Quantize Speech Recognition Models using NNCF PTQ API¶
This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub. See the installation guide for instructions to run this tutorial locally on Windows, Linux or macOS. To run without installing anything, click the “Open in Colab” button.
This tutorial demonstrates how to use the NNCF (Neural Network Compression Framework) 8-bit quantization in post-training mode (without the fine-tuning pipeline) to optimize the speech recognition model, known as Data2Vec for the high-speed inference via OpenVINO™ Toolkit. This notebook uses a fine-tuned data2vec-audio-base-960h PyTorch model trained on the LibriSpeech ASR corpus. The tutorial is designed to be extendable to custom models and datasets. It consists of the following steps:
Download and prepare model.
Define data loading and accuracy validation functionality.
Prepare the model for quantization and quantize.
Compare performance of the original and quantized models.
Compare Accuracy of the Original and Quantized Models.
Table of contents:
Download and prepare model¶
data2vec is a framework for self-supervised representation learning for images, speech, and text as described in data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language (Baevski et al., 2022). The algorithm uses the same learning mechanism for different modalities.

pre-trained pipeline¶
In our case, we will use data2vec-audio-base-960h
model, which was
finetuned on 960 hours of audio from LibriSpeech Automatic Speech
Recognition corpus and distributed as part of HuggingFace transformers.
Obtain Pytorch model representation¶
For instantiating PyTorch model class, we should use
Data2VecAudioForCTC.from_pretrained
method with providing model ID
for downloading from HuggingFace hub. Model weights and configuration
files will be downloaded automatically in first time usage. Keep in mind
that downloading the files can take several minutes and depends on your
internet connection.
Additionally, we can create processor class which is responsible for model specific pre- and post-processing steps.
!pip install -q "openvino==2023.1.0.dev20230811" "nncf>=2.5.0"
!pip install -q datasets "torchmetrics>=0.11.0"
!pip install -q soundfile librosa transformers onnx
from transformers import Wav2Vec2Processor, Data2VecAudioForCTC
processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h")
model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h")
Convert model to OpenVINO Intermediate Representation¶
from pathlib import Path
# Set model directory
MODEL_DIR = Path("model")
MODEL_DIR.mkdir(exist_ok=True)
import openvino as ov
import torch
core = ov.Core()
BATCH_SIZE = 1
MAX_SEQ_LENGTH = 30480
def export_model_to_onnx(model, path):
# switch model to evaluation mode
model.eval()
# disallow gradient propagation for reducing memory during export
with torch.no_grad():
# define dummy input with specific shape
default_input = torch.zeros([1, MAX_SEQ_LENGTH], dtype=torch.float)
inputs = {
"inputs": default_input
}
# define names for dynamic dimentions
symbolic_names = {0: "batch_size", 1: "sequence_len"}
# export model
torch.onnx.export(
model,
(inputs["inputs"]),
path,
opset_version=11,
input_names=["inputs"],
output_names=["logits"],
dynamic_axes={
"inputs": symbolic_names,
"logits": symbolic_names,
},
)
print("ONNX model saved to {}".format(path))
onnx_model_path = MODEL_DIR / "data2vec-audo-base.onnx"
ir_model_path = onnx_model_path.with_suffix('.xml')
if not ir_model_path.exists():
if not onnx_model_path.exists():
export_model_to_onnx(model, onnx_model_path)
ov_model = ov.convert_model(onnx_model_path)
ov.save_model(ov_model, str(ir_model_path))
print("IR model saved to {}".format(ir_model_path))
else:
print("Read IR model from {}".format(ir_model_path))
ov_model = core.read_model(ir_model_path)
Read IR model from model/data2vec-audo-base.xml
Prepare inference data¶
For demonstration purposes, we will use short dummy version of
LibriSpeech dataset - patrickvonplaten/librispeech_asr_dummy
to
speed up model evaluation. Model accuracy can be different from reported
in the paper. For reproducing original accuracy, use librispeech_asr
dataset.
from datasets import load_dataset
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# define preprocessing function for converting audio to input values for model
def map_to_input(batch):
preprocessed_signal = processor(batch["audio"]["array"], return_tensors="pt", padding="longest", sampling_rate=batch['audio']['sampling_rate'])
input_values = preprocessed_signal.input_values
batch['input_values'] = input_values
return batch
# apply preprocessing function to dataset and remove audio column, to save memory as we do not need it anymore
dataset = ds.map(map_to_input, batched=False, remove_columns=["audio"])
test_sample = ds[0]["audio"]
Check model inference result¶
The code below is used for running model inference on a single sample from the dataset. It contains the following steps:
Get the input_values tensor as model input.
Run model inference and obtain logits.
Find logits ids with highest probability, using argmax.
Decode predicted token ids, using processor.
For reference, see the same function provided for OpenVINO model.
import numpy as np
# inference function for pytorch
def torch_infer(model, sample):
logits = model(torch.Tensor(sample['input_values'])).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
return transcription
# inference function for openvino
def ov_infer(model, sample):
output = model.output(0)
logits = model(np.array(sample['input_values']))[output]
predicted_ids = np.argmax(logits, axis=-1)
transcription = processor.batch_decode(torch.from_numpy(predicted_ids))
return transcription
core = ov.Core()
pt_transcription = torch_infer(model, dataset[0])
compiled_model = core.compile_model(ov_model)
ov_transcription = ov_infer(compiled_model, dataset[0])
import IPython.display as ipd
print(f"[Reference]: {dataset[0]['text']}")
print(f"[PyTorch]: {pt_transcription[0]}")
print(f"[OpenVINO FP16]: {ov_transcription[0]}")
ipd.Audio(test_sample["array"], rate=16000)
[Reference]: MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL
[PyTorch]: MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL
[OpenVINO FP16]: MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL
Validate model accuracy on dataset¶
For model accuracy evaluation, Word Error Rate metric can be used. Word Error Rate or WER is the ratio of errors in a transcript to the total words spoken. A lower WER in speech-to-text means better accuracy in recognizing speech.
For WER calculation, we will use
`torchmetrics
<https://torchmetrics.readthedocs.io/en/stable/text/word_error_rate.html>`__
library.
from torchmetrics import WordErrorRate
from tqdm.notebook import tqdm
def compute_wer(dataset, model, infer_fn):
wer = WordErrorRate()
for sample in tqdm(dataset):
# run infer function on sample
transcription = infer_fn(model, sample)
# update metric on sample result
wer.update(transcription, [sample['text']])
# finalize metric calculation
result = wer.compute()
return result
pt_result = compute_wer(dataset, model, torch_infer)
ov_result = compute_wer(dataset, compiled_model, ov_infer)
0%| | 0/73 [00:00<?, ?it/s]
0%| | 0/73 [00:00<?, ?it/s]
print(f'[PyTorch] Word Error Rate: {pt_result:.4f}')
print(f'[OpenVino] Word Error Rate: {ov_result:.4f}')
[PyTorch] Word Error Rate: 0.0383
[OpenVino] Word Error Rate: 0.0383
Quantization¶
NNCF provides a suite of advanced algorithms for Neural Networks inference optimization in OpenVINO with minimal accuracy drop.
Create a quantized model from the pre-trained FP16
model and the
calibration dataset. The optimization process contains the following
steps:
1. Create a Dataset for quantization.
2. Run `nncf.quantize` for getting an optimized model. The `nncf.quantize` function provides an interface for model quantization. It requires an instance of the OpenVINO Model and quantization dataset. Optionally, some additional parameters for the configuration quantization process (number of samples for quantization, preset, ignored scope, etc.) can be provided. For more accurate results, we should keep the operation in the postprocessing subgraph in floating point precision, using the `ignored_scope` parameter. `advanced_parameters` can be used to specify advanced quantization parameters for fine-tuning the quantization algorithm. In this tutorial we pass range estimator parameters for activations. For more information see [Tune quantization parameters](https://docs.openvino.ai/2023.0/basic_quantization_flow.html#tune-quantization-parameters).
3. Serialize OpenVINO IR model using `ov.save_model` function.
import nncf
from nncf.quantization.advanced_parameters import AdvancedQuantizationParameters
from nncf.quantization.range_estimator import AggregatorType
from nncf.quantization.range_estimator import RangeEstimatorParameters
from nncf.quantization.range_estimator import StatisticsCollectorParameters
from nncf.quantization.range_estimator import StatisticsType
from nncf.parameters import ModelType
def transform_fn(data_item):
"""
Extract the model's input from the data item.
The data item here is the data item that is returned from the data source per iteration.
This function should be passed when the data item cannot be used as model's input.
"""
return np.array(data_item["input_values"])
calibration_dataset = nncf.Dataset(dataset, transform_fn)
quantized_model = nncf.quantize(
ov_model,
calibration_dataset,
model_type=ModelType.TRANSFORMER, # specify additional transformer patterns in the model
subset_size=len(dataset),
ignored_scope=nncf.IgnoredScope(
names=[
"/data2vec_audio/encoder/layers.3/feed_forward/intermediate_dense/MatMul",
"/data2vec_audio/feature_extractor/conv_layers.2/conv/Conv",
"/data2vec_audio/encoder/layers.3/Add_1",
"/data2vec_audio/encoder/layers.2/feed_forward/intermediate_dense/MatMul",
"/data2vec_audio/feature_extractor/conv_layers.0/conv/Conv",
"/data2vec_audio/encoder/layers.4/Add_1",
"/data2vec_audio/encoder/layers.4/feed_forward/intermediate_dense/MatMul",
"/data2vec_audio/encoder/layers.4/final_layer_norm/Div",
"/data2vec_audio/encoder/layers.4/feed_forward/output_dense/MatMul",
"/data2vec_audio/encoder/layers.8/attention/MatMul_1",
"/data2vec_audio/feature_extractor/conv_layers.1/conv/Conv",
"/data2vec_audio/encoder/layers.2/Add_1",
"/data2vec_audio/feature_extractor/conv_layers.0/layer_norm/Div",
"/data2vec_audio/encoder/layers.1/feed_forward/intermediate_dense/MatMul",
"/data2vec_audio/encoder/layers.1/Add_1",
"/data2vec_audio/feature_extractor/conv_layers.3/layer_norm/Div"
],
),
advanced_parameters=AdvancedQuantizationParameters(
activations_range_estimator_params=RangeEstimatorParameters(
min=StatisticsCollectorParameters(
statistics_type=StatisticsType.MIN,
aggregator_type=AggregatorType.MIN
),
max=StatisticsCollectorParameters(
statistics_type=StatisticsType.QUANTILE,
aggregator_type=AggregatorType.MEAN,
quantile_outlier_prob=0.0001
),
)
)
)
INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino
INFO:nncf:16 ignored nodes was found by name in the NNCFGraph
INFO:nncf:220 ignored nodes was found by types in the NNCFGraph
INFO:nncf:24 ignored nodes was found by name in the NNCFGraph
INFO:nncf:Not adding activation input quantizer for operation: 2 /data2vec_audio/feature_extractor/conv_layers.0/conv/Conv
INFO:nncf:Not adding activation input quantizer for operation: 4 /data2vec_audio/feature_extractor/conv_layers.0/layer_norm/Div
5 /data2vec_audio/feature_extractor/conv_layers.0/layer_norm/Mul
6 /data2vec_audio/feature_extractor/conv_layers.0/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 9 /data2vec_audio/feature_extractor/conv_layers.1/conv/Conv
INFO:nncf:Not adding activation input quantizer for operation: 11 /data2vec_audio/feature_extractor/conv_layers.1/layer_norm/Div
12 /data2vec_audio/feature_extractor/conv_layers.1/layer_norm/Mul
13 /data2vec_audio/feature_extractor/conv_layers.1/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 16 /data2vec_audio/feature_extractor/conv_layers.2/conv/Conv
INFO:nncf:Not adding activation input quantizer for operation: 18 /data2vec_audio/feature_extractor/conv_layers.2/layer_norm/Div
19 /data2vec_audio/feature_extractor/conv_layers.2/layer_norm/Mul
20 /data2vec_audio/feature_extractor/conv_layers.2/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 25 /data2vec_audio/feature_extractor/conv_layers.3/layer_norm/Div
26 /data2vec_audio/feature_extractor/conv_layers.3/layer_norm/Mul
27 /data2vec_audio/feature_extractor/conv_layers.3/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 32 /data2vec_audio/feature_extractor/conv_layers.4/layer_norm/Div
33 /data2vec_audio/feature_extractor/conv_layers.4/layer_norm/Mul
34 /data2vec_audio/feature_extractor/conv_layers.4/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 39 /data2vec_audio/feature_extractor/conv_layers.5/layer_norm/Div
40 /data2vec_audio/feature_extractor/conv_layers.5/layer_norm/Mul
41 /data2vec_audio/feature_extractor/conv_layers.5/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 46 /data2vec_audio/feature_extractor/conv_layers.6/layer_norm/Div
47 /data2vec_audio/feature_extractor/conv_layers.6/layer_norm/Mul
48 /data2vec_audio/feature_extractor/conv_layers.6/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 52 /data2vec_audio/feature_projection/layer_norm/Div
53 /data2vec_audio/feature_projection/layer_norm/Mul
54 /data2vec_audio/feature_projection/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 70 /data2vec_audio/encoder/pos_conv_embed/layers.0/layer_norm/Div
INFO:nncf:Not adding activation input quantizer for operation: 124 /data2vec_audio/encoder/pos_conv_embed/layers.1/layer_norm/Div
INFO:nncf:Not adding activation input quantizer for operation: 178 /data2vec_audio/encoder/pos_conv_embed/layers.2/layer_norm/Div
INFO:nncf:Not adding activation input quantizer for operation: 221 /data2vec_audio/encoder/pos_conv_embed/layers.3/layer_norm/Div
INFO:nncf:Not adding activation input quantizer for operation: 262 /data2vec_audio/encoder/pos_conv_embed/layers.4/layer_norm/Div
INFO:nncf:Not adding activation input quantizer for operation: 57 /data2vec_audio/encoder/Add
INFO:nncf:Not adding activation input quantizer for operation: 59 /data2vec_audio/encoder/layer_norm/Div
61 /data2vec_audio/encoder/layer_norm/Mul
63 /data2vec_audio/encoder/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 65 /data2vec_audio/encoder/layers.0/Add
INFO:nncf:Not adding activation input quantizer for operation: 71 /data2vec_audio/encoder/layers.0/layer_norm/Div
83 /data2vec_audio/encoder/layers.0/layer_norm/Mul
94 /data2vec_audio/encoder/layers.0/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 104 /data2vec_audio/encoder/layers.0/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 115 /data2vec_audio/encoder/layers.0/final_layer_norm/Div
121 /data2vec_audio/encoder/layers.0/final_layer_norm/Mul
125 /data2vec_audio/encoder/layers.0/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 128 /data2vec_audio/encoder/layers.1/Add
INFO:nncf:Not adding activation input quantizer for operation: 135 /data2vec_audio/encoder/layers.1/layer_norm/Div
147 /data2vec_audio/encoder/layers.1/layer_norm/Mul
158 /data2vec_audio/encoder/layers.1/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 169 /data2vec_audio/encoder/layers.1/feed_forward/intermediate_dense/MatMul
180 /data2vec_audio/encoder/layers.1/feed_forward/intermediate_dense/Add
INFO:nncf:Not adding activation input quantizer for operation: 168 /data2vec_audio/encoder/layers.1/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 179 /data2vec_audio/encoder/layers.1/final_layer_norm/Div
185 /data2vec_audio/encoder/layers.1/final_layer_norm/Mul
189 /data2vec_audio/encoder/layers.1/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 192 /data2vec_audio/encoder/layers.2/Add
INFO:nncf:Not adding activation input quantizer for operation: 199 /data2vec_audio/encoder/layers.2/layer_norm/Div
211 /data2vec_audio/encoder/layers.2/layer_norm/Mul
222 /data2vec_audio/encoder/layers.2/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 233 /data2vec_audio/encoder/layers.2/feed_forward/intermediate_dense/MatMul
244 /data2vec_audio/encoder/layers.2/feed_forward/intermediate_dense/Add
INFO:nncf:Not adding activation input quantizer for operation: 232 /data2vec_audio/encoder/layers.2/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 243 /data2vec_audio/encoder/layers.2/final_layer_norm/Div
249 /data2vec_audio/encoder/layers.2/final_layer_norm/Mul
253 /data2vec_audio/encoder/layers.2/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 256 /data2vec_audio/encoder/layers.3/Add
INFO:nncf:Not adding activation input quantizer for operation: 263 /data2vec_audio/encoder/layers.3/layer_norm/Div
275 /data2vec_audio/encoder/layers.3/layer_norm/Mul
286 /data2vec_audio/encoder/layers.3/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 297 /data2vec_audio/encoder/layers.3/feed_forward/intermediate_dense/MatMul
307 /data2vec_audio/encoder/layers.3/feed_forward/intermediate_dense/Add
INFO:nncf:Not adding activation input quantizer for operation: 296 /data2vec_audio/encoder/layers.3/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 306 /data2vec_audio/encoder/layers.3/final_layer_norm/Div
311 /data2vec_audio/encoder/layers.3/final_layer_norm/Mul
314 /data2vec_audio/encoder/layers.3/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 316 /data2vec_audio/encoder/layers.4/Add
INFO:nncf:Not adding activation input quantizer for operation: 322 /data2vec_audio/encoder/layers.4/layer_norm/Div
333 /data2vec_audio/encoder/layers.4/layer_norm/Mul
343 /data2vec_audio/encoder/layers.4/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 353 /data2vec_audio/encoder/layers.4/feed_forward/intermediate_dense/MatMul
363 /data2vec_audio/encoder/layers.4/feed_forward/intermediate_dense/Add
INFO:nncf:Not adding activation input quantizer for operation: 371 /data2vec_audio/encoder/layers.4/feed_forward/output_dense/MatMul
377 /data2vec_audio/encoder/layers.4/feed_forward/output_dense/Add
INFO:nncf:Not adding activation input quantizer for operation: 352 /data2vec_audio/encoder/layers.4/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 362 /data2vec_audio/encoder/layers.4/final_layer_norm/Div
367 /data2vec_audio/encoder/layers.4/final_layer_norm/Mul
370 /data2vec_audio/encoder/layers.4/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 372 /data2vec_audio/encoder/layers.5/Add
INFO:nncf:Not adding activation input quantizer for operation: 378 /data2vec_audio/encoder/layers.5/layer_norm/Div
389 /data2vec_audio/encoder/layers.5/layer_norm/Mul
399 /data2vec_audio/encoder/layers.5/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 408 /data2vec_audio/encoder/layers.5/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 418 /data2vec_audio/encoder/layers.5/final_layer_norm/Div
423 /data2vec_audio/encoder/layers.5/final_layer_norm/Mul
426 /data2vec_audio/encoder/layers.5/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 428 /data2vec_audio/encoder/layers.6/Add
INFO:nncf:Not adding activation input quantizer for operation: 434 /data2vec_audio/encoder/layers.6/layer_norm/Div
445 /data2vec_audio/encoder/layers.6/layer_norm/Mul
455 /data2vec_audio/encoder/layers.6/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 464 /data2vec_audio/encoder/layers.6/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 474 /data2vec_audio/encoder/layers.6/final_layer_norm/Div
479 /data2vec_audio/encoder/layers.6/final_layer_norm/Mul
482 /data2vec_audio/encoder/layers.6/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 484 /data2vec_audio/encoder/layers.7/Add
INFO:nncf:Not adding activation input quantizer for operation: 490 /data2vec_audio/encoder/layers.7/layer_norm/Div
501 /data2vec_audio/encoder/layers.7/layer_norm/Mul
511 /data2vec_audio/encoder/layers.7/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 520 /data2vec_audio/encoder/layers.7/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 530 /data2vec_audio/encoder/layers.7/final_layer_norm/Div
535 /data2vec_audio/encoder/layers.7/final_layer_norm/Mul
538 /data2vec_audio/encoder/layers.7/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 540 /data2vec_audio/encoder/layers.8/Add
INFO:nncf:Not adding activation input quantizer for operation: 546 /data2vec_audio/encoder/layers.8/layer_norm/Div
557 /data2vec_audio/encoder/layers.8/layer_norm/Mul
567 /data2vec_audio/encoder/layers.8/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 576 /data2vec_audio/encoder/layers.8/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 586 /data2vec_audio/encoder/layers.8/final_layer_norm/Div
591 /data2vec_audio/encoder/layers.8/final_layer_norm/Mul
594 /data2vec_audio/encoder/layers.8/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 596 /data2vec_audio/encoder/layers.9/Add
INFO:nncf:Not adding activation input quantizer for operation: 602 /data2vec_audio/encoder/layers.9/layer_norm/Div
613 /data2vec_audio/encoder/layers.9/layer_norm/Mul
623 /data2vec_audio/encoder/layers.9/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 632 /data2vec_audio/encoder/layers.9/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 642 /data2vec_audio/encoder/layers.9/final_layer_norm/Div
647 /data2vec_audio/encoder/layers.9/final_layer_norm/Mul
650 /data2vec_audio/encoder/layers.9/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 652 /data2vec_audio/encoder/layers.10/Add
INFO:nncf:Not adding activation input quantizer for operation: 658 /data2vec_audio/encoder/layers.10/layer_norm/Div
669 /data2vec_audio/encoder/layers.10/layer_norm/Mul
679 /data2vec_audio/encoder/layers.10/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 688 /data2vec_audio/encoder/layers.10/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 698 /data2vec_audio/encoder/layers.10/final_layer_norm/Div
703 /data2vec_audio/encoder/layers.10/final_layer_norm/Mul
706 /data2vec_audio/encoder/layers.10/final_layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 708 /data2vec_audio/encoder/layers.11/Add
INFO:nncf:Not adding activation input quantizer for operation: 714 /data2vec_audio/encoder/layers.11/layer_norm/Div
725 /data2vec_audio/encoder/layers.11/layer_norm/Mul
735 /data2vec_audio/encoder/layers.11/layer_norm/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 744 /data2vec_audio/encoder/layers.11/Add_1
INFO:nncf:Not adding activation input quantizer for operation: 754 /data2vec_audio/encoder/layers.11/final_layer_norm/Div
759 /data2vec_audio/encoder/layers.11/final_layer_norm/Mul
762 /data2vec_audio/encoder/layers.11/final_layer_norm/Add_1
Statistics collection: 100%|██████████| 73/73 [00:37<00:00, 1.93it/s]
Biases correction: 100%|██████████| 74/74 [00:16<00:00, 4.60it/s]
After quantization is finished, compressed model representation can be
saved using serialize
function.
MODEL_NAME = 'quantized_data2vec_base'
quantized_model_path = Path(f"{MODEL_NAME}_openvino_model/{MODEL_NAME}_quantized.xml")
ov.save_model(quantized_model, str(quantized_model_path))
Check INT8 model inference result¶
INT8
model is the same in usage like the original one. We need to
read it, using the core.read_model
method and load on the device,
using core.compile_model
. After that, we can reuse the same
ov_infer
function for getting model inference result on test sample.
int8_compiled_model = core.compile_model(quantized_model)
transcription = ov_infer(int8_compiled_model, dataset[0])
print(f"[Reference]: {dataset[0]['text']}")
print(f"[OpenVINO INT8]: {transcription[0]}")
ipd.Audio(test_sample["array"], rate=16000)
[Reference]: MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL
[OpenVINO INT8]: MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL