Model Accuracy#
The following two tables present the absolute accuracy drop calculated as the accuracy difference between OV-accuracy and the original frame work accuracy for FP32, and the same for INT8, BF16 and FP16 representations of a model on three platform architectures. The third table presents the GenAI model accuracies as absolute accuracy values. Please also refer to notes below the table for more information.
A - Intel® Core™ Ultra 9-185H (AVX2), INT8 and FP32
B - Intel® Xeon® 6338, (VNNI), INT8 and FP32
C - Intel® Xeon 6972P (VNNI, AMX), INT8, BF16, FP32
D - Intel® Arc-B580, INT8 and FP16
OpenVINO™ Model name |
dataset |
Metric Name |
A, INT8 |
B, INT8 |
C, INT8 |
D, INT8 |
---|---|---|---|---|---|---|
bert-base-cased |
SST-2_bert_cased_padded |
2.41% |
2.78% |
2.61% |
2.84% |
|
mask_rcnn_resnet50_atrous_coco |
COCO2017_detection_91cl_bkgr |
coco_orig_precision |
||||
mobilenet-v2 |
ImageNet2012 |
accuracy @ top1 |
-1.03% |
-1.00% |
-1.03% |
-1.01% |
resnet-50 |
ImageNet2012 |
accuracy @ top1 |
-0.17% |
-0.17% |
-0.18% |
-0.17% |
ssd-resnet34-1200 |
COCO2017_detection_80cl_bkgr |
map |
-0.01% |
-0.01% |
-0.04% |
-0.04% |
yolo_v8n |
COCO2017_detection_80cl |
map |
-0.09% |
-0.09% |
-0.02% |
-0.04% |
OpenVINO™ Model name |
dataset |
Metric Name |
A, FP32 |
B, FP32 |
C, FP32 |
C, BF16 |
D, FP16 |
---|---|---|---|---|---|---|---|
bert-base-cased |
SST-2_bert_cased_padded |
0.00% |
0.00% |
0.00% |
-0.01% |
0.02% |
|
mask_rcnn_resnet50_atrous_coco |
COCO2017_detection_91cl_bkgr |
coco_orig_precision |
|||||
mobilenet-v2 |
ImageNet2012 |
accuracy @ top1 |
0.00% |
0.00% |
0.00% |
-0.23% |
-0.03% |
resnet-50 |
ImageNet2012 |
accuracy @ top1 |
0.00% |
0.00% |
0.00% |
0.06% |
0.01% |
ssd-resnet34-1200 |
COCO2017_detection_80cl_bkgr |
map |
0.02% |
0.02% |
0.01% |
0.02% |
0.06% |
yolo_v8n |
COCO2017_detection_80cl |
map |
0.01% |
0.01% |
0.01% |
-0.03% |
OpenVINO™ Model name |
dataset |
Metric Name |
A, AMX-FP16 |
B, AMX-INT4 |
C, Arc-FP16 |
D, Arc-INT4 |
---|---|---|---|---|---|---|
GLM4-9B-Chat |
Data Default WWB |
Similarity |
6.9% |
3.8% |
6.3% |
15.1% |
Qwen-2.5-7B-instruct |
Data Default WWB |
Similarity |
7.97% |
25.12% |
0.09% |
23.87% |
Gemma-2-9B |
Data Default WWB |
Similarity |
4.81% |
10.25% |
1.73% |
10.24% |
Llama-2-7b-chat |
Data Default WWB |
Similarity |
1.80% |
22.31% |
0.13% |
21.54% |
Llama-3-8b |
Data Default WWB |
Similarity |
2.26% |
23.00% |
0.12% |
23.59% |
Llama-3.2-3b-instruct |
Data Default WWB |
Similarity |
2.40% |
11.25% |
0.00% |
12.32% |
Mistral-7b-instruct-V0.2 |
Data Default WWB |
Similarity |
2.94% |
9.08% |
0.37% |
9.53% |
Phi3-mini-4k-instruct |
Data Default WWB |
Similarity |
8.08% |
7.93% |
0.00% |
8.30% |
Qwen-2-7B |
Data Default WWB |
Similarity |
4.97% |
18.97% |
0.00% |
22.38% |
Flux.1-schnell |
Data Default WWB |
Similarity |
4.60% |
4.20% |
5.00% |
3.30% |
Stable-Diffusion-V1-5 |
Data Default WWB |
Similarity |
2.50% |
1.90% |
2.10% |
0.10% |
Notes: For all accuracy metrics a “-”, (minus sign), indicates an accuracy drop. The Similarity metric is the distance from “perfect” and as such always positive. Similarity is cosine similarity - the dot product of two vectors divided by the product of their lengths.