32/'
if not model_xml_path.exists():
download_file(base_url + model_xml_name, model_xml_name, base_artifacts_dir)
download_file(base_url + model_bin_name, model_bin_name, base_artifacts_dir)
else:
print(f'{model_name} already downloaded to {base_artifacts_dir}')
artifacts/v3-small_224_1.0_float.xml: 0%| | 0.00/294k [00:00<?, ?B/s]
artifacts/v3-small_224_1.0_float.bin: 0%| | 0.00/4.84M [00:00<?, ?B/s]
Select inference device¶
Select device from dropdown list for running inference using OpenVINO:
import ipywidgets as widgets
core = ov.Core()
device = widgets.Dropdown(
options=core.available_devices + ["AUTO"],
value='AUTO',
description='Device:',
disabled=False,
)
device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
Load the Model¶
core = ov.Core()
model = core.read_model(model=model_xml_path)
compiled_model = core.compile_model(model=model, device_name=device.value)
output_layer = compiled_model.output(0)
Load an Image¶
# The MobileNet model expects images in RGB format.
image = cv2.cvtColor(cv2.imread(filename="../data/image/coco.jpg"), code=cv2.COLOR_BGR2RGB)
# Resize to MobileNet image shape.
input_image = cv2.resize(src=image, dsize=(224, 224))
# Reshape to model input shape.
input_image = np.expand_dims(input_image, 0)
plt.imshow(image);

Do Inference¶
result_infer = compiled_model([input_image])[output_layer]
result_index = np.argmax(result_infer)
# Convert the inference result to a class name.
imagenet_classes = open("../data/datasets/imagenet/imagenet_2012.txt").read().splitlines()
# The model description states that for this model, class 0 is a background.
# Therefore, a background must be added at the beginning of imagenet_classes.
imagenet_classes = ['background'] + imagenet_classes
imagenet_classes[result_index]
'n02099267 flat-coated retriever'