openvino.runtime.opset3.proposal#
- openvino.runtime.opset3.proposal(class_probs: Node, bbox_deltas: Node, image_shape: Node | int | float | ndarray, attrs: dict, name: str | None = None) Node #
Filter bounding boxes and outputs only those with the highest prediction confidence.
- Parameters:
class_probs – 4D input floating point tensor with class prediction scores.
bbox_deltas – 4D input floating point tensor with box logits.
image_shape – The 1D input tensor with 3 or 4 elements describing image shape.
attrs – The dictionary containing key, value pairs for attributes.
name – Optional name for the output node.
- Returns:
Node representing Proposal operation.
- base_size The size of the anchor to which scale and ratio attributes are applied.
Range of values: a positive unsigned integer number Default value: None Required: yes
- pre_nms_topn The number of bounding boxes before the NMS operation.
Range of values: a positive unsigned integer number Default value: None Required: yes
- post_nms_topn The number of bounding boxes after the NMS operation.
Range of values: a positive unsigned integer number Default value: None Required: yes
- nms_thresh The minimum value of the proposal to be taken into consideration.
Range of values: a positive floating-point number Default value: None Required: yes
- feat_stride The step size to slide over boxes (in pixels).
Range of values: a positive unsigned integer Default value: None Required: yes
- min_size The minimum size of box to be taken into consideration.
Range of values: a positive unsigned integer number Default value: None Required: yes
- ratio The ratios for anchor generation.
Range of values: a list of floating-point numbers Default value: None Required: yes
- scale The scales for anchor generation.
Range of values: a list of floating-point numbers Default value: None Required: yes
- clip_before_nms The flag that specifies whether to perform clip bounding boxes before
non-maximum suppression or not. Range of values: True or False Default value: True Required: no
- clip_after_nms The flag that specifies whether to perform clip bounding boxes after
non-maximum suppression or not. Range of values: True or False Default value: False Required: no
- normalize The flag that specifies whether to perform normalization of output boxes to
[0,1] interval or not. Range of values: True or False Default value: False Required: no
- box_size_scale Specifies the scale factor applied to logits of box sizes before decoding.
Range of values: a positive floating-point number Default value: 1.0 Required: no
- box_coordinate_scale Specifies the scale factor applied to logits of box coordinates
before decoding. Range of values: a positive floating-point number Default value: 1.0 Required: no
- framework Specifies how the box coordinates are calculated.
- Range of values: “” (empty string) - calculate box coordinates like in Caffe*
- tensorflow - calculate box coordinates like in the TensorFlow*
Object Detection API models
Default value: “” (empty string) Required: no
Example of attribute dictionary:
# just required ones attrs = { 'base_size': 85, 'pre_nms_topn': 10, 'post_nms_topn': 20, 'nms_thresh': 0.34, 'feat_stride': 16, 'min_size': 32, 'ratio': [0.1, 1.5, 2.0, 2.5], 'scale': [2, 3, 3, 4], }
Optional attributes which are absent from dictionary will be set with corresponding default.