ExtractImagePatches#

Versioned name: ExtractImagePatches-3

Category: Data movement

Short description: The ExtractImagePatches operation collects patches from the input tensor, as if applying a convolution. All extracted patches are stacked in the depth dimension of the output.

Detailed description:

The ExtractImagePatches operation extracts patches of shape sizes which are strides apart in the input image. The output elements are taken from the input at intervals given by the rate argument, as in dilated convolutions.

The result is a 4D tensor containing image patches with size size[0] * size[1] * depth vectorized in the “depth” dimension.

The “auto_pad” attribute has no effect on the size of each patch, it determines how many patches are extracted.

Attributes

  • sizes

    • Description: sizes is a size [size_rows, size_cols] of the extracted patches.

    • Range of values: non-negative integer number

    • Type: int[]

    • Required: yes

  • strides

    • Description: strides is a distance [stride_rows, stride_cols] between centers of two consecutive patches in an input tensor.

    • Range of values: non-negative integer number

    • Type: int[]

    • Required: yes

  • rates

    • Description: rates is the input stride [rate_rows, rate_cols], specifying how far two consecutive patch samples are in the input. Equivalent to extracting patches with patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1), followed by subsampling them spatially by a factor of rates. This is equivalent to rate in dilated (a.k.a. Atrous) convolutions.

    • Range of values: non-negative integer number

    • Type: int[]

    • Required: yes

  • auto_pad

    • Description: auto_pad how the padding is calculated. Possible values:

      • same_upper (same_lower) the input is padded by zeros to match the output size. In case of odd padding value an extra padding is added at the end (at the beginning).

      • valid - do not use padding.

    • Type: string

    • Required: yes

Inputs

  • 1: data the 4-D tensor of type T with shape [batch, depth, in_rows, in_cols]. Required.

Outputs

  • 1: 4-D tensor with shape [batch, size[0] * size[1] * depth, out_rows, out_cols] with type equal to data tensor. Note out_rows and out_cols are the dimensions of the output patches.

Types

  • T: any supported type.

Example

<layer type="ExtractImagePatches" ...>
    <data sizes="3,3" strides="5,5" rates="1,1" auto_pad="valid"/>
    <input>
        <port id="0">
            <dim>64</dim>
            <dim>3</dim>
            <dim>10</dim>
            <dim>10</dim>
        </port>
    </input>
    <output>
        <port id="1" precision="f32">
            <dim>64</dim>
            <dim>27</dim>
            <dim>2</dim>
            <dim>2</dim>
        </port>
    </output>
</layer>

Image is a 1 x 1 x 10 x 10 array that contains the numbers 1 through 100. We use the symbol x to mark output patches.

  1. sizes="3,3", strides="5,5", rates="1,1", auto_pad="valid"

    \[\begin{split}\begin{bmatrix} x & x & x & 4 & 5 & x & x & x & 9 & 10 \\ x & x & x & 14 & 15 & x & x & x & 19 & 20 \\ x & x & x & 24 & 25 & x & x & x & 29 & 30 \\ 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\ 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\ x & x & x & 54 & 55 & x & x & x & 59 & 60 \\ x & x & x & 64 & 65 & x & x & x & 69 & 70 \\ x & x & x & 74 & 75 & x & x & x & 79 & 80 \\ 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\ 91 & 92 & 93 & 94 & 95 & 96 & 79 & 98 & 99 & 100 \end{bmatrix}\end{split}\]

    output:

    [[[[ 1  6]
       [51 56]]
    
      [[ 2  7]
       [52 57]]
    
      [[ 3  8]
       [53 58]]
    
      [[11 16]
       [61 66]]
    
      [[12 17]
       [62 67]]
    
      [[13 18]
       [63 68]]
    
      [[21 26]
       [71 76]]
    
      [[22 27]
       [72 77]]
    
      [[23 28]
       [73 78]]]]
    

    output shape: [1, 9, 2, 2]

  2. sizes="4,4", strides="8,8", rates="1,1", auto_pad="valid"

    \[\begin{split}\begin{bmatrix} x & x & x & x & 5 & 6 & 7 & 8 & 9 & 10 \\ x & x & x & x & 15 & 16 & 17 & 18 & 19 & 20 \\ x & x & x & x & 25 & 26 & 27 & 28 & 29 & 30 \\ x & x & x & x & 35 & 36 & 37 & 38 & 39 & 40 \\ 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\ 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\ 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\ 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\ 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\ 91 & 92 & 93 & 94 & 95 & 96 & 79 & 98 & 99 & 100 \end{bmatrix}\end{split}\]

    output:

    [[[[ 1]]
    
     [[ 2]]
    
     [[ 3]]
    
     [[ 4]]
    
     [[11]]
    
     [[12]]
    
     [[13]]
    
     [[14]]
    
     [[21]]
    
     [[22]]
    
     [[23]]
    
     [[24]]
    
     [[31]]
    
     [[32]]
    
     [[33]]
    
     [[34]]]]
    

    output shape: [1, 16, 1, 1]

  3. sizes="4,4", strides="9,9", rates="1,1", auto_pad="same_upper"

    \[\begin{split}\begin{bmatrix} x & x & x & x & 0 & 0 & 0 & 0 & 0 & x & x & x & x\\ x & x & x & x & 4 & 5 & 6 & 7 & 8 & x & x & x & x\\ x & x & x & x & 14 & 15 & 16 & 17 & 18 & x & x & x & x\\ x & x & x & x & 24 & 25 & 26 & 27 & 28 & x & x & x & x\\ 0 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 0 & 0\\ 0 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 0 & 0\\ 0 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 0 & 0\\ 0 & 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 0 & 0\\ 0 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 & 0 & 0\\ x & x & x & x & 84 & 85 & 86 & 87 & 88 & x & x & x & x\\ x & x & x & x & 94 & 95 & 96 & 79 & 98 & x & x & x & x\\ x & x & x & x & 0 & 0 & 0 & 0 & 0 & x & x & x & x\\ x & x & x & x & 0 & 0 & 0 & 0 & 0 & x & x & x & x \end{bmatrix}\end{split}\]

    output:

    [[[[  0   0]
       [  0  89]]
    
      [[  0   0]
       [ 81  90]]
    
      [[  0   0]
       [ 82   0]]
    
      [[  0   0]
       [ 83   0]]
    
      [[  0   9]
       [  0  99]]
    
      [[  1  10]
       [ 91 100]]
    
      [[  2   0]
       [ 92   0]]
    
      [[  3   0]
       [ 93   0]]
    
      [[  0  19]
       [  0   0]]
    
      [[ 11  20]
       [  0   0]]
    
      [[ 12   0]
       [  0   0]]
    
      [[ 13   0]
       [  0   0]]
    
      [[  0  29]
       [  0   0]]
    
      [[ 21  30]
       [  0   0]]
    
      [[ 22   0]
       [  0   0]]
    
      [[ 23   0]
       [  0   0]]]]
    

    output shape: [1, 16, 2, 2]

  4. sizes="3,3", strides="5,5", rates="2,2", auto_pad="valid"

    This time we use the symbols x, y, z and k to distinguish the patches:

    \[\begin{split}\begin{bmatrix} x & 2 & x & 4 & x & y & 7 & y & 9 & y \\ 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ x & 22 & x & 24 & x & y & 27 & y & 29 & y \\ 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\ x & 42 & x & 44 & x & y & 47 & y & 49 & y \\ z & 52 & z & 54 & z & k & 57 & k & 59 & k \\ 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\ z & 72 & z & 74 & z & k & 77 & k & 79 & k \\ 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\ z & 92 & z & 94 & z & k & 79 & k & 99 & k \end{bmatrix}\end{split}\]

    output:

    [[[[  1   6]
       [ 51  56]]
    
      [[  3   8]
       [ 53  58]]
    
      [[  5  10]
       [ 55  60]]
    
      [[ 21  26]
       [ 71  76]]
    
      [[ 23  28]
       [ 73  78]]
    
      [[ 25  30]
       [ 75  80]]
    
      [[ 41  46]
       [ 91  96]]
    
      [[ 43  48]
       [ 93  98]]
    
      [[ 45  50]
       [ 95 100]]]]
    

    output_shape: [1, 9, 2, 2]

  5. sizes="2,2", strides="3,3", rates="1,1", auto_pad="valid"

    Image is a 1 x 2 x 5 x 5 array that contains two feature maps where feature map with coordinate 0 contains numbers in a range [1, 25] and feature map with coordinate 1 contains numbers in a range [26, 50]

    \[\begin{split}\begin{bmatrix} x & x & 3 & x & x\\ x & x & 8 & x & x\\ 11 & 12 & 13 & 14 & 15\\ x & x & 18 & x & x\\ x & x & 23 & x & x \end{bmatrix}\\ \begin{bmatrix} x & x & 28 & x & x\\ x & x & 33 & x & x\\ 36 & 37 & 38 & 39 & 40\\ x & x & 43 & x & x\\ x & x & 48 & x & x \end{bmatrix}\end{split}\]

    output:

    [[[[ 1  4]
       [16 19]]
    
      [[26 29]
       [41 44]]
    
      [[ 2  5]
       [17 20]]
    
      [[27 30]
       [42 45]]
    
      [[ 6  9]
       [21 24]]
    
      [[31 34]
       [46 49]]
    
      [[ 7 10]
       [22 25]]
    
      [[32 35]
       [47 50]]]]
    

    output shape: [1, 8, 2, 2]