ExperimentalDetectronPriorGridGenerator#
Versioned name: ExperimentalDetectronPriorGridGenerator-6
Category: Object detection
Short description: The ExperimentalDetectronPriorGridGenerator operation generates prior grids of specified sizes.
Detailed description: The operation takes coordinates of centres of boxes and adds strides with offset 0.5 to them to calculate coordinates of prior grids.
Numbers of generated cells is featmap_height
and featmap_width
if h and w are zeroes; otherwise, h and w, respectively. Steps of generated grid are image_height
/ layer_height
and image_width
/ layer_width
if stride_h and stride_w are zeroes; otherwise, stride_h and stride_w, respectively.
featmap_height
, featmap_width
, image_height
and image_width
are spatial dimensions values from second and third inputs, respectively.
Attributes:
flatten
Description: The flatten attribute specifies whether the output tensor should be 2D or 4D.
Range of values:
true
- the output tensor should be a 2D tensorfalse
- the output tensor should be a 4D tensor
Type:
boolean
Default value: true
Required: no
h
Description: The h attribute specifies number of cells of the generated grid with respect to height.
Range of values: non-negative integer number less or equal than
featmap_height
Type:
int
Default value: 0
Required: no
w
Description: The w attribute specifies number of cells of the generated grid with respect to width.
Range of values: non-negative integer number less or equal than
featmap_width
Type:
int
Default value: 0
Required: no
stride_x
Description: The stride_x attribute specifies the step of generated grid with respect to x coordinate.
Range of values: non-negative float number
Type:
float
Default value: 0.0
Required: no
stride_y
Description: The stride_y attribute specifies the step of generated grid with respect to y coordinate.
Range of values: non-negative float number
Type:
float
Default value: 0.0
Required: no
Inputs
1: A 2D tensor of type T with shape
[number_of_priors, 4]
contains priors. Required.2: A 4D tensor of type T with input feature map
[1, number_of_channels, featmap_height, featmap_width]
. This operation uses only sizes of this input tensor, not its data. Required.3: A 4D tensor of type T with input image
[1, number_of_channels, image_height, image_width]
. The number of channels of both feature map and input image tensors must match. This operation uses only sizes of this input tensor, not its data. Required.
Outputs
1: A tensor of type T with priors grid with shape
[featmap_height * featmap_width * number_of_priors, 4]
if flatten istrue
or[featmap_height, featmap_width, number_of_priors, 4]
, otherwise. If 0 < h <featmap_height
and/or 0 < w <featmap_width
the output data size is less thanfeatmap_height
*featmap_width
*number_of_priors
* 4 and the output tensor is filled with undefined values for rest output tensor elements.
Types
T: any supported floating-point type.
Example
<layer ... type="ExperimentalDetectronPriorGridGenerator" version="opset6">
<data flatten="true" h="0" stride_x="32.0" stride_y="32.0" w="0"/>
<input>
<port id="0">
<dim>3</dim>
<dim>4</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>256</dim>
<dim>25</dim>
<dim>42</dim>
</port>
<port id="2">
<dim>1</dim>
<dim>3</dim>
<dim>800</dim>
<dim>1344</dim>
</port>
</input>
<output>
<port id="3" precision="FP32">
<dim>3150</dim>
<dim>4</dim>
</port>
</output>
</layer>