Group Common optimization passes#
- group ov_transformation_common_api
A set of common optimization passes.
-
class AddTransformation : public ov::pass::low_precision::EltwiseBaseTransformation#
- #include <add.hpp>
AddTransformation propagates dequantization subtraction from one input branch to another and propagates dequantization multiplication from the same branch through Add operation.
For more details about the transformation, refer to AddTransformation page in the OpenVINO Developer Guide.
-
class AlignQuantizationIntervals : public ov::pass::ModelPass#
- #include <align_quantization_intervals.hpp>
AlignQuantizationIntervals transformation marks precision preserved operations subgraph by
IntervalsAlignmentAttribute
after FakeQuantize operations.For more details about the transformation, refer to AlignQuantizationIntervals page in the OpenVINO Developer Guide.
-
class AlignQuantizationParameters : public ov::pass::ModelPass#
- #include <align_quantization_parameters.hpp>
AlignQuantizationParameters transformation marks precision preserved operations subgraph by
QuantizationAlignmentAttribute
attribute after FakeQuantize operations.For more details about the transformation, refer to AlignQuantizationParameters page in the OpenVINO Developer Guide.
-
class AvgPoolTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <avg_pool.hpp>
AvgPoolTransformation propagates dequantization operations through AvgPool operation.
For more details about the transformation, refer to AvgPoolTransformation page in the OpenVINO Developer Guide.
-
class BatchToSpaceTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <batch_to_space.hpp>
BatchToSpaceTransformation propagates dequantization operations through BatchToSpace operation.
For more details about the transformation, refer to BatchToSpaceTransformation page in the OpenVINO Developer Guide.
-
class BroadcastTransformation : public ov::pass::low_precision::TransparentBaseTransformation#
- #include <broadcast.hpp>
BroadcastTransformation propagates dequantization operations through Broadcast operation.
For more details about the transformation, refer to BroadcastTransformation page in the OpenVINO Developer Guide.
-
class ClampTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <clamp.hpp>
ClampTransformation propagates dequantization operations through Clamp operation.
For more details about the transformation, refer to ClampTransformation page in the OpenVINO Developer Guide.
-
class CleanupTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <cleanup_transformation.hpp>
Base class for cleanup low precision transformation.
Subclassed by ov::pass::low_precision::EliminateFakeQuantizeTransformation, ov::pass::low_precision::FoldConvertTransformation, ov::pass::low_precision::FuseConvertTransformation, ov::pass::low_precision::FuseElementwiseToFakeQuantizeTransformation, ov::pass::low_precision::MultiplyToGroupConvolutionTransformation
-
class ConcatTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <concat.hpp>
ConcatTransformation propagates dequantization operations through Concat operation.
For more details about the transformation, refer to ConcatTransformation page in the OpenVINO Developer Guide.
-
class ConvertSubtractConstant : public ov::pass::MatcherPass#
- #include <convert_subtract_constant.hpp>
ConvertSubtractConstant marks Convert operations on constant subgraph by DISABLED_CONSTANT_FOLDING attribute to prevent constant folding.
For more details about the transformation, refer to ConvertSubtractConstant page in the OpenVINO Developer Guide.
-
class ConvolutionTransformation : public ov::pass::low_precision::WeightableLayerTransformation#
- #include <convolution.hpp>
ConvolutionTransformation propagates dequantization operations through Convolution operation.
For more details about the transformation, refer to ConvolutionTransformation page in the OpenVINO Developer Guide.
Subclassed by ov::pass::low_precision::GroupConvolutionTransformation
-
class ConvolutionBackpropDataTransformation : public ov::pass::low_precision::WeightableLayerTransformation#
- #include <convolution_backprop_data.hpp>
ConvolutionBackpropDataTransformation propagates dequantization operations through ConvolutionBackpropData operation.
For more details about the transformation, refer to ConvolutionBackpropDataTransformation page in the OpenVINO Developer Guide.
-
template<typename AttributeType, typename OperationType = ov::pass::pattern::op::Label>
class CreateAttribute : public ov::pass::low_precision::BaseMatcherPass# - #include <create_attribute.hpp>
CreateAttribute transformation marks OperationType operations by AttributeType attribute.
For more details about the transformation, refer to CreateAttribute page in the OpenVINO Developer Guide.
-
template<typename AttributeType, typename OperationType>
class CreatePrecisionsDependentAttribute : public ov::pass::MatcherPass# - #include <create_precisions_dependent_attribute.hpp>
CreatePrecisionsDependentAttribute transformation marks OperationType operations by PrecisionPreservedAttribute and AttributeType attributes with the same shared part.
For more details about the transformation, refer to CreatePrecisionsDependentAttribute page in the OpenVINO Developer Guide.
-
class DepthToSpaceTransformation : public ov::pass::low_precision::TransparentBaseTransformation#
- #include <depth_to_space.hpp>
DepthToSpaceTransformation propagates dequantization operations through DepthToSpace operation.
For more details about the transformation, refer to DepthToSpaceTransformation page in the OpenVINO Developer Guide.
-
class EliminateFakeQuantizeTransformation : public ov::pass::low_precision::CleanupTransformation#
- #include <eliminate_fake_quantize.hpp>
EliminateFakeQuantizeTransformation removes FakeQuantize operations.
For more details about the transformation, refer to EliminateFakeQuantizeTransformation page in the OpenVINO Developer Guide.
-
class EltwiseBaseTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <eltwise_base_transformation.hpp>
EltwiseBaseTransformation is base class for element-wise LPT transformations.
Subclassed by ov::pass::low_precision::AddTransformation, ov::pass::low_precision::MultiplyPartialTransformation
-
class FakeQuantizeTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <fake_quantize.hpp>
FakeQuantizeTransformation fuses dequantization operations into FakeQuantize operation.
For more details about the transformation, refer to FakeQuantizeTransformation page in the OpenVINO Developer Guide.
-
class FakeQuantizeDecompositionTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <fake_quantize_decomposition.hpp>
FakeQuantizeDecompositionTransformation decomposes FakeQuantize operations to quantize (FakeQuantize with changes output intervals and low precision output type) and dequantize operations.
For more details about the transformation, refer to FakeQuantizeDecompositionTransformation page in the OpenVINO Developer Guide.
-
class FoldConvertTransformation : public ov::pass::low_precision::CleanupTransformation#
- #include <fold_convert.hpp>
FoldConvertTransformation evaluates Convert operation on Subtract constant subgraph. Important notice: this transformation ignores DisableConstantFolding runtime attribute.
For more details about the transformation, refer to FoldConvertTransformation page in the OpenVINO Developer Guide.
-
class FoldFakeQuantizeTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <fold_fake_quantize.hpp>
FoldFakeQuantizeTransformation evaluate FakeQuantize operations.
For more details about the transformation, refer to FoldFakeQuantizeTransformation page in the OpenVINO Developer Guide.
-
class FuseConvertTransformation : public ov::pass::low_precision::CleanupTransformation#
- #include <fuse_convert.hpp>
FuseConvertTransformation fuses Convert operation with Multiply, Subtract or Add operations.
For more details about the transformation, refer to FuseConvertTransformation page in the OpenVINO Developer Guide.
-
class FuseElementwiseToFakeQuantizeTransformation : public ov::pass::low_precision::CleanupTransformation#
- #include <fuse_elementwise_to_fake_quantize.hpp>
Base class for fuse elementwise to FakeQuantize low precision transformation.
Subclassed by ov::pass::low_precision::FuseMultiplyToFakeQuantizeTransformation, ov::pass::low_precision::FuseSubtractToFakeQuantizeTransformation
-
class FuseMultiplyToFakeQuantizeTransformation : public ov::pass::low_precision::FuseElementwiseToFakeQuantizeTransformation#
- #include <fuse_multiply_to_fake_quantize.hpp>
FuseMultiplyToFakeQuantizeTransformation fuses Multiply operation to FakeQuantize.
For more details about the transformation, refer to FuseMultiplyToFakeQuantizeTransformation page in the OpenVINO Developer Guide.
-
class FuseSubtractToFakeQuantizeTransformation : public ov::pass::low_precision::FuseElementwiseToFakeQuantizeTransformation#
- #include <fuse_subtract_to_fake_quantize.hpp>
FuseSubtractToFakeQuantizeTransformation fuses Subtract operation to FakeQuantize.
For more details about the transformation, refer to FuseSubtractToFakeQuantizeTransformation page in the OpenVINO Developer Guide.
-
class GroupConvolutionTransformation : public ov::pass::low_precision::ConvolutionTransformation#
- #include <group_convolution.hpp>
GroupConvolutionTransformation propagates dequantization operations through GroupConvolution operation.
For more details about the transformation, refer to GroupConvolutionTransformation page in the OpenVINO Developer Guide.
-
class InterpolateTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <interpolate.hpp>
InterpolateTransformation propagates dequantization operations through Interpolate operation.
For more details about the transformation, refer to InterpolateTransformation page in the OpenVINO Developer Guide.
-
class LayerTransformation : public ov::pass::MatcherPass#
- #include <layer_transformation.hpp>
Base class for low precision transformation.
Subclassed by ov::pass::low_precision::AssignAndReadValueTransformation, ov::pass::low_precision::AvgPoolTransformation, ov::pass::low_precision::BatchToSpaceTransformation, ov::pass::low_precision::ClampTransformation, ov::pass::low_precision::CleanupTransformation, ov::pass::low_precision::ConcatTransformation, ov::pass::low_precision::ConvertTransformation, ov::pass::low_precision::EltwiseBaseTransformation, ov::pass::low_precision::FakeQuantizeDecompositionTransformation, ov::pass::low_precision::FakeQuantizeTransformation, ov::pass::low_precision::FoldFakeQuantizeTransformation, ov::pass::low_precision::GatherTransformation, ov::pass::low_precision::InterpolateTransformation, ov::pass::low_precision::MVNTransformation, ov::pass::low_precision::MatMulTransformation, ov::pass::low_precision::MaxPoolTransformation, ov::pass::low_precision::MoveFakeQuantize, ov::pass::low_precision::NormalizeL2Transformation, ov::pass::low_precision::PReluTransformation, ov::pass::low_precision::PadTransformation, ov::pass::low_precision::RecurrentCellTransformation, ov::pass::low_precision::ReduceBaseTransformation, ov::pass::low_precision::ReluTransformation, ov::pass::low_precision::ReshapeTransformation, ov::pass::low_precision::ShuffleChannelsTransformation, ov::pass::low_precision::SliceTransformation, ov::pass::low_precision::SpaceToBatchTransformation, ov::pass::low_precision::SplitTransformation, ov::pass::low_precision::SqueezeTransformation, ov::pass::low_precision::StridedSliceTransformation, ov::pass::low_precision::SubtractTransformation, ov::pass::low_precision::TransparentBaseTransformation, ov::pass::low_precision::TransposeTransformation, ov::pass::low_precision::UnsqueezeTransformation, ov::pass::low_precision::WeightableLayerTransformation
-
class Params#
- #include <layer_transformation.hpp>
-
class PrecisionDetails#
- #include <layer_transformation.hpp>
-
class Params#
-
class MarkupAvgPoolPrecisionPreserved : public ov::pass::ModelPass#
- #include <markup_avg_pool_precision_preserved.hpp>
MarkupAvgPoolPrecisionPreserved transformation marks AvgPool operations as precision preserved or not.
For more details about the transformation, refer to MarkupAvgPoolPrecisionPreserved page in the OpenVINO Developer Guide.
-
class MarkupBias : public ov::pass::MatcherPass#
- #include <markup_bias.hpp>
MarkupBias transformation marks biases after target layers.
For more details about the transformation, refer to MarkupBias page in the OpenVINO Developer Guide.
-
class MarkupCanBeQuantized : public ov::pass::ModelPass#
- #include <markup_can_be_quantized.hpp>
MarkupCanBeQuantized transformation marks Convolution, ConvolutionBackpropData, GroupConvolution and Concat operations as able to be quantized or not. If an operation is not quantized, then PrecisionsAttribute attribute instance is created with empty precisions.
For more details about the transformation, refer to MarkupCanBeQuantized page in the OpenVINO Developer Guide.
-
class MarkupPrecisions : public ov::pass::ModelPass#
- #include <markup_precisions.hpp>
MarkupPrecisions transformation marks: 1) not supported operations by PrecisionsAttribute attribute with empty precisions, 2) operations with required precisions by PrecisionsAttribute attribute according to the provided restrictions, 3) precision preserved operations by PrecisionPreservedAttribute attribute.
For more details about the transformation, refer to MarkupPrecisions page in the OpenVINO Developer Guide.
-
class MarkupQuantizationGranularity : public ov::pass::ModelPass#
- #include <markup_quantization_granularity.hpp>
MarkupPerTensorQuantization transformation marks operations as required per-tensor quantization according to the provided restrictions.
For more details about the transformation, refer to MarkupPerTensorQuantization page in the OpenVINO Developer Guide.
-
class PerTensorQuantization#
- #include <markup_quantization_granularity.hpp>
-
class PerTensorQuantization#
-
class MatMulTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <mat_mul.hpp>
MatMulTransformation propagates dequantization operations through MatMul operation.
For more details about the transformation, refer to MatMulTransformation page in the OpenVINO Developer Guide.
-
class MaxPoolTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <max_pool.hpp>
MaxPoolTransformation propagates dequantization operations through MaxPool operation.
For more details about the transformation, refer to MaxPoolTransformation page in the OpenVINO Developer Guide.
-
class MultiplyTransformation : public ov::pass::low_precision::WeightableLayerTransformation#
- #include <multiply.hpp>
MultiplyTransformation propagates dequantization operations through Multiply operation.
For more details about the transformation, refer to MultiplyTransformation page in the OpenVINO Developer Guide.
-
class MultiplyPartialTransformation : public ov::pass::low_precision::EltwiseBaseTransformation#
- #include <multiply_partial.hpp>
MultiplyPartialTransformation propagates dequantization operations through Multiply operation.
For more details about the transformation, refer to MultiplyPartialTransformation page in the OpenVINO Developer Guide.
-
class MultiplyToGroupConvolutionTransformation : public ov::pass::low_precision::CleanupTransformation#
- #include <multiply_to_group_convolution.hpp>
MultiplyToGroupConvolutionTransformation replace quantized Multiply operations to GroupConvolution to speed up inference.
For more details about the transformation, refer to MultiplyToGroupConvolutionTransformation page in the OpenVINO Developer Guide.
-
class MVNTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <mvn.hpp>
MVNTransformation propagates dequantization operations through MVN operation.
For more details about the transformation, refer to MVNTransformation page in the OpenVINO Developer Guide.
-
class NormalizeL2Transformation : public ov::pass::low_precision::LayerTransformation#
- #include <normalize_l2.hpp>
NormalizeL2Transformation propagates dequantization operations through NormalizeL2 operation.
For more details about the transformation, refer to NormalizeL2Transformation page in the OpenVINO Developer Guide.
-
class PadTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <pad.hpp>
PadTransformation propagates dequantization operations through Pad operation.
For more details about the transformation, refer to PadTransformation page in the OpenVINO Developer Guide.
-
class PReluTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <prelu.hpp>
PReluTransformation propagates dequantization operations through PRelu operation.
For more details about the transformation, refer to PReluTransformation page in the OpenVINO Developer Guide.
-
class PropagatePrecisions : public ov::pass::ModelPass#
- #include <propagate_precisions.hpp>
PropagatePrecisions transformation propagates PrecisionsAttribute attribute instances precision preserved operations.
For more details about the transformation, refer to PropagatePrecisions page in the OpenVINO Developer Guide.
- #include <propagate_shared_value.hpp>
PropagateSharedValue transformation propagates shared value AttributeType attribute instances through precision preserved operations.
For more details about the transformation, refer to PropagateSharedValue page in the OpenVINO Developer Guide.
-
template<typename AttributeType>
class PropagateThroughPrecisionPreserved : public ov::pass::MatcherPass# - #include <propagate_through_precision_preserved.hpp>
PropagateThroughPrecisionPreserved transformation propagates AttributeType attribute instances through precision preserved operations.
For more details about the transformation, refer to PropagateThroughPrecisionPreserved page in the OpenVINO Developer Guide.
-
template<typename AttributeType>
class PropagateToInput : public ov::pass::MatcherPass# - #include <propagate_to_input.hpp>
PropagateToInput transformation propagates AttributeType shared value attribute instances from parent output ports to consumers input ports.
For more details about the transformation, refer to PropagateToInput page in the OpenVINO Developer Guide.
-
class PullReshapeThroughDequantization : public ov::pass::MatcherPass#
- #include <pull_reshape_through_dequantization.hpp>
PullReshapeThroughDequantization propagates dequantization operations through Reshape operations. The transformation is used on constant subgraph weights to prepare a model for the next low precision transformations.
For more details about the transformation, refer to PullReshapeThroughDequantization page in the OpenVINO Developer Guide.
-
class PullTransposeThroughDequantization : public ov::pass::MatcherPass#
- #include <pull_transpose_through_dequantization.hpp>
PullTransposeThroughDequantization propagates dequantization operations through Transpose operations. The transformation is used on constant subgraph weights to prepare a model for the next low precision transformations.
For more details about the transformation, refer to PullTransposeThroughDequantization page in the OpenVINO Developer Guide.
-
class ReduceBaseTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <reduce_base_transformation.hpp>
ReduceBaseTransformation: base class for Reduce*Transformation, detects dequantization operations in front of the Reduce* operation and propagates them through the Reduce* if possible.
Subclassed by ov::pass::low_precision::ReduceMaxTransformation, ov::pass::low_precision::ReduceMeanTransformation, ov::pass::low_precision::ReduceMinTransformation, ov::pass::low_precision::ReduceSumTransformation
-
class ReduceMaxTransformation : public ov::pass::low_precision::ReduceBaseTransformation#
- #include <reduce_max.hpp>
ReduceMaxTransformation propagates dequantization operations through ReduceMax operation.
For more details about the transformation, refer to ReduceMaxTransformation page in the OpenVINO Developer Guide.
-
class ReduceMeanTransformation : public ov::pass::low_precision::ReduceBaseTransformation#
- #include <reduce_mean.hpp>
ReduceMeanTransformation propagates dequantization operations through ReduceMean operation.
For more details about the transformation, refer to ReduceMeanTransformation page in the OpenVINO Developer Guide.
-
class ReduceMinTransformation : public ov::pass::low_precision::ReduceBaseTransformation#
- #include <reduce_min.hpp>
ReduceMinTransformation propagates dequantization operations through ReduceMin operation.
For more details about the transformation, refer to ReduceMinTransformation page in the OpenVINO Developer Guide.
-
class ReduceSumTransformation : public ov::pass::low_precision::ReduceBaseTransformation#
- #include <reduce_sum.hpp>
ReduceSumTransformation propagates dequantization operations through ReduceSum operation.
For more details about the transformation, refer to ReduceSumTransformation page in the OpenVINO Developer Guide.
-
class ReluTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <relu.hpp>
ReluTransformation propagates dequantization operations through Relu operation.
For more details about the transformation, refer to ReluTransformation page in the OpenVINO Developer Guide.
-
class ReshapeTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <reshape.hpp>
ReshapeTransformation propagates dequantization operations through Reshape operation.
For more details about the transformation, refer to ReshapeTransformation page in the OpenVINO Developer Guide.
-
class AvgPoolPrecisionPreservedAttribute : public ov::PrecisionPreservedAttribute#
- #include <avg_pool_precision_preserved_attribute.hpp>
AvgPoolPrecisionPreservedAttribute is utility attribute which is used only during
AvgPool
operation precision preserved property definition.For more details about the attribute, refer to AvgPoolPrecisionPreservedAttribute page in the OpenVINO Developer Guide.
- #include <intervals_alignment_attribute.hpp>
IntervalsAlignmentSharedValue is used by IntervalsAlignmentAttribute as attribute shared value.
- #include <intervals_alignment_attribute.hpp>
-
class IntervalsAlignmentAttribute : public SharedAttribute<IntervalsAlignmentSharedValue>#
- #include <intervals_alignment_attribute.hpp>
IntervalsAlignmentAttribute defines subgraph with the same quantization intervals alignment. FakeQuantize operations are included. The attribute is used by quantization operations.
For more details about the attribute, refer to IntervalsAlignmentAttribute page in the OpenVINO Developer Guide.
-
class PrecisionPreservedAttribute : public SharedAttribute<bool>#
- #include <precision_preserved_attribute.hpp>
PrecisionPreservedAttribute defines the precision preserved operation. If the attribute is absent, then an operation is not precision preserved.
For more details about the attribute, refer to PrecisionPreservedAttribute page in the OpenVINO Developer Guide.
Subclassed by ov::AvgPoolPrecisionPreservedAttribute
-
class PrecisionsAttribute : public SharedAttribute<std::vector<ov::element::Type>>#
- #include <precisions_attribute.hpp>
PrecisionsAttribute defines precision which is required for input/output port or an operation.
For more details about the attribute, refer to PrecisionsAttribute page in the OpenVINO Developer Guide.
-
class QuantizationAlignmentAttribute : public SharedAttribute<bool>#
- #include <quantization_alignment_attribute.hpp>
QuantizationAlignmentAttribute defines subgraph with the same quantization alignment. FakeQuantize operations are not included. The attribute is used by quantization operations.
For more details about the attribute, refer to QuantizationAlignmentAttribute page in the OpenVINO Developer Guide.
-
class QuantizationGranularityAttribute : public ov::RuntimeAttribute#
- #include <quantization_granularity_attribute.hpp>
QuantizationGranularityAttribute defines quantization granularity of operation inputs.
For more details about the attribute, refer to QuantizationGranularityAttribute page in the OpenVINO Developer Guide.
- #include <shared_value_attribute.hpp>
SharedValueAttribute type for shared value attributes. The attribute is used for attribute SharedValue value backward propagation.
- #include <shared_value_attribute.hpp>
-
class ShuffleChannelsTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <shuffle_channels.hpp>
ShuffleChannelsTransformation propagates dequantization operations through ShuffleChannels operation.
For more details about the transformation, refer to ShuffleChannelsTransformation page in the OpenVINO Developer Guide.
-
class SliceTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <slice.hpp>
SliceTransformation propagates dequantization operations through Slice operation.
For more details about the transformation, refer to SliceTransformation page in the OpenVINO Developer Guide.
-
class SpaceToBatchTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <space_to_batch.hpp>
SpaceToBatchTransformation propagates dequantization operations through SpaceToBatch operation.
For more details about the transformation, refer to SpaceToBatchTransformation page in the OpenVINO Developer Guide.
-
class SplitTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <split.hpp>
SplitTransformation propagates dequantization operations through Split operation.
For more details about the transformation, refer to SplitTransformation page in the OpenVINO Developer Guide.
Subclassed by ov::pass::low_precision::VariadicSplitTransformation
-
class SqueezeTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <squeeze.hpp>
SqueezeTransformation propagates dequantization operations through Squeeze operation.
For more details about the transformation, refer to SqueezeTransformation page in the OpenVINO Developer Guide.
-
class StridedSliceTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <strided_slice.hpp>
StridedSliceTransformation propagates dequantization operations through StridedSlice operation.
For more details about the transformation, refer to StridedSliceTransformation page in the OpenVINO Developer Guide.
-
class SubtractTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <subtract.hpp>
SubtractTransformation propagates dequantization operations through Subtract operation.
For more details about the transformation, refer to SubtractTransformation page in the OpenVINO Developer Guide.
-
class TransformationContext#
- #include <transformation_context.hpp>
TransformationContext instance is used to pass model transformation context data between transformations.
-
class TransparentBaseTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <transparent_base_transformation.hpp>
TransparentBaseTransformation is base type for precision preserved operation transformation.
Subclassed by ov::pass::low_precision::BroadcastTransformation, ov::pass::low_precision::DepthToSpaceTransformation
-
class TransposeTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <transpose.hpp>
TransposeTransformation propagates dequantization operations through Transpose operation.
For more details about the transformation, refer to TransposeTransformation page in the OpenVINO Developer Guide.
-
class UnsqueezeTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <unsqueeze.hpp>
UnsqueezeTransformation propagates dequantization operations through Unsqueeze operation.
For more details about the transformation, refer to UnsqueezeTransformation page in the OpenVINO Developer Guide.
- #include <update_shared_precision_preserved.hpp>
UpdateSharedPrecisionPreserved transformation updates shared AttributeType attribute instance value to true for precision preserved operations if ExpectedAttributeType exist.
For more details about the transformation, refer to UpdateSharedPrecisionPreserved page in the OpenVINO Developer Guide.
-
class VariadicSplitTransformation : public ov::pass::low_precision::SplitTransformation#
- #include <variadic_split.hpp>
VariadicSplitTransformation propagates dequantization operations through VariadicSplit operation.
For more details about the transformation, refer to VariadicSplitTransformation page in the OpenVINO Developer Guide.
-
class WeightableLayerTransformation : public ov::pass::low_precision::LayerTransformation#
- #include <weightable_layer_transformation.hpp>
WeightableLayerTransformation is base type for weightable operation transformation.
Subclassed by ov::pass::low_precision::ConvolutionBackpropDataTransformation, ov::pass::low_precision::ConvolutionTransformation, ov::pass::low_precision::MultiplyTransformation
-
struct CanBeTransformedParams#
- #include <weightable_layer_transformation.hpp>
-
struct CanBeTransformedParams#
-
class InitMasks : public ov::pass::GraphRewrite#
- #include <pruning.hpp>
Initialising masks for pruned operations.
-
class InitConstMask : public ov::pass::MatcherPass#
- #include <pruning.hpp>
Check Constant operation values by given dimensions and set masks according to results that are bases on
condition
lambda function. Works for Constant with floating point type (f16, f32, f64).
-
class PropagateMasks : public ov::pass::GraphRewrite#
- #include <pruning.hpp>
Contains several MatcherPasses that initialize and propagate masks from Constant operation to the network output.
-
class ShrinkWeights : public ov::pass::ModelPass#
- #include <pruning.hpp>
Based on masks in Constant operation it inserts Gather operations to shrink them. After this pass execution ConstantFolding is required.
-
class Pruning : public ov::pass::ModelPass#
- #include <pruning.hpp>
This is just a sequence of passes that performs pruning transformations pipeline.
-
class AdaptivePoolToReduce : public ov::pass::MatcherPass#
- #include <adaptive_pool_to_reduce.hpp>
AdaptivePoolToReduce transformation replaces AdaptiveXXXPool with ReduceXXX when possible.
-
class AddFakeQuantizeFusion : public ov::pass::MatcherPass#
- #include <add_fake_quantize_fusion.hpp>
AddFakeQuantizeFusion transformation replaces following graph: Add->FakeQuantize to a single FakeQuantize Restrictions:
second input to Add is a Constant
-
class AUGRUCellFusion : public ov::pass::MatcherPass#
- #include <augru_cell_fusion.hpp>
AUGRUCellFusion transformation replaces a sequence of operations with AUGRUCell op.
Supported activations: 1st is Sigmoid, 2nd is Tanh Clip attribute is not supported. Linear_before_reset attribute is not supported. Supported weights format: ‘rzh’
-
class BatchToSpaceFusion : public ov::pass::MatcherPass#
- #include <batch_to_space_fusion.hpp>
BatchToSpaceFusion transformation replaces following graph: Transpose (or Reshape) -> DepthToSpace -> StridedSlice -> Transpose (or Reshape) to BatchToSpace Restrictions:
input rank must be 4
Transpose permutation must be [1, 0, 2, 3]
DepthToSpaceMode must be BLOCKS_FIRST
-
class BinarizeWeights : public ov::pass::MatcherPass#
- #include <binarize_weights.hpp>
This transformation converts weights to -1/+1 form and applies normalization factors to output low/high and after Convolution. For example, following graph.
is transformed to:.... .... out_low out_high weights .. .. out_low out_high | | | | | | | | | +--------------------------+ +--------------------------+ | FakeQuantize (levels==2) | | FakeQuantize (levels==2) | | (on activations) | | (on weights) | +--------------------------+ +--------------------------+ | | | | ----------------- ------------------- | | v v +-------------+ | Convolution | +-------------+ | v
Normalization factors are chosen based output_high value. If it’s zero - norm factor is equal to output_low and output_high otherwisenormalized normalized .... .... out_low out_high | | | | +--------------------------+ +--------------------------+ | FakeQuantize (levels==2) | | Constant | | (on activations) | | (with converted weights) | +--------------------------+ +--------------------------+ | | | | ----------------- ------------------- | | v v +-------------+ | Convolution | +-------------+ | v +------------+ +---------------------------------------------------------------+ | Multiply | <---| Constant (normalization factor coming from FQ on activations) | +------------+ +---------------------------------------------------------------+ | v +------------+ +-----------------------------------------------------------+ | Multiply | <---| Constant (normalization factor coming from FQ on weights) | +------------+ +------------------------------------------------------------ | v
-
class BroadcastElementwiseFusion : public ov::pass::MatcherPass#
- #include <broadcast_elementwise_fusion.hpp>
Removing Broadcast OP before ElementWise if output shape of Broadcast are equal neighboring input shape of ElementWise.
-
class BroadcastTransition : public ov::pass::MatcherPass#
- #include <broadcast_transition.hpp>
BroadcastTransition transformation moves broadcast through binary eltwise operation.
-
class ClampFusion : public ov::pass::MatcherPass#
- #include <clamp_fusion.hpp>
ClampFusion transformation replaces following graph: Maximum->Minimum to Clamp Restrictions:
one of the parameters to Maximum is a scalar constant
one of the parameters to Minimum is a scalar constant
-
class CompressFloatConstantsImpl : public ov::pass::MatcherPass#
- #include <compress_float_constants.hpp>
CompressFloatConstantsImpl transformation replaces FP32/FP64 Constants with FP16 ones.
Public Functions
-
CompressFloatConstantsImpl(bool postponed = false)#
Transformation constructor.
- Parameters:
postponed – If true then the transformation won’t compress the constants keeping them in the original type but still will insert Converts. This is a special mode of operation that requires another transformation to apply a real compression on constants. Constants eligible for postponed compression are marked with a special rt_info tag.
-
CompressFloatConstantsImpl(bool postponed = false)#
-
class CompressFloatConstants : public ov::pass::GraphRewrite#
- #include <compress_float_constants.hpp>
CompressFloatConstants transformation replaces FP32/FP64 Constants with FP16 ones.
Public Functions
-
inline CompressFloatConstants(bool postponed = false)#
Transformation constructor.
- Parameters:
postponed – Postponed compression, see ov::pass::CompressFloatConstantsImpl for details.
-
inline CompressFloatConstants(bool postponed = false)#
-
class ConcatFusion : public ov::pass::MatcherPass#
- #include <concat_fusion.hpp>
ConcatFusion transformation fuses sequence of Concats.
-
class ReplaceConcatReduceByMinOrMax : public ov::pass::MatcherPass#
- #include <concat_reduce_fusion.hpp>
ReplaceConcatReduceByMinOrMax transformation replaces Concat with 2 inputs and ReduceMin/Max by a single Minimum/Maximum with 2 inputs and inserts squeeze in case when Reduce has keep_dims = false.
-
class PullSqueezeThroughEltwise : public ov::pass::MatcherPass#
- #include <concat_reduce_fusion.hpp>
PullSqueezeThroughEltwise transformation propagates Squeeze up through binary elementwise operations:
-
class ConcatReduceFusion : public ov::pass::GraphRewrite#
- #include <concat_reduce_fusion.hpp>
ConcatReduceFusion pass replaces the following graph:
by a single Minimum/Maximum with 2 inputs and tries to eliminate Squeeze/Unsqueeze layers before and after Min/Max.+---------------+ +---------------+ │ │ | | │ input │ | input | │ │ | | +---------------+ +---------------- | | | | \ / \ / \ / \ / \ / \ / \ / \ / \ / +---------------+ | | | Concat | | | +---------------- | v +---------------+ | | | ReduceMin/ | | ReduceMax | +----------------
-
class ConcatToBroadcast : public ov::pass::MatcherPass#
- #include <concat_to_broadcast.hpp>
ConcatToBroadcast transformation replaces Concat, having multiple inputs from the same output, with a Broadcast node.
-
class ConvToBinaryConv : public ov::pass::MatcherPass#
- #include <conv_to_binary_conv.hpp>
This transformation converts Convolution to BinaryConvolution under following conditions:
first input to Convolution is a FakeQuantize with levels==2 with output low,high being either (0, 1) or (-1, 1)
second input (weights) is a constant with values -1 or 1 The transformation also converts weights to binary Constant (with ‘u1’ type) For example, when output_low is equal to 0 and output_high is equal to 1, following graph
is transformed to:.... .... out_low out_high | | | | +--------------------------+ +-------------------------------------+ | FakeQuantize (levels==2) | | Constant | | (on activations) | | (weights containing -1 or 1 values) | +--------------------------+ +-------------------------------------+ | | | | ----------------- ------------------- | | v v +-------------+ | Convolution | +-------------+ | v
.... .... out_low out_high | | | | +--------------------------+ +---------------------------------+ | FakeQuantize (levels==2) | | Constant (with u1 type) | | (on activations) | | (with u1 type - binary weights) | +--------------------------+ +---------------------------------+ | | | | ----------------- ------------------- | | v v +-------------------+ | BinaryConvolution | +-------------------+ | v +------------+ +----------------------------------------------------+ | | | Constant | | Add | <---| (weights from original graph, | | | | sum-reduced over [1,..., len(weights.shape)] axes | +------------+ +----------------------------------------------------+ | v +------------+ +-----+ | Multiply | <---| 0.5 | +------------+ +-----+ | v
-
class ConvertNmsGatherPathToUnsigned : public ov::pass::GraphRewrite#
- #include <convert_nms_gather_path_to_unsigned.hpp>
Converts Gather indices to unsigned if indices are from NMS selected indices output. NMS returns -1 for not selected boxes, old version of Gather fill corresponding output for such indices with zero. But new Gather-8 has support of negative indices indicating counting from the end. In order to keep such behaviour (until dynamism is not supported) instead of -1 new Gather-8 will accept UINT32_MAX which is always outside of the bounds and corresponding output for such indices in gather always will be filled with zeros.
-
class ConvertQuantizeDequantize : public ov::pass::MatcherPass#
- #include <convert_quantize_dequantize.hpp>
ConvertQuantizeDequantize transformation replaces following graph: FakeQuantize->Convert->Convert->Subtract->Multiply with a single FakeQuantize. Restrictions:
quantized data type must be i8 or u8
’levels’ attribute to FakeQuantize must be equal to 256
(output_low, output_high) must be (-128, 127) or (0, 256) (depends on sign of quantized data type)
’zero_point’ and ‘scale’ must be broadcastable to FakeQuantize’s output
-
class ConvertU4WeightsZeroPointToScalar : public ov::pass::MatcherPass#
- #include <convert_u4_weights_zero_point_to_scalar.hpp>
Converts U4 weights zero point to scalar if all values are equal.
-
class ConvolutionToGroupConvolutionFusion : public ov::pass::MatcherPass#
- #include <convolution_to_group_convolution_fusion.hpp>
ConvolutionToGroupConvolutionFusion transformation replaces following graph: Split (or VariadicSplit) / \ Conv … Conv \ / \ / Concat.
to GroupConvolution
-
class DepthToSpaceFusion : public ov::pass::MatcherPass#
- #include <depth_to_space_fusion.hpp>
DepthToSpaceFusion transformation detects Reshape-Transpose-Reshape pattern and tries to fuse it into a single DepthToSpace layer.
DepthToSpaceFusion transformation is optional and disabled by default. The transformation can be enabled with callback using setCallback method. See the example below.
Callback example:
// This callback enables DepthToSpaceFusion transformation auto callback = [](const std::shared_ptr<const ov::Node> & node) -> bool { return ov::as_type_ptr<const ov::opset3::DepthToSpace>(node) != nullptr; }; auto p = ov::pass::DepthToSpaceFusion(); p.setCallback(callback); p.run_on_function(f);
-
class DilatedConvolutionConverter : public ov::pass::MatcherPass#
- #include <dilated_convolution_converter.hpp>
DilatedConvolutionConverter transformation replaces following graph: SpaceToBatch -> Convolution(GroupConvolution) -> BatchToSpace to a single Convolution(GroupConvolution) node with updated pads and dilations Restrictions:
pads in SpaceToBatch must have 0 on first and second position
-
class DisableRandomUniformConstantFolding : public ov::pass::MatcherPass#
- #include <disable_random_uniform_constant_folding.hpp>
Disables ConstantFolding for RandomUniform operation. It is required as RandomUniform should generate new sequence each run.
-
class DivideFusion : public ov::pass::MatcherPass#
- #include <divide_fusion.hpp>
DivideFusion transformation replaces a sub-graph Pow(y, -1) * x or x * Pow(y, -1) with Divide(x,y)
-
class DropoutWithRandomUniformReplacer : public ov::pass::MatcherPass#
- #include <dropout_with_random_uniform_replacer.hpp>
This transformation replaces possible Dropout block (in inference mode) with RandomUniform to Broadcast of half-ones in a sub-graph.
Dropout block: RandomUniform ——-—> Add —> Floor /\ /\ /\ | | | Const(0) Const(1) Const(1) min_val max_val
Resulted block: Broadcast —-—> Add —> Floor /\ /\ | | Const(0.5) Const(1)
-
class EliminateLoopInputsOutputs : public ov::pass::MatcherPass#
- #include <eliminate_loop_inputs_outputs.hpp>
EliminateLoopInputsOutputs transformation manages Loop inputs/outputs. Check if Loop input is not changed in body input node -> Loop input -> body parameter -> body result -> Loop output -> output node than: 1) reconnect input node -> output node directly 2) update Loop input description from merged to invariant.
-
class EliminateUnsqueezeGather : public ov::pass::MatcherPass#
- #include <eliminate_unsqueeze_gather.hpp>
Remove Unsqueeze + Gather pair, if Gather gathers data by dimension that was previously added by Unsqueeze.
-
class EliminateGatherUnsqueeze : public ov::pass::MatcherPass#
- #include <eliminate_unsqueeze_gather.hpp>
Matches Gather ->[Binary Operation]-> Unsqueeze If axis for Gather and Unsqueeze is the same and Gather indices are scalar Unsqueeze is being removed and indices become 1D. Must be executed after SharedOpOptimization — It is possible to have multiple similar Unsqueeze operations after Gather, so they must be optimized beforehand.
-
class EnableShapeOfConstantFolding : public ov::pass::MatcherPass#
- #include <enable_shapeof_constant_folding.hpp>
This transformation enables constfoldability for ShapeOf nodes that was disabled by DisableShapeOfConstantFolding.
-
class FakeQuantizeMulFusion : public ov::pass::MatcherPass#
- #include <fq_mul_fusion.hpp>
This transformation looks for a FQ + Mul pair in the graph and moves the Mul operation above the FQ node. The last two inputs of FQ are multiplied by the value that was originally below the FQ node.
-
class FakeQuantizeReshapeFusion : public ov::pass::MatcherPass#
- #include <fq_reshape_fusion.hpp>
This transformation looks for a FQ + Reshape pair in the graph and moves the Reshape operation above the FQ node. Shapes of limit inputs are updated following FQ broadcasting semantics.
-
class RoPEFusion : public ov::pass::GraphRewrite#
- #include <fuse_rotary_positional_embeddings.hpp>
Fuses special sub-graph into an internal Rotary Positional Embedding operation.
-
class FusedNamesCleanup : public ov::pass::ModelPass#
- #include <fused_names_cleanup.hpp>
FusedNamesCleanup removes fused_names attribute.
-
class GeluFusionWithErfOne : public ov::pass::MatcherPass#
- #include <gelu_fusion.hpp>
GeluFusion transformation replaces a sub-graph (0.5 * x) * (1 + erf(x / sqrt(2))) with a Gelu op.
-
class GeluFusionWithErfTwo : public ov::pass::MatcherPass#
- #include <gelu_fusion.hpp>
GeluFusion transformation replaces a sub-graph 0.5 * (x * (1 + erf(x / sqrt(2)))) with a Gelu op.
-
class GeluFusionWithErfThree : public ov::pass::MatcherPass#
- #include <gelu_fusion.hpp>
GeluFusion transformation replaces a sub-graph x * (0.5 * (1 + erf(x / sqrt(2)))) with a Gelu op.
-
class GeluFusionWithErfFour : public ov::pass::MatcherPass#
- #include <gelu_fusion.hpp>
GeluFusion transformation replaces a sub-graph x * (0.5 + 0.5 * erf(x * (1 / sqrt(2)))) with a Gelu op.
-
class GeluFusionWithTanh : public ov::pass::MatcherPass#
- #include <gelu_fusion.hpp>
GeluFusion transformation replaces a sub-graph x * (0.5 * (1 + tanh([sqrt(2 / pi)] * [x + 0.044715^3]))) with a Gelu (Tanh) op.
-
class GeluFusionWithTanhNoPower : public ov::pass::MatcherPass#
- #include <gelu_fusion.hpp>
GeluFusion transformation replaces a sub-graph x * 0.5 * (1 + tanh((x * 0.044715 * x + 1) * x * sqrt(2 / pi))) with a Gelu (Tanh) op.
-
class GeluFusion : public ov::pass::GraphRewrite#
- #include <gelu_fusion.hpp>
GeluFusion transformation replaces various sub-graphs with a Gelu op.
-
class GRUCellFusion : public ov::pass::MatcherPass#
- #include <gru_cell_fusion.hpp>
GRUCellFusion transformation replaces a sequence of operations with GRUCell op.
If BiasAdds are not present in the pattern, then Constants with zero values will be created to match the specification.
Supported activations: Relu, Sigmoid, Tanh Clip attribute is not supported. Linear_before_reset attribute is not supported. Supported weights formats: zr, rz
-
class HSigmoidFusionWithReluDiv : public ov::pass::MatcherPass#
- #include <hsigmoid_fusion.hpp>
HSigmoidFusion transformation replaces a sub-graph ((min(Relu(x + 3), 6)) / 6) with a HSigmoid op.
-
class HSigmoidFusionWithReluMul : public ov::pass::MatcherPass#
- #include <hsigmoid_fusion.hpp>
HSigmoidFusion transformation replaces a sub-graph ((min(Relu(x + 3), 6)) * const(1/6)) with a HSigmoid op.
-
class HSigmoidFusionWithoutRelu : public ov::pass::MatcherPass#
- #include <hsigmoid_fusion.hpp>
HSigmoidFusion transformation replaces a sub-graph (min(max(x + 3, 0), 6) / 6) with a HSigmoid op.
-
class HSigmoidFusionWithClampMul : public ov::pass::MatcherPass#
- #include <hsigmoid_fusion.hpp>
HSigmoidFusion transformation replaces a sub-graph (Clamp(x + 3, 0, 6) * const(1/6)) with a HSigmoid op.
-
class HSigmoidFusionWithClampDiv : public ov::pass::MatcherPass#
- #include <hsigmoid_fusion.hpp>
HSigmoidFusion transformation replaces a sub-graph (Clamp(x + 3, 0, 6) * / 6) with a HSigmoid op.
-
class HSigmoidFusion : public ov::pass::GraphRewrite#
- #include <hsigmoid_fusion.hpp>
HSigmoidFusion transformation replaces various sub-graphs with a HSigmoid op.
-
class HSwishFusionWithReluDiv : public ov::pass::MatcherPass#
- #include <hswish_fusion.hpp>
HSwishFusion transformation replaces a sub-graph (x * (min(Relu(x + 3), 6))) / 6 with a HSwish op.
-
class HSwishFusionWithReluMul : public ov::pass::MatcherPass#
- #include <hswish_fusion.hpp>
HSwishFusion transformation replaces a sub-graph (x * (min(Relu(x + 3), 6)) * const(1/6) with a HSwish op.
-
class HSwishFusionWithHSigmoid : public ov::pass::MatcherPass#
- #include <hswish_fusion.hpp>
HSwishFusion transformation replaces a sub-graph x * HSigmoid(x) with a HSwish op.
-
class HSwishFusionWithClamp : public ov::pass::MatcherPass#
- #include <hswish_fusion.hpp>
HSwishFusion transformation replaces a sub-graph (Clamp(x + 3, 0, 6) * x) with a HSwish * 6.
-
class HSwishFusion : public ov::pass::GraphRewrite#
- #include <hswish_fusion.hpp>
HSwishFusion transformation replaces various sub-graphs with a HSwish op.
-
class InterpolateSequenceFusion : public ov::pass::MatcherPass#
- #include <interpolate_sequence_fusion.hpp>
InterpolateSequenceFusion transformation replaces a sequence of operations to Interpolate op.
-
class LeakyReluFusion : public ov::pass::MatcherPass#
- #include <leaky_relu_fusion.hpp>
LeakyReluFusion transformation replaces following graph: Multiply->Maximum to LeakyRelu.
-
class LinOpSequenceFusion : public ov::pass::GraphRewrite#
- #include <lin_op_sequence_fusion.hpp>
LinOpSequenceFusion transformation fuses linear operation sequence.
-
class LSTMCellFusionWithJointWeights : public ov::pass::MatcherPass#
- #include <lstm_cell_fusion.hpp>
LSTMCellFusionWithJointWeights transformation converts a sequence of operations with merged weights into LSTMCell op.
-
class LSTMCellFusionWithSplitWeights : public ov::pass::MatcherPass#
- #include <lstm_cell_fusion.hpp>
LSTMCellFusionWithSplitWeights transformation converts a sequence of operations with split weights into LSTMCell op.
-
class LSTMCellFusion : public ov::pass::GraphRewrite#
- #include <lstm_cell_fusion.hpp>
LSTMCellFusion transformation replaces various sub-graphs with a LSTMCell op.
-
class MarkPrecisionSensitiveShapeOfSubgraphs : public ov::pass::ModelPass#
- #include <mark_precision_sensitive_shapeof_subgraphs.hpp>
MarkPrecisionSensitiveShapeOfSubgraphs marks entirely all shape subgraphs starting from precision-sensitive inputs and ending at the ShapeOf node as disabled for FP16 compression.
Subclassed by ov::pass::MarkDividesInShapeSubgraphs, ov::pass::MarkPrecisionSensitiveConstants, ov::pass::MarkShapeOfSubgraphs
-
class MarkShapeOfSubgraphs : public ov::pass::MarkPrecisionSensitiveShapeOfSubgraphs#
- #include <mark_precision_sensitive_shapeof_subgraphs.hpp>
MarkShapeOfSubgraphs marks shape subgraphs. Information whether the node belongs to the shape path or to the data path is needed during evaluate and CF.
-
class MarkPrecisionSensitiveConstants : public ov::pass::MarkPrecisionSensitiveShapeOfSubgraphs#
- #include <mark_precision_sensitive_shapeof_subgraphs.hpp>
MarkPrecisionSensitiveConstants marks the constants inside of all shape subgraphs starting from precision-sensitive inputs and ending at the ShapeOf node as disabled for FP16 compression.
-
class MarkDividesInShapeSubgraphs : public ov::pass::MarkPrecisionSensitiveShapeOfSubgraphs#
- #include <mark_precision_sensitive_shapeof_subgraphs.hpp>
MarkDividesInShapeSubgraphs marks the Divide layers inside of all shape subgraphs starting from precision-sensitive input and ending at the ShapeOf node as disabled for ConvertDivide transformation.
-
class MarkRopeInputsToKeepInMixedPrecision : public ov::pass::MatcherPass#
- #include <mark_rope_input_to_keep_in_mixed_precision.hpp>
This transformation markups the 2nd/3rd inputs of Rope with FP32 to mantian accuracy. +—-—+ +—-—+ +—-—+ |intput1| |input2 | |input3 | |(orig) | |(fp32) | |(fp32) | +—|—+ +—|—+ +—|—+.
+—+————
————+—+
-
class MatMulMultiplyFusion : public ov::pass::MatcherPass#
- #include <matmul_multiply_fusion.hpp>
MatMulMultiplyFusion transformation matches following graph:
+----------+ +----------+ | A | | B | +----------+ +----------+ | | ----------- ---------- | | v v +--------+ | MatMul | +--------+ | v +----------+ +----------+ | Multiply |<----| Constant | +----------+ +----------+
and replaces with:
+-------+ +----------+ | B | | Constant | +-------+ +----------+ | | ------ ------ | | v v +----------+ +----------+ | A | | Multiply | +----------+ +----------+ | | ----------- ---------- | | v v +--------+ | MatMul | +--------+
-
class MishFusion : public ov::pass::MatcherPass#
- #include <mish_fusion.hpp>
MishFusion transformation replaces group of operations: x * tanh(log(exp(x) + 1)) to Mish op.
-
class MultiplyConvolutionFusion : public ov::pass::MatcherPass#
- #include <mul_conv_fusion.hpp>
Multiply->Convolution fusion replaces following graph:
+—-—+ +——-—+ | Input
| | Constant | +—-—+ +——-—+ | |
| | v v +——-
—+ +———+ | Multiply | | Weights | +——-—+ +———+ | |
| | v v +————-
—+ | Convolution Op | +————-—+to following:
where ‘Convolution Op’ is one of:+---------+ +----------+ | Weights | | Constant | +---------+ +----------+ | | ------ ------ | | v v +-------+ +----------+ | Input | | Multiply | +-------+ +----------+ | | ----------- ---------- | | v v +----------------+ | Convolution Op | +----------------+
Convolution
ConvolutionBackpropData
GroupConvolution
GroupConvolutionBackpropData
Restrictions:
weights’ shape is static
if the constant input to Multiply has the same rank as weights, the constant first dimension has to be 1
constant input to Multiply has to be broadcastable to weights when ‘Convolution Op’ is either Convolution or GroupConvolution
shape of a constant input to Multiply has to be in one of following forms: (1), (1, 1, …, 1), (C, 1, …, 1), (1, C, 1, …, 1) when ‘Convolution Op’ is either ConvolutionBackpropData or GroupConvolutionBackpropData
-
class MulFakeQuantizeFusion : public ov::pass::MatcherPass#
- #include <mul_fake_quantize_fusion.hpp>
MulFakeQuantizeFusion transformation replaces following graph: Mul->FakeQuantize to a single FakeQuantize Restrictions:
second input to Mul is a Constant
-
class MVNFusionWithoutConstants : public ov::pass::MatcherPass#
- #include <mvn_fusion.hpp>
MVNFusion transformation replaces group of operations: (x - ReduceMean(x, axes)) / (Sqrt(ReduceMean((x - ReduceMean(x, axes)) ^ 2)) + eps) to MVN op.
-
class MVNFusionWithConstantsInside : public ov::pass::MatcherPass#
- #include <mvn_fusion.hpp>
MVNFusion transformation replaces group of operations: gamma * (x - ReduceMean(x, axes)) / (Sqrt(ReduceMean((x - ReduceMean(x, axes)) ^ 2)) + eps) + beta to MVN op.
-
class MVNFusion : public ov::pass::GraphRewrite#
- #include <mvn_fusion.hpp>
MVNFusion transformation replaces various sub-graphs with a MVN op.
-
class NearestNeighborUpsamplingFusion : public ov::pass::MatcherPass#
- #include <nearest_neighbor_upsampling_fusion.hpp>
NearestNeighborUpsamplingFusion transformation fuses subgraph that uses the simpler operations, as ShapeOf, StridedSlice, Concat, Reshape, Mul to calculate Interpolate with mode=’nearest’.
-
class NonZeroHorizontalFusion : public ov::pass::MatcherPass#
- #include <nonzero_horizontal_fusion.hpp>
NonZeroHorizontalFusion transformation makes horizontal fusion for equal NonZero layers.
-
class EliminateReduceReshape : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateReduceReshape eliminates Reshape from Reduce -> Reshape pattern.
-
class EliminatePad : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminatePad eliminates pad that does nothing.
-
class EliminateConvert : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateConvert eliminates convert that does nothing.
-
class EliminateConvertNonZero : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateConvertNonZero eliminates convert before NonZero.
-
class EliminateConcat : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateConcat eliminates concat that does nothing.
-
class EliminateSplit : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateSplit eliminates split that does nothing.
-
class EliminateSqueeze : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateSqueeze eliminates squeeze that does nothing.
-
class EliminateUnsqueeze : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateUnsqueeze eliminates squeeze that does nothing.
-
class EliminateTranspose : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateTranspose eliminates transpose that does nothing.
-
class EliminateEltwise : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateEltwise eliminates eltwise ops that do nothing.
-
class EliminateScatterUpdate : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateScatterUpdate eliminates scatter ops that do nothing (updates/indices are empty)
-
class EliminateSplitConcat : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateSplit eliminates split+concat pairs which do nothing.
-
class EliminateNopBroadcast : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateNopBroadcast eliminates broadcast or tile with all ones on the second input.
-
class EliminateSliceBeforeGatherElements : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateSliceBeforeGatherElements eliminates slice before GElements if slicing from 0 It is valid since GatherElements doesn’t support negative indices and Slice won’t affect indexing of elements in the original tensor that GatherElements would like to take.
-
class EliminateStridedSlice : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateStridedSlice eliminates Strided Slice in case tensors were not changed.
-
class EliminateSlice : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateSlice eliminates Slice in case tensors were not changed.
-
class EliminateStridedSliceByShape : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
EliminateStridedSlice eliminates Strided Slice in case tensors were not changed.
-
class PrepareShapeOpsForEliminationAroundBE : public ov::pass::MatcherPass#
- #include <nop_elimination.hpp>
PrepareShapeOpsForEliminationAroundBE works on the subgraph like Reshape/Squeeze/Unsqueeze -> BinaryElementwiseOperation -> Reshape/Squeeze/Unsqueeze and prepares it for the following optimizations by moving bottom op up through Binary op.
-
class NormalizeL2Fusion : public ov::pass::MatcherPass#
- #include <normalize_l2_fusion.hpp>
NormalizeL2Fusion transformation replaces sub-graphs: x/(sqrt(max(reduce_sum(x[j0, …, jN]**2, axes), eps)) x/(sqrt(add(reduce_sum(x[j0, …, jN]**2, axes), eps)) x/(pow(max(reduce_sum(x[j0, …, jN]**2, axes), eps), 0.5) x/(pow(add(reduce_sum(x[j0, …, jN]**2, axes), eps), 0.5) x*(pow(max(reduce_sum(x[j0, …, jN]**2, axes), eps), -0.5) x*(pow(add(reduce_sum(x[j0, …, jN]**2, axes), eps), -0.5) with a NormalizeL2(x, axes, eps, eps_mode[MAX|ADD]) op.
-
class UselessSliceEraser : public ov::pass::ModelPass#
- #include <optimize_strided_slice.hpp>
UselessSliceEraser transformation removes Slice/StridedSlice operations with equal input and output shapes.
-
class GroupedStridedSliceOptimizer : public ov::pass::ModelPass#
- #include <optimize_strided_slice.hpp>
GroupedStridedSliceOptimizer transformation replaces group of StridedSlice operations with VariadicSplit. All StridedSlice operations must slice data with the same axis and stride = 1.
-
class GroupedSliceToVSplitOptimization : public ov::pass::ModelPass#
- #include <optimize_strided_slice.hpp>
GroupedSliceToVSplitOptimization transformation replaces group of Slice operations with VariadicSplit. All Slice operations must slice data with the same axis and step = 1.
-
class SliceSequenceToSingleSlice : public ov::pass::MatcherPass#
- #include <optimize_strided_slice.hpp>
SliceSequenceToSingleSlice transformation replaces group of Slice operations with single Slice. All Slice operations must slice data with the different axis.
Before: data (shape: 2, 3, 4) -> Slice (axis 0) -> Slice (axis 1) -> Slice (axis 2)
After: data (shape: 2, 3, 4) -> Slice (axes: 0, 1, 2)
-
class StridedSliceOptimization : public ov::pass::ModelPass#
- #include <optimize_strided_slice.hpp>
StridedSliceOptimization transformation executes all transformations related to StridedSlice optimizations.
-
class PadFusionAvgPool : public ov::pass::MatcherPass#
- #include <pad_fusion.hpp>
PadFusion transformation replaces following graph: Pad -> AvgPool to AvgPool, under following conditions.
pad mode is op::PadMode::CONSTANT
pad value is 0
exclude_pad in AvgPool is set to false or pads_begin, pads_end are set to zero
-
class PadFusionConvolution : public ov::pass::MatcherPass#
- #include <pad_fusion.hpp>
PadFusion transformation replaces following graph: Pad -> Convolution to Convolution, under following conditions.
pad mode is op::PadMode::CONSTANT
pad value is 0
-
class PadFusionConvolutionBackpropData : public ov::pass::MatcherPass#
- #include <pad_fusion.hpp>
PadFusion transformation replaces following graph: Pad -> ConvolutionBackpropData to ConvolutionBackpropData, under following conditions.
pad mode is op::PadMode::CONSTANT
pad value is 0
pads in ConvolutionBackpropData are greater than pads in Pad node
-
class PadFusionGroupConvolution : public ov::pass::MatcherPass#
- #include <pad_fusion.hpp>
PadFusion transformation replaces following graph: Pad -> GroupConvolution to GroupConvolution, under following conditions.
pad mode is op::PadMode::CONSTANT
pad value is 0
-
class PadFusionGroupConvolutionBackpropData : public ov::pass::MatcherPass#
- #include <pad_fusion.hpp>
PadFusion transformation replaces following graph: Pad -> GroupConvolutionBackpropData to GroupConvolutionBackpropData, under following conditions.
pad mode is op::PadMode::CONSTANT
pad value is 0
pads in GroupConvolutionBackpropData are greater than pads in Pad node
-
class PReluFusionNegativeAdd : public ov::pass::MatcherPass#
- #include <prelu_fusion.hpp>
PReluFusionNegativeAdd transformation replaces a sub-graph Op / \ Relu Negative | | | Relu | | | Negative | | | Multiply \ / Add.
-
class PReluFusionNegativeSub : public ov::pass::MatcherPass#
- #include <prelu_fusion.hpp>
PReluFusionNegativeSub transformation replaces a sub-graph Op / \ Relu Negative | | | Relu | | | Multiply \ / Sub.
-
class PReluFusionMultiplyAdd : public ov::pass::MatcherPass#
- #include <prelu_fusion.hpp>
PReluFusionMultiplyAdd transformation replaces a sub-graph Op / \ Relu Multiply (-1) | | | Relu | | | Multiply \ / Add.
-
class PReluFusionMultiplySub : public ov::pass::MatcherPass#
- #include <prelu_fusion.hpp>
PReluFusionMultiplySub transformation replaces a sub-graph Op / \ Relu Multiply (-1) | | | Relu | | | Multiply \ / Sub.
-
class PReluFusionAbsSubMulMulAdd : public ov::pass::MatcherPass#
- #include <prelu_fusion.hpp>
PReluFusionAbsSubMulMulAdd transformation replaces a sub-graph Op / | \ Relu | Abs | \ | | Subtract | | | Multiply | | | Multiply (0.5) \ / Add.
-
class PReluFusionNegReluMulAdd : public ov::pass::MatcherPass#
- #include <prelu_fusion.hpp>
PReluFusionNegReluMulAdd transformation replaces a sub-graph Op / \ Relu Negative | | | Relu | | | Multiply \ / Add.
-
class PReluFusion : public ov::pass::GraphRewrite#
- #include <prelu_fusion.hpp>
PReluFusion transformation replaces various sub-graphs with a PRelu op.
-
class PullUnsqueezeThroughReduce : public ov::pass::MatcherPass#
- #include <pull_through_reduce.hpp>
PullUnsqueezeThroughReduce transformation The transformation pulls Unsqueeze operator though Reduce ops if possible. In the further processing such Unsqueeze can be often skipped as nop.
-
class PullReshapeThroughReduce : public ov::pass::MatcherPass#
- #include <pull_through_reduce.hpp>
PullReshapeThroughReduce transformation The transformation pulls Reshape operator though Reduce ops if possible. In the further processing such Reshape can be often skipped as nop.
-
class PullThroughReduce : public ov::pass::GraphRewrite#
- #include <pull_through_reduce.hpp>
PullThroughReduce transformation The transformation pulls Reshape or Unsqueeze operators though Reduce ops if possible. In the further processing such Reshape/Unsqueeze can be often skipped as nop.
-
class PushConstantToSubgraph : public ov::pass::ModelPass#
- #include <push_constant_to_subgraph.hpp>
PushConstantToSubgraph transformation detects MultiSubGraphOp inputs that can be constfoldable pushes that inputs to subgraphs.
-
class RandomUniformFusion : public ov::pass::MatcherPass#
- #include <random_uniform_fusion.hpp>
RandomUniformFusion transformation replaces RandomUniform -> Add or RandomUniform -> Mul subgraph with a RandomUniform and replaces min and max const with corrected values.
-
class ReduceMerge : public ov::pass::MatcherPass#
- #include <reduce_merge.hpp>
ReduceMerge transformation matches following graph:
+——-—+ +——-—+ | A | | B | +——-—+ +——-—+ | |
| | v v +—–
—+ +—–—+ | Reduce | | C | +—–—+ +—–—+ | | | —-— | | v v +——-—+ | Reduce | +——-—+and replaces with:
+——-—+ +—————-—+ | A | | Concat/Constant | +——-—+ +—————-—+ | | | —–— | | v v +——-—+ | Reduce | +——-—++----------+ +----------+ | B | | C | +----------+ +----------+ | | ------- ------- | | v v
-
class ReduceReshapeFusion : public ov::pass::MatcherPass#
- #include <reduce_reshape_fusion.hpp>
ReduceReshapeFusion transformation Fuse ReduceOp(keep_dims=false)+Reshape to ReduceOp(keep_dims=true)
-
class ReluFakeQuantizeFusion : public ov::pass::MatcherPass#
- #include <relu_fake_quantize_fusion.hpp>
ReluFakeQuantizeFusion transformation replaces following graph: Relu -> FakeQuantize to FakeQuantize under following conditions:
‘input_low’ input to FakeQuantize is a Constant
’input_low’ has non negative values
-
class RemoveConcatZeroDimInput : public ov::pass::MatcherPass#
- #include <remove_concat_zero_dim_input.hpp>
RemoveConcatZeroDimInput transformation removes input of Concat if the tensor size is equal to 0.
-
class ReshapePRelu : public ov::pass::MatcherPass#
- #include <reshape_prelu.hpp>
ReshapePRelu reshape second input of PRelu (slope)
-
class ReshapeSequenceFusion : public ov::pass::MatcherPass#
- #include <reshape_sequence_fusion.hpp>
ReshapeSequenceFusion fuses sequence of Reshape operation into single Reshape or eliminates full redundant sequence.
-
class SelectWithOneValueCondition : public ov::pass::MatcherPass#
- #include <select_with_one_value_condition.hpp>
SelectWithOneValueCondition transformation eliminates Select operation if the condition is constant and consists of al True or False elements.
-
class SequenceFusion : public ov::pass::MatcherPass#
- #include <sequence_fusion.hpp>
SequenceFusion transformation replaces a chain of Cells operations with single Sequence op.
Supported cells: GRUCell, LSTMCell, RNNCell, AUGRUCell Prerequisites: the source of W,R,B inputs must be the same or it can be different Constants with the same type, shape and value.
- #include <shared_ops_optimization.hpp>
SharedOpOptimization optimizes operations which are sourcing from same Output<Node> and perform the same action on the same data.
-
class ShuffleChannelsFusion : public ov::pass::MatcherPass#
- #include <shuffle_channels_fusion.hpp>
ShuffleChannelsFusion transformation detects Reshape-Transpose-Reshape pattern and tries to fuse it into a single ShuffleChannels layer with axis = 1.
x’ = reshape(x, [N, group, C / group, H, W]) or reshape(x, [N, group, C / group, H * W]) x’’ = transpose(x’, [0, 2, 1, 3, 4]) or transpose(x’, [0, 2, 1, 3]) y = reshape(x’’, [N, C, H, W])
- Param reshape_constants_check:
the flag that defines the need for additional checks of reshapes constant Additional checks are required when ShuffleChannelsFusion using inside offline transformations and are not necessary when ShuffleChannelsFusion using inside CommonOptimizations
-
class GroupedGatherElimination : public ov::pass::MatcherPass#
- #include <simplify_shape_of_sub_graph.hpp>
GroupedGatherElimination transformation replaces group of Gather operations with the first Gather in this group and updated indices input in case all Gathers in the group are consumed by the same Concat in incremental order.
-
class GatherNopElimination : public ov::pass::MatcherPass#
- #include <simplify_shape_of_sub_graph.hpp>
GatherNopElimination transformation optimizes out useless Gather operations.
-
class AbsSinking : public ov::pass::MatcherPass#
- #include <simplify_shape_of_sub_graph.hpp>
AbsSinking optimizes out the Abs which input is non negative. Has a special case for Concat -> Abs graph, it moves Abs up through Concat to its inputs, tries to constant fold new Abs ops. In case folding fails applies optimization to the leftover Abs ops.
-
class SkipGatherBeforeTransposeAndReshape : public ov::pass::MatcherPass#
- #include <skip_gather_before_transpose_and_reshape.hpp>
SkipGatherBeforeTransposeAndReshape transformation removes Gather from the Gather->Transpose->Reshape sequence in case when input has batch=1 and gather has axis=0 and indices={0}. Also, this transformation corrects a transpose constant to save semantic.
-
class SoftmaxFusion : public ov::pass::MatcherPass#
- #include <softmax_fusion.hpp>
SoftmaxFusion transformation replaces following graphs:
and +—————+ │ │ │ input │ │ │ +—————++---------------+ │ │ │ input │ │ │ +---------------+ │ │ │ v │ +-----------+ │ │ │ │ │ ReduceMax │ │ │ │ │ +-----------+ │ │ │ │ v v +---------------+ │ │ │ Sub │ │ │ +---------------+ | | v +---------------+ │ │ │ Exp │ │ │ +---------------+ │ │ │ v │ +-----------+ │ │ │ │ │ ReduceSum │ │ │ │ │ +-----------+ │ │ │ │ v v +-------------+ | │ | Div │ │ │ +-------------+
to a single Softmax node
Restrictions:
ReduceMax and ReduceSum axes must be scalar constants and they have to point to the same axis
-
class SoftPlusFusion : public ov::pass::MatcherPass#
- #include <softplus_fusion.hpp>
SoftPlusFusion transformation replaces group of operations: log(exp(x) + 1) to SoftPlus op.
-
class SoftPlusToMishFusion : public ov::pass::MatcherPass#
- #include <softplus_to_mish_fusion.hpp>
SoftPlusToMishFusion transformation replaces group of operations: x * tanh(softplus(x)) to Mish op.
-
class SpaceToBatchFusion : public ov::pass::MatcherPass#
- #include <space_to_batch_fusion.hpp>
SpaceToBatchFusion transformation replaces following graph: Transpose (or Reshape) -> Pad -> SpaceToDepth -> Transpose (or Reshape) to SpaceToBatch Restrictions:
input rank must be 4
Transpose permutation must be [1, 0, 2, 3]
pad value is 0, PadMode is CONSTANT
SpaceToDepthMode must be BLOCKS_FIRST
-
class SplitConcatPairToInterpolateFusion : public ov::pass::MatcherPass#
- #include <split_concat_pair_to_interpolate_fusion.hpp>
SplitConcatPairToInterpolateFusion transformation replaces group of operations: Split -> Concat to Interpolate op.
-
class SplitSqueezeConcatFusion : public ov::pass::MatcherPass#
- #include <split_squeeze_concat_fusion.hpp>
SplitSqueezeConcatFusion transformation replaces group of operations: Split -> Squeeze (multiple) -> Concat to Transpose -> Reshape ops.
-
class ConvStridesPropagation : public ov::pass::MatcherPass#
- #include <strides_optimization.hpp>
ConvStridesPropagation either propagates stride (greater than 1) from Convolution up through the graph or inserts pooling between current node and its consumers if the consumers have different StridesProp attributes. Strides can be propagated if Convolution kernel is {1, 1, …}.
-
class SupportedNodesStridesPropagation : public ov::pass::MatcherPass#
- #include <strides_optimization.hpp>
SupportedNodesStridesPropagation either propagates stride (greater than 1) from current node up through the graph or inserts pooling between current node and its consumers if the consumers have different StridesProp attributes.
-
class UnsupportedNodesStridesPropagation : public ov::pass::MatcherPass#
- #include <strides_optimization.hpp>
UnsupportedNodesStridesPropagation inserts pooling between current node and its consumers if the consumers have different StridesProp attributes.
-
class StridesOptimization : public ov::pass::BackwardGraphRewrite#
- #include <strides_optimization.hpp>
StridesOptimization transformation works backward on function and propagates strides up through the graph if possible.
-
class SubtractFusion : public ov::pass::MatcherPass#
- #include <subtract_fusion.hpp>
SubtractFusion transformation replaces a sub-graph Mul(y, -1) + x or x + Mul(y, -1) with Subtract(x,y)
-
class SwishFusionWithSigmoid : public ov::pass::MatcherPass#
- #include <swish_fusion.hpp>
SwishFusionWithSigmoid replaces a sub-graphs x * Sigmoid(x) with a Swish op.
-
class SwishFusionWithSigmoidWithBeta : public ov::pass::MatcherPass#
- #include <swish_fusion.hpp>
SwishFusionWithSigmoid replaces a sub-graphs x * Sigmoid(x * beta) with a Swish op.
-
class SwishFusionWithBeta : public ov::pass::MatcherPass#
- #include <swish_fusion.hpp>
SwishFusionWithSigmoid replaces a sub-graphs x / (1.0 + exp(-x * beta)) with a Swish op.
-
class SwishFusionWithoutBeta : public ov::pass::MatcherPass#
- #include <swish_fusion.hpp>
SwishFusionWithSigmoid replaces a sub-graphs x / (1.0 + exp(-x)) with a Swish op.
-
class SwishFusion : public ov::pass::GraphRewrite#
- #include <swish_fusion.hpp>
SwishFusion transformation replaces various sub-graphs with a Swish op.
-
class TransposeReshapeEliminationForMatmul : public ov::pass::MatcherPass#
- #include <transpose_reshape_elimination_for_matmul.hpp>
TransposeReshapeEliminationForMatmul transformation eliminates Transpose and Reshape which were created to align input and output dimension ranks before second MatMul input and after MatMul output (for example, after Einsum Decomposition inside TensorFlow 1 and OpenVINO EinsumDecomposition transformation)
-
class TransposeReduction : public ov::pass::MatcherPass#
- #include <transpose_sinking.hpp>
TransposeReduction transformation sinks Transpose through Reduce operations.
-
class TransposeFQReduction : public ov::pass::MatcherPass#
- #include <transpose_sinking.hpp>
TransposeFQReduction transformation sinks Transpose through FakeQuantize in case it is followed by reduction or squeeze.
-
class TransposeConvert : public ov::pass::MatcherPass#
- #include <transpose_sinking.hpp>
TransposeConvert transformation sinks Transpose through Convert.
-
class TransposeEltwise : public ov::pass::MatcherPass#
- #include <transpose_sinking.hpp>
TransposeEltwise transformation sinks Transpose through Eltwise.
-
class TransposeFuse : public ov::pass::MatcherPass#
- #include <transpose_sinking.hpp>
TransposeFuse transformation eliminates 2 consequtive Transposes if they result in no changes to input or fuses them to single Transpose if input gets changed.
-
class TransposeSinking : public ov::pass::GraphRewrite#
- #include <transpose_sinking.hpp>
TransposeSinking transformation sinks Transposes through known operations.
-
class TransposeToReshape : public ov::pass::MatcherPass#
- #include <transpose_to_reshape.hpp>
TransposeToReshape transformation replaces suitable Transposes with Reshape operation or optimizes them out.
-
class WeightsDequantizeToFakeQuantize : public ov::pass::MatcherPass#
- #include <weights_dequantize_to_fake_quantize.hpp>
WeightsDequantizeToFakeQuantize transformation replaces Constant (i8) -> Convert (to fp) -> Subtract (zp) -> Multiply (scale) -> with Constant (i8) -> Convert (to fp) -> FakeQuantize -> deducing levels and FakeQuantize limits according to actual values in the weights Constant.
-
class WrapInterpolateIntoTransposes : public ov::pass::MatcherPass#
- #include <wrap_interpolate_into_transposes.hpp>
WrapInterpolateIntoTransposes transformation replaces Interpolate with Transpose -> Interpolate -> Transpose when 1) the source Interpolate has the static input rank; 2) ‘axes’ input is a Constant; 3) number of axes is equal to input rank minus 2; 4) axes contain 0 or 1. The reason of this transformation is that now CPU plugin supports interpolation only with respect to spatial dimensions, but TensorFlow frontend gives Interpolate with axes {1, 2} for 4D tensors.
-
class UnrollIf : public ov::pass::ModelPass#
- #include <unroll_if.hpp>
The transformation replaces ‘If’ operations with one of the internal functions (bodies) if the provided condition is constant. The condition is true: ‘If’ op is replaced with then_body The condition is false ‘If’ op is replaced with else_body.
-
class UnrollTensorIterator : public ov::pass::ModelPass#
- #include <unroll_tensor_iterator.hpp>
Unrolls the body of the TensorIterator layer. Multiple body copies, the number of which is determined by the number of iterations of the TensorIterator layer, are created and connected to each other and to the external network. If the number of TensorIterator iterations is greater than 1, then additional Concat and Split layers are added to the network.
-
struct EnumClassHash#
- #include <convert_precision.hpp>
ConvertPrecision transformation convert precision for entire ov::Model List of supported precision conversion: FROM -> TO u8 -> i32 u16 -> i32 u32 -> i32 u64 -> i32 i64 -> i32 f16 -> f32 bool -> u8 bool -> i32.
For all operations from opset1-opset4 this conversions can be applied without adding Conversion operations. That is possible because all operations that produces “FROM” type can produce “TO” type. And for this operations we have created special fuse_type_into_<type> function (can be found in cpp file) that performs type fusion into operation. m_additional_type_to_fuse_map allows to rewrite existing type convertors.
List of operations that are supported by this transformations for i64 -> i32 conversion: opset4::Parameter opset4::Convert opset4::ShapeOf opset4::Range opset3::NonMaxSuppression opset4::NonMaxSuppression opset4::TopK opset4::NonZero opset4::Bucketize
List of operations that are supported by this transformations for bool -> u8 conversion: LogicalAnd LogicalNot LogicalOr LogicalXor ReduceLogicalAnd ReduceLogicalOr Equal NotEqual Greater GreaterEqual Less LessEqual
-
class AlignMixedFP32FP16Types : public ov::pass::ModelPass#
- #include <align_mixed_fp32_fp16_types.hpp>
AlignMixedFP32FP16Types adds Converts to keep mixed FP16/FP32 graph type consistent.
-
class ConvertCompressedOnlyToLegacy : public ov::pass::ModelPass#
- #include <convert_compression_only_to_legacy.hpp>
ConvertCompressedOnlyToLegacy transformation converts compression only FP16 format to legacy FP16 format.
-
class EnableDecompressionConvertConstantFolding : public ov::pass::MatcherPass#
- #include <mark_decompression_convert_constant_folding.hpp>
Enables ConstantFolding for Convert operation in compressed function.
-
class DisableDecompressionConvertConstantFolding : public ov::pass::MatcherPass#
- #include <mark_decompression_convert_constant_folding.hpp>
Disables ConstantFolding for Convert operation in compressed function.
-
class KeepConstAndDecompression : public ov::pass::MatcherPass#
- #include <mark_decompression_convert_constant_folding.hpp>
Disables ConstantFolding for Convert operation and prevents conversion of f16 Consts to f32.
-
class KeepConstantsPrecisionAndAddConverts : public ov::pass::MatcherPass#
- #include <mark_decompression_convert_constant_folding.hpp>
Prevents Consts precision conversion and adds Convert with disabled ConstantFolding.
-
class MarkCompressedFloatConstants : public ov::pass::MatcherPass#
- #include <mark_decompression_convert_constant_folding.hpp>
Prevents ConstantFolding for f16/bf16 Const + Convert_To_FP32 to keep original FW float Constants. Original precision should be kept as long as possible, this prevents redundant conversions and saves memory. E.g. if original FW model was already compressed no need to upcast during CF, store intermediate f32 consts and then again compress them to f16 during save_model.
-
class MarkFloatingPointRange : public ov::pass::MatcherPass#
- #include <mark_floatpoint_range.hpp>
This transformation markups the marks paths that involve Range operations with floating point output data types, as well as their users allowed for propagation. This pass is needed to prevent accuracy data loss in cases of high range generation, which could suffer due to lowered precision.
-
class InitNodeInfo : public ov::pass::ModelPass#
- #include <init_node_info.hpp>
InitNodeInfo transformation helps to set runtime info attributes in a single place.
Every runtime info attribute that needs to be initialized should be registered in run_on_function method. Also do not forget to override init methods for registered attribute. This transformations should be called first in transformation pipeline. If attribute was already set initialization will be skipped for this node.
-
class MarkDequantization : public ov::pass::MatcherPass#
- #include <mark_dequantization_subgraph.hpp>
MarkDequantization matches Dequantization subgraphs and marks Subtract and Multiply nodes with the dequantization attribute. Also if Convert nodes are part of the subgraph they might be marked with the disable_const_folding attribute.
If Convert -> Reshape/Unsqueeze are part of the Dequantization subraph, Convert and Reshape/Unsqueeze nodes will be swapped to eliminate Reshape/Unsqueeze in the next ConstantFolding.
Dequantization subgraph may have two forms: with and without Subtract. ZeroPoints and Scale might be present as subgraphs and include Convert ops.
Input ZeroPoints │ │ ▼ ▼ Convert (opt) Reshape/Unsqueeze │ │ ▼ ▼ Scale Input Scale Subtract │ │ │ │ ▼ ▼ ▼ │ (opt) Reshape/Unsqueeze Convert (opt) Reshape/Unsqueeze │ │ │ │ ▼ ▼ ▼ ▼ Multiply Multiply
-
class KeepConstsPrecision : public ov::pass::MatcherPass#
- #include <mark_dequantization_subgraph.hpp>
KeepConstsPrecision matches Dequantization subgraphs and if Input/ZeroPoints/Scale are Constants they might be marked with keep_const_precision attribute.
Dequantization subgraph may have two forms: with and without Subtract.
Input │ ▼ Convert ZeroPoints │ │ ▼ ▼ Input Subtract │ │ ▼ │ Scale Convert Scale │ │ │ │ ▼ ▼ ▼ ▼ Multiply Multiply
-
class BidirectionalLSTMSequenceDecomposition : public ov::pass::MatcherPass#
- #include <bidirectional_sequences_decomposition.hpp>
Decompose LSTMSequence to forward and reverse LSTMSequence.
-
class BidirectionalGRUSequenceDecomposition : public ov::pass::MatcherPass#
- #include <bidirectional_sequences_decomposition.hpp>
Decompose GRUSequence to forward and reverse GRUSequence.
-
class BidirectionalRNNSequenceDecomposition : public ov::pass::MatcherPass#
- #include <bidirectional_sequences_decomposition.hpp>
Decompose RNNSequence to forward and reverse RNNSequence.
-
class BidirectionalSequenceDecomposition : public ov::pass::GraphRewrite#
- #include <bidirectional_sequences_decomposition.hpp>
Container for all types of sequences decomposition.
-
class ConvertAvgPool14ToAvgPool1 : public ov::pass::MatcherPass#
- #include <convert_avgpool_downgrade.hpp>
Converts AvgPool v14 to AvgPool v1.
-
class ConvertBatchToSpace : public ov::pass::MatcherPass#
- #include <convert_batch_to_space.hpp>
ConvertBatchToSpace transformation decomposes BatchToSpace layer to Reshape->Transpose->Reshape->Crop.
- Param convert_by_elements:
- reduces the maximum number of dimensions that arise during the transformation if enabled. Default value: true. false - BatchToSpace decomposes to Reshape->Transpose->Reshape->Crop. During transformation, the number of tensor dimensions can be increased by length of block_shape input of BatchToSpace layer. true - BatchToSpace decomposes to N x (Reshape->Transpose->Reshape)->Crop, where N = length of block_shape input of BatchToSpace layer. During transformation, the number of tensor dimensions can be increased by 1.
-
class ConvertBitwiseToLogical : public ov::pass::GraphRewrite#
- #include <convert_bitwise_to_logical_bool.hpp>
Converts Bitwise operators to Logical for boolean datatype for plugins that don’t support opset13 Bitwise and to allow for constant folding for bool.
-
class ConvertDeformableConv8To1 : public ov::pass::MatcherPass#
- #include <convert_deformable_conv_v8_to_v1.hpp>
ConvertDeformableConv8To1 converts v8::DeformableConvolution into v1::DeformableConvolution.
-
class ConvertEmbeddingBagOffsets15ToEmbeddingBagOffsetsSum3 : public ov::pass::MatcherPass#
- #include <convert_embedding_bag_offsets15_downgrade.hpp>
Converts EmbeddingBagOffsets v15 to EmbeddingBagOffsets v3.
-
class ConvertEmbeddingBagPacked15ToEmbeddingBagPackedSum3 : public ov::pass::MatcherPass#
- #include <convert_embedding_bag_packed15_downgrade.hpp>
Converts EmbeddingBagPacked v15 to EmbeddingBagPacked v3.
-
class ConvertGather0D : public ov::pass::MatcherPass#
- #include <convert_gather_0d.hpp>
ConvertGather0D decomposes v1::Gather operation into v0::Unsqueeze + v1::Gather + v0::Squeeze pattern when gather indices is scalar.
-
class ConvertGather7ToGather1 : public ov::pass::MatcherPass#
- #include <convert_gather_downgrade.hpp>
ConvertGather7ToGather1 converts v7::Gather into v1::Gather.
-
class ConvertGather8ToGather7 : public ov::pass::MatcherPass#
- #include <convert_gather_downgrade.hpp>
ConvertGather8ToGather7 converts v8::Gather into v7::Gather.
-
class ConvertGather1ToGather7 : public ov::pass::MatcherPass#
- #include <convert_gather_upgrade.hpp>
ConvertGather1ToGather7 converts v1::Gather into v7::Gather.
-
class ConvertGather7ToGather8 : public ov::pass::MatcherPass#
- #include <convert_gather_upgrade.hpp>
ConvertGather7ToGather8 converts v7::Gather into v8::Gather.
-
class ConvertInterpolate11ToInterpolate4 : public ov::pass::MatcherPass#
- #include <convert_interpolate11_downgrade.hpp>
Converts Interpolate version 11 to Interpolate version 4 if the new op uses any of the v4 allowed interpolation modes.
-
class ConvertInterpolate1ToInterpolate4 : public ov::pass::MatcherPass#
- #include <convert_interpolate1_to_interpolate4.hpp>
ConvertInterpolate1ToInterpolate4 covert v0:interpolate into v4::Interpolate.
-
class ConvertMaxPool8ToMaxPool1 : public ov::pass::MatcherPass#
- #include <convert_maxpool_downgrade.hpp>
ConvertMaxPool8ToMaxPool1 converts v8::MaxPool into v1::MaxPool.
-
class ConvertMaxPool14ToMaxPool8 : public ov::pass::MatcherPass#
- #include <convert_maxpool_downgrade.hpp>
ConvertMaxPool14ToMaxPool8 converts v14::MaxPool into v8::MaxPool.
-
class ConvertMaxPool1ToMaxPool8 : public ov::pass::MatcherPass#
- #include <convert_maxpool_upgrade.hpp>
ConvertMaxPool1ToMaxPool8 converts v1::MaxPool into v8::MaxPool.
-
class ConvertMVN1ToMVN6 : public ov::pass::MatcherPass#
- #include <convert_mvn1_to_mvn6.hpp>
ConvertMVN1ToMVN6 covert v0:MVN into v6::MVN.
-
class ConvertPad12ToPad1 : public ov::pass::MatcherPass#
- #include <convert_pad12_downgrade.hpp>
Converts Pad v12 to Pad v1.
-
class ConvertPadToGroupConvolution : public ov::pass::MatcherPass#
- #include <convert_pad_to_group_conv.hpp>
ConvertPadToGroupConvolution transformation replaces Pad operation with GroupConvolution but has some restrictions on Pad parameters:
PadMode must be Constant and value is equal to 0
Padding must be applied only for spatial dimensions
Input shape rank must be static and greater than 3
Padding values must be non-negative
-
class ConvertPriorBox8To0 : public ov::pass::MatcherPass#
- #include <convert_prior_box_v8_to_v0.hpp>
ConvertPriorBox8To1 converts v8::PriorBox into v0::PriorBox.
-
class ConvertROIAlign3To9 : public ov::pass::MatcherPass#
- #include <convert_roi_align_v3_to_v9.hpp>
ConvertROIAlign3To9 converts v3::ROIAlign into v9::ROIAlign.
-
class ConvertROIAlign9To3 : public ov::pass::MatcherPass#
- #include <convert_roi_align_v9_to_v3.hpp>
ConvertROIAlign9To3 converts v9::ROIAlign into v3::ROIAlign.
-
class ConvertScatterElementsToScatter : public ov::pass::MatcherPass#
- #include <convert_scatter_elements_to_scatter.hpp>
ConvertScatterElementsToScatter convert opset3::ScatterElementsUpdate to opset3::ScatterUpdate.
-
class ConvertScatterElementsUpdate12ToScatterElementsUpdate3 : public ov::pass::MatcherPass#
- #include <convert_scatter_elements_update12_downgrade.hpp>
Converts Pad v12 to Pad v1.
-
class ConvertScatterNDUpdate15ToScatterNDUpdate3 : public ov::pass::MatcherPass#
- #include <convert_scatter_nd_update15_downgrade.hpp>
Converts ScatterNDUpdate version 15 to ScatterNDUpdate version 3 if ScatterNDUpdate reduction attribute is set to None.
-
class ConvertRNNSequenceToTensorIterator : public ov::pass::MatcherPass#
- #include <convert_sequences_to_tensor_iterator.hpp>
ConvertRNNSequenceToTensorIterator transformation converts RNNSequence layer to TensorIterator *.
-
class ConvertGRUSequenceToTensorIterator : public ov::pass::MatcherPass#
- #include <convert_sequences_to_tensor_iterator.hpp>
ConvertGRUSequenceToTensorIterator transformation converts GRUSequence layer to TensorIterator *.
-
class ConvertLSTMSequenceToTensorIterator : public ov::pass::MatcherPass#
- #include <convert_sequences_to_tensor_iterator.hpp>
ConvertLSTMSequenceToTensorIterator transformation converts LSTMSequence layer to TensorIterator *.
-
class SliceToStridedSlice : public ov::pass::MatcherPass#
- #include <convert_slice_to_strided_slice.hpp>
SliceToStridedSlice transformation convert v8::Slice to v1::StridedSlice.
-
class ConvertSoftMax8ToSoftMax1 : public ov::pass::MatcherPass#
- #include <convert_softmax_downgrade.hpp>
ConvertSoftMax8ToSoftMax1 converts v8::SoftMax into v1::SoftMax.
-
class ConvertSoftMax1ToSoftMax8 : public ov::pass::MatcherPass#
- #include <convert_softmax_upgrade.hpp>
ConvertSoftMax1ToSoftMax8 converts v1::SoftMax into v8::SoftMax.
-
class ConvertSpaceToBatch : public ov::pass::MatcherPass#
- #include <convert_space_to_batch.hpp>
ConvertSpaceToBatch transformation decomposes SpaceToBatch layer to Pad->Reshape->Transpose->Reshape.
- Param convert_by_elements:
- reduces the maximum number of dimensions that arise during the transformation if enabled. Default value: true. false - SpaceToBatch decomposes to Pad->Reshape->Transpose->Reshape. During transformation, the number of tensor dimensions can be increased by length of block_shape input of SpaceToBatch layer. true - SpaceToBatch decomposes to Pad-> N x (Reshape->Transpose->Reshape), where N = length of block_shape input of SpaceToBatch layer. During transformation, the number of tensor dimensions can be increased by 1.
-
class ConvertSqueeze15ToSqueeze0 : public ov::pass::MatcherPass#
- #include <convert_squeeze15_downgrade.hpp>
Converts Squeeze v15 to Squeeze v0.
-
class ConvertTensorIteratorToLSTMSequence : public ov::pass::MatcherPass#
- #include <convert_ti_to_sequences.hpp>
Finds all TensorIterator layers, detects the pattern Squeeze->LSTMCell->Unsqueeze in the TensorIterator body, converts this pattern to LSTMSequence layer and replaces them TensorIterator.
-
class ConvertTensorIteratorToRNNSequence : public ov::pass::MatcherPass#
- #include <convert_ti_to_sequences.hpp>
Finds all TensorIterator layers, detects the pattern Squeeze->RNNCell->Unsqueeze in the TensorIterator body, converts this pattern to RNNSequence layer and replaces them TensorIterator.
-
class ConvertTensorIteratorToGRUSequence : public ov::pass::MatcherPass#
- #include <convert_ti_to_sequences.hpp>
Finds all TensorIterator layers, detects the pattern Squeeze->GRUCell->Unsqueeze in the TensorIterator body, converts this pattern to GRUSequence layer and replaces them TensorIterator.
-
class ConvertLoopToLSTMSequence : public ov::pass::GraphRewrite#
- #include <convert_ti_to_sequences.hpp>
Replaces Loop with LSTMCell inside to LSTMSequence.
-
class FuseReverseLSTMSequence : public ov::pass::MatcherPass#
- #include <convert_ti_to_sequences.hpp>
Fuses ReverseSequence->LSTM->ReverseSequence to LSTMSequence with REVERSE direction flag.
-
class FuseLSTMSequencesToBidirectionalLSTMSequence : public ov::pass::MatcherPass#
- #include <convert_ti_to_sequences.hpp>
Replaces two LSTMSequences to one bidirectional LSTMSequence.
-
class ConvertTopK11ToTopK3 : public ov::pass::MatcherPass#
- #include <convert_topk11_downgrade.hpp>
Converts TopK version 11 to TopK version 3 if TopK 11 stable attribute is set to false.
-
class ConvertXorToLogicalXor : public ov::pass::MatcherPass#
- #include <convert_xor_to_logical_xor.hpp>
ConvertXorToLogicalXor converts v0::Xor to v1::LogicalXor.
-
class ConvertDetectionOutput8ToDetectionOutput1 : public ov::pass::MatcherPass#
- #include <detection_output_downgrade.hpp>
ConvertDetectionOutput8ToDetectionOutput1 converts v8::DetectionOutput into v0::DetectionOutput.
-
class ConvertDetectionOutput1ToDetectionOutput8 : public ov::pass::MatcherPass#
- #include <detection_output_upgrade.hpp>
ConvertDetectionOutput1ToDetectionOutput8 converts v0::DetectionOutput into v8::DetectionOutput.
-
class EinsumDecomposition : public ov::pass::MatcherPass#
- #include <einsum_decomposition.hpp>
EinsumDecomposition transformation decomposes Einsum-7 operation into a sub-graph with more simple operations: Transpose, Reshape, MatMul, ReduceSum, Unsqueeze, ShapeOf, ReduceProd, StridedSlice, and Concat.
-
class EyeDecomposition : public ov::pass::MatcherPass#
- #include <eye_decomposition.hpp>
Do eye decomposition to sub-graph (model).
-
class FakeConvertDecomposition : public ov::pass::MatcherPass#
- #include <fake_convert_decomposition.hpp>
FakeConvertDecomposition transformation decomposes FakeConvert layer. f8: f8e4m3, f8e5m2 downconvert: f32->f8, f16->f8, bf16->f8 upconvert: f8->f32, f8->f16, f8->bf16 output = (upconvert(downconvert(input * scale - shift)) + shift) / scale.
-
class FakeQuantizeDecomposition : public ov::pass::MatcherPass#
- #include <fq_decomposition.hpp>
FakeQuantizeDecomposition transformation decomposes FakeQuantize layer.
Expression from specification: if x <= min(input_low, input_high): output = output_low elif x > max(input_low, input_high): output = output_high else: output = round((x - input_low) / (input_high - input_low) * (levels-1)) / (levels-1) * (output_high - output_low) + output_low
expand brackets into round: round(x * (levels-1) / (input_high - input_low) - input_low * (levels-1) / (input_high - input_low)) div on (levels-1) and mult on (output_high - output_low) => mult on (output_high - output_low) / (levels-1)
=> round(x * (levels-1) / (input_high - input_low) - input_low * (levels-1) / (input_high - input_low)) * (output_high - output_low) / (levels-1) + output_low
This transformation doesn’t support following cases:
At least one ‘range’ input is not Constant
At least one ‘input_low’ input value greater or equal than ‘input_high’ input value
-
class Gelu7Downgrade : public ov::pass::MatcherPass#
- #include <gelu7_downgrade.hpp>
Gelu7Downgrade converts v7::Gelu operation to v2::Gelu unconditionally. This is done because only limited set of plugins support v7::Gelu which has an attribute specifying approximation mode. For other plugins the behaviour is to use v2 version of the operation which does not support the approximation mode.
-
class GRUCellDecomposition : public ov::pass::MatcherPass#
- #include <gru_cell_decomposition.hpp>
GRUCellDecomposition transformation decomposes GRUCell layer with inputs X, H, W, R, B to Add, Split, MatMul, Multiply and Subtract ops according to the formula: (.) - Denotes element-wise multiplication.
Denotes dot product. f, g - are activation functions
zt = f(Xt*(Wz^T) + Ht-1*(Rz^T) + Wbz + Rbz) rt = f(Xt*(Wr^T) + Ht-1*(Rr^T) + Wbr + Rbr) ht = g(Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh) # when linear_before_reset := false # (default) ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*(Rh^T) + Rbh)) + Wbh) # when linear_before_reset:= true Ht = (1 - zt) (.) ht + zt (.) Ht-1
-
class HardSigmoidDecomposition : public ov::pass::MatcherPass#
- #include <hard_sigmoid_decomposition.hpp>
HardSigmoidDecomposition transformation into sub-graph.
-
class HSigmoidDecomposition : public ov::pass::MatcherPass#
- #include <hsigmoid_decomposition.hpp>
HSigmoidDecomposition transformation into sub-graph (min(Relu(x + 3), 6) * const(1/6).
-
class HSwishDecomposition : public ov::pass::MatcherPass#
- #include <hswish_decomposition.hpp>
HSwishDecomposition transformation into sub-graph x * (min(Relu(x + 3), 6) * const(1/6).
-
class LogSoftmaxDecomposition : public ov::pass::MatcherPass#
- #include <log_softmax_decomposition.hpp>
LogSoftmaxDecomposition transformation into sub-graph x - log(reduce_sum(exp(x), axis)).
-
class LSTMCellDecomposition : public ov::pass::MatcherPass#
- #include <lstm_cell_decomposition.hpp>
LSTMCellDecomposition transformation decomposes LSTMCell layer with inputs X, H, C, W, R, B to Add, Split, MatMul, Multiply ops according to the formula: (.) - Denotes element-wise multiplication.
Denotes dot product. f, g, h - are activation functions.
it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi) ft = f(Xt*(Wf^T) + Ht-1*(Rf^T) + Wbf + Rbf) ct = g(Xt*(Wc^T) + Ht-1*(Rc^T) + Wbc + Rbc) ot = f(Xt*(Wo^T) + Ht-1*(Ro^T) + Wbo + Rbo) Ct = ft (.) Ct-1 + it (.) ct Ht = ot (.) h(Ct)
-
class MVN6Decomposition : public ov::pass::MatcherPass#
- #include <mvn6_decomposition.hpp>
MVN6Decomposition transformation into sub-graph x - ReduceMean(x, axes) if normalize_variance is false and into sub-graph (x - ReduceMean(x, axes)) / Sqrt(ReduceMean((x - ReduceMean(x, axes)) ^ 2)) if normalize_variance is true.
-
class NormalizeL2Decomposition : public ov::pass::MatcherPass#
- #include <normalize_l2_decomposition.hpp>
Decomposes NormalizeL2 into subgraph.
-
class ReduceL1Decomposition : public ov::pass::MatcherPass#
- #include <reduce_l1_decomposition.hpp>
Decomposes ReduceL1 into ReduceSum(abs(x)).
-
class ReduceL2Decomposition : public ov::pass::MatcherPass#
- #include <reduce_l2_decomposition.hpp>
Decomposes ReduceL2 into sqrt(ReduceSum(x * x)).
-
class RNNCellDecomposition : public ov::pass::MatcherPass#
- #include <rnn_cell_decomposition.hpp>
RNNCellDecomposition transformation decomposes RNNCell layer with inputs X, H, W, R, B to Add, MatMul ops according to the formula:
Denotes dot product. f - is an activation functions.
Ht = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)
-
class SoftmaxDecomposition : public ov::pass::MatcherPass#
- #include <softmax_decomposition.hpp>
SoftmaxDecomposition transformation replaces softmax with following graph:
+---------------+ │ │ │ input │ │ │ +---------------+ │ │ │ v │ +-----------+ │ │ │ │ │ ReduceMax │ │ │ │ │ +-----------+ │ │ │ │ v v +---------------+ │ │ │ Sub │ │ │ +---------------+ | | v +---------------+ │ │ │ Exp │ │ │ +---------------+ │ │ │ v │ +-----------+ │ │ │ │ │ ReduceSum │ │ │ │ │ +-----------+ │ │ │ │ v v +-------------+ | │ | Div │ │ │ +-------------+
-
class SoftPlusDecomposition : public ov::pass::MatcherPass#
- #include <softplus_decomposition.hpp>
SoftPlusDecomposition transformation replaces SoftPlus op to group of operations: log(exp(x) + 1).
-
class SoftSignDecomposition : public ov::pass::MatcherPass#
- #include <softsign_decomposition.hpp>
SoftSignDecomposition transformation replaces SoftSign with the following graph.
Input ---> Abs | | | | | | | V | Add <--- 1 | | | | V | Divide <----| | | | V Output
-
class ResolveNameCollisions : public ov::pass::ModelPass#
- #include <resolve_names_collisions.hpp>
ResolveNameCollisions transformation helps to fix names collisions if nodes with autogenerated names have conflicts with other node names.
Every transformation call can change the graph structure and create some additional operations, autogenerated name is used if new operation doesn’t have friendly name. This transformations should be called after the transformation pipeline in order to fix names collisions.
There is also an additional mode “resolve_all_names”, the logic of which is the same, but for all “friendly_names” in the model ov, not only for autogenerated.
-
class BroadcastConstRangeReplacement : public ov::pass::MatcherPass#
- #include <broadcast_const_range_replacement.hpp>
BroadcastConstRangeReplacement replaces Constant filled with range values starting from 0 and replaces it with Range op.
-
class LSTMStatesBroadcast : public ov::pass::ModelPass#
- #include <lstm_states_broadcast.hpp>
In case LSTMCell has constant initial hidden and cell state with single batch size we make them broadcast-able by batch.
-
class ReshapeAMatMul : public ov::pass::MatcherPass#
- #include <matmul_sr.hpp>
ReshapeAMatMul and ReshapeBMatMul transformations relax hard-coded Reshape followed by MatMul operation For 2D Reshape search patterns are:
MatMul(Reshape(any_input, any_input), any_input)
MatMul(any_input, Reshape(any_input, any_input))
-
class Proposal1Scales : public ov::pass::MatcherPass#
- #include <proposal_scales_stridedslice.hpp>
ProposalScales transformation helps to silently avoid reshape issues on the scale-input of Proposal layer.
Expected sub-graph looks like: Parameter [batch, 3 or 4] -> Reshape [-1] -(in: 3)-> PriorBox
PriorBox operation accepts 3 or 4 values as scales from specification standpoint PriorBox uses first set (batch) of scale values to proceed in the plugins According to this we explicitly take first batch of scales with StridedSlice operation
Resulting sub-graph: Parameter [batch, 3 or 4] -> Reshape [-1] -> StridedSlice[0: 3 or 4] -(in: 3)-> PriorBox
-
class ReshapeSinkingMatMul : public ov::pass::MatcherPass#
- #include <reshape_sinking.hpp>
ReshapeSinkingMatMul transformation looks for MatMul followed by optional Add surrounded with Reshape operations which are only needed to merge and unmerge dimensions into MatMuls batch. In case of success upscales MatMul to work with multidimensional batch and updates Reshape operators to make batch propagate through freely.
-
class ReshapeTo1D : public ov::pass::MatcherPass#
- #include <reshape_to_1D.hpp>
ReshapeTo1D transformation looks for Reshape from nD to 1D tensor and replaces its pattern to [-1].
-
class ShapeOfConstFolding : public ov::pass::MatcherPass#
- #include <shape_of_const_folding.hpp>
ShapeOfConstFolding constantfolds ShapeOf->Constant subgraph.
-
class StridedSliceSqueeze : public ov::pass::MatcherPass#
- #include <strided_slice_squeeze.hpp>
StridedSliceSqueeze transformation looks for SS -> Squeeze and corrects SS inputs and attributes for SS output to be squeeze-able.
-
class SqueezeStridedSlice : public ov::pass::MatcherPass#
- #include <strided_slice_squeeze.hpp>
StridedSliceSqueeze transformation looks for Squeeze -> SSe and corrects SS inputs and attributes for SS output to be squeeze-able.
-
class ChainedMaximumOptimization : public ov::pass::MatcherPass#
- #include <chained_maximum.hpp>
Optimizes graphs based on value symbols Maximum(Maximum(A, B), B) -> Maximum(A, B) Maximum(Maximum(A, B), A) -> Maximum(A, B)
-
class DeReshapeMatMul : public ov::pass::MatcherPass#
- #include <dereshape_matmul.hpp>
Transformation uses symbol information to optimize out Reshape operations surrounding MatMul. It checks that surrounding Reshapes are only manipulating with batch dimensions of tensor in a do-undo kind of way.
Example: Before: [A,B,C,D] -> Reshape -> [A*B,C,D] MatMul [A*B,C,E] -> Reshape -> [A,B,C,E] [A,B,D,E] -> Reshape -> [A*B,D,E]
After: [A,B,C,D] -> MatMul -> [A,B,C,E] [A,B,D,E] ->
Transformation allows slightly different variations of the pattern on inputs of MatMul.
Simplest pattern contains only Reshape operation on MatMul input: Reshape -> MatMul
The next acceptable variation is Concat of two inputs on MatMul input: Reshape -[-> Concat -]-> MatMul This variation would be transformed with realignment of the other input of Concat and the other outputs of Concat with the help of Reshape operations
The most complex variation on the MatMul input pattern is with Binary Elementwise Operation with scalar second input: Reshape -[-> Concat -]-[-> BEA (scalar) -]-> MatMul
Additionally, transformation supports variation of the pattern on output of MatMul. It allows for Binary Elementwise Arithmetic operation without second input scalar restriction. MatMul -[-> BEA -]-> Reshape this pattern variation is only applicable for the case when input reshapes are 4D -> 3D and output reshape is 3D -> 4D. Additionally, shape symbols on output of MatMul should be equal to the input shape symbols of the last Reshape, meaning that this Binary Elementwise Arithmetic doesn’t perform any broadcasting of input coming from MatMul — only other input may be broadcasted to the MatMul input of this BEA. This effect (equality of MatMul output shape symbols and output shape of BEA) is being handled by LabelResolvingThroughSelect transformation in the particular models that this variation targets.
Full pattern this transformation searches for: -> Reshape -[-> Concat -]-[-> BEA (scalar) -]-> MatMul -[-> BEA -]-> Reshape -> -> Reshape -[-> Concat -]-[-> BEA (scalar) -]->
NOTE: input branches could be (and in observed model cases are) asymmetrical, meaning that the presence of Concat on one input of MatMul doesn’t require the other input to also have Concat
-
class DeReshapeFullyConnected : public ov::pass::MatcherPass#
- #include <dereshape_matmul.hpp>
Transformation uses symbol information to optimize out Reshape operations surrounding special cases of MatMul. It checks that surrounding Reshapes are only manipulating with batch dimensions of tensor in a do-undo kind of way. The difference with previous optimization is that this case has Reshape only on one input of MatMul and the other input is strictly 2D. Such MatMuls are also called FullyConnected.
Example: Before: [A,B,4096] -> Reshape -> [A*B,4096] MatMul [A*B,4608] -> Reshape -> [A,B,4608] [4096,4608]
After: [A,B,4096] -> MatMul -> [A,B,4608] [4096,4608] ->
-
class NopBroadcast : public ov::pass::MatcherPass#
- #include <nop_broadcast.hpp>
Optimizes out Broadcast(data, Maximum(shape, ones)) if labels on data and shape are equal Use case with data being empty should not be considered here since original graph has Maximum with ones.
-
class ReshapeOptimizations : public ov::pass::MatcherPass#
- #include <reshape_optimizations.hpp>
Searches for Flatten-like Reshape operations and simplifies 2nd input of such Reshape using special zero feature. The transformation works in 2 cases:
all in/out dims are static, or we can match them via the symbols.
only one out dim doesn’t have the corresponding input static dim, and we can’t match it using symbols. Besides that the output shape must not contain zero dims, because then value -1 in 2nd input to Reshape op can’t guarantee an unambiguous determination of the remaining dim value.
for example: Before: +-------------+ +----------+ |data | | Concat | |shape: (0, 0)| | shape (2)|<- the values might be determined in runtime +-----+-------+ +-----+----+ the empty data tensor can be reshaped to | | any other empty shape, e.g. (0, 800) +-----v---------------+ | | Reshape | | | shape (0,-1) <--+ | special zero = False| +---------------------+ After: +---------------+ +--------------+ | Constant | | data | | shape (2) | | shape: (0, 0)| | values (0, -1)|<- -1 means copy the corresponding input dim +-----+--------+ +-------+-------+ | | +----v----------------+ | | Reshape <----+ | shape (0,0) | <- it might cause inconsistency | special zero = True | +---------------------+
-
class ApplySymbolEquivalence : public ov::pass::ModelPass#
- #include <symbol_optimization.hpp>
Resets symbols on output shapes and values according to symbol equivalence. It allows to reduce number of labels used in the model and to disambiguate symbol values.
-
class OptimizeSymbolsUsedAsValues : public ov::pass::ModelPass#
- #include <symbol_optimization.hpp>
Collects sources where each symbol initially appeared (on shape or shape sub-graph) and attaches all value usages of this label to this initial source.
-
class SymbolicOptimizations : public ov::pass::ModelPass#
- #include <symbolic_optimizations.hpp>
Runs optimizations which are based on symbolic shape inference.
-
class SymbolicPropagation : public ov::pass::ModelPass#
- #include <symbolic_optimizations.hpp>
Assigns labels / symbols to all tensors on shapes and values. Uses shape inference and other special rules to propagate labels / symbols.
-
class LabelResolvingThroughSelect : public ov::pass::MatcherPass#
- #include <symbolic_optimizations.hpp>
Transformation requires equal labels on one input of Add and output of last Reshape in the pattern: -> Add -> Reshape -[then or else input]-> Select -> Softmax -> Reshape ->
If shape labels onn mentioned tensors are equal we proved that no broadcasting of this input was done for Add and for Select. Therefore, we can put the same labels on the output of Add and Select. This transformation helps propagate labels and will not be needed if we would use information on equality of products of input and output dimensions of Reshape operations
-
class TSForwardBase : public ov::pass::MatcherPass#
- #include <ts_base.hpp>
TSForwardBase is a base class for all forward transformations.
Subclassed by ov::pass::transpose_sinking::TSBinaryForward, ov::pass::transpose_sinking::TSConcatForward, ov::pass::transpose_sinking::TSCumSumForward, ov::pass::transpose_sinking::TSDataMovementForward, ov::pass::transpose_sinking::TSGatherForward, ov::pass::transpose_sinking::TSInterpolateForward, ov::pass::transpose_sinking::TSReductionForward, ov::pass::transpose_sinking::TSShapeOfForward, ov::pass::transpose_sinking::TSSliceForward, ov::pass::transpose_sinking::TSSplitForward, ov::pass::transpose_sinking::TSSqueezeForward, ov::pass::transpose_sinking::TSTileForward, ov::pass::transpose_sinking::TSUnaryForward, ov::pass::transpose_sinking::TSUnsqueezeForward
-
class TSBinaryForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_binary.hpp>
TSBinaryForward transformation sinks Transpose through BinaryElementwiseArithmetic, BinaryElementwiseComparison, BinaryElementwiseLogical and PRelu operations in the forward direction.
-
class TSBinaryBackward : public ov::pass::MatcherPass#
- #include <ts_binary.hpp>
TSBinaryBackward transformation sinks Transpose through BinaryElementwiseArithmetic, BinaryElementwiseComparison, BinaryElementwiseLogical and PRelu operations in the backward direction.
-
class TSConcatForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_concat.hpp>
TSConcatForward transformation sinks Transpose through Concat operation in the forward direction.
-
class TSConcatBackward : public ov::pass::MatcherPass#
- #include <ts_concat.hpp>
TSConcatBackward transformation sinks Transpose through Concat operation in the backward direction.
-
class TSCumSumForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_cumsum.hpp>
TSCumSumForward transformation sinks Transpose through CumSum in the forward direction.
-
class TSCumSumBackward : public ov::pass::MatcherPass#
- #include <ts_cumsum.hpp>
TSCumSumBackward transformation sinks Transpose through CumSum in the backward direction.
-
class TSDataMovementForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_data_movement.hpp>
TSDataMovementForward transformation sinks Transpose through BatchToSpace, SpaceToBatch, ReverseSequence and Pad operations in the forward direction. These operations are categorized as “DataMovement” and are handled in a similar way in this transformation.
-
class TSDataMovementBackward : public ov::pass::MatcherPass#
- #include <ts_data_movement.hpp>
TSDataMovementBackward transformation sinks Transpose through BatchToSpace, SpaceToBatch, ReverseSequence and Pad operations in the backward direction. These operations are categorized as “DataMovement” and are handled in a similar way in this transformation.
-
class TSFuse : public ov::pass::MatcherPass#
- #include <ts_fuse.hpp>
TSFuse transformation eliminates 2 consecutive Transposes if they result in no changes to input or fuses them to single Transpose if input gets changed.
-
class TSGatherForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_gather.hpp>
TSGatherForward transformation sinks Transpose through Gather operations in the forward direction.
-
class TSGatherBackward : public ov::pass::MatcherPass#
- #include <ts_gather.hpp>
TSGatherBackward transformation sinks Transpose through Gather operation in the backward direction.
-
class TSGeneralForward : public ov::pass::GraphRewrite#
- #include <ts_general.hpp>
TSGeneralForward transformation combines all TransposeSinkingForward* transformations into single GraphRewrite pass.
-
class TSGeneralBackward : public ov::pass::GraphRewrite#
- #include <ts_general.hpp>
TSGeneralBackward transformation combines all TransposeSinkingBackward* transformations into single GraphRewrite pass.
-
class TSGeneral : public ov::pass::ModelPass#
- #include <ts_general.hpp>
TSGeneral transformation combines TSGeneralForward and TSGeneralBackward transformations into single ModelPass pass and inserts ConstantFolding pass after them.
-
class TSInterpolateForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_interpolate.hpp>
TSInterpolateForward transformation sinks Transpose through Interpolate operation in the forward direction.
-
class TSInterpolateBackward : public ov::pass::MatcherPass#
- #include <ts_interpolate.hpp>
TSInterpolateBackward transformation sinks Transpose through Interpolate operation in the backward direction.
-
class TSReductionForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_reduction.hpp>
TSReductionForward transformation sinks Transpose through Reduce operations in the forward direction.
-
class TSReductionBackward : public ov::pass::MatcherPass#
- #include <ts_reduction.hpp>
TSReductionBackward transformation sinks Transpose through Reduce operations in the backward direction.
-
class TSResetNoSinkingAttribute : public ov::pass::MatcherPass#
- #include <ts_reset_no_sinking_attribute.hpp>
TSResetNoSinkingAttribute transformation resets all NoSinkingAttribute runtime attributes in Transpose operations.
-
class TSShapeOfForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_shape_of.hpp>
TSShapeOfForward transformation sinks Transpose through ShapeOf in the forward direction.
It replaces:
+———+ |Transpose| +———+ | v +———+ | ShapeOf | +———+
with the following:
+———+ | ShapeOf | +———+ | v +——+ |Gather| +——+
-
class TSSplitForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_split.hpp>
TSSplitForward transformation sinks Transpose through Split, VariadicSplit operations in the forward direction.
-
class TSSplitBackward : public ov::pass::MatcherPass#
- #include <ts_split.hpp>
TSSplitBackward transformation sinks Transpose through Split, VariadicSplit operations in the backward direction.
-
class TSSqueezeForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_squeeze.hpp>
TSSqueezeForward transformation sinks Transpose through Reshape, Squeeze operations in the forward direction.
-
class TSSqueezeBackward : public ov::pass::MatcherPass#
- #include <ts_squeeze.hpp>
TSSqueezeBackward transformation sinks Transpose through Reshape, Squeeze operations in the backward direction.
-
class TSTileForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_tile.hpp>
TSTileForward transformation sinks Transpose through Tile in the forward direction.
-
class TSTileBackward : public ov::pass::MatcherPass#
- #include <ts_tile.hpp>
TSTileBackward transformation sinks Transpose through Tile in the backward direction.
-
class TSUnaryForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_unary.hpp>
TSUnaryForward transformation sinks Transpose through UnaryElementwiseArithmetic, Clamp, Elu, SoftPlus, LogicalNot, Convert, IsInf, IsNaN, IsFinite operations in the forward direction.
-
class TSUnaryBackward : public ov::pass::MatcherPass#
- #include <ts_unary.hpp>
TSUnaryBackward transformation sinks Transpose through UnaryElementwiseArithmetic, Clamp, Elu, SoftPlus, LogicalNot, Convert, IsInf, IsNaN, IsFinite in the backward direction.
-
class TSUnsqueezeForward : public ov::pass::transpose_sinking::TSForwardBase#
- #include <ts_unsqueeze.hpp>
TSUnsqueezeForward transformation sinks Transpose through Unsqueeze, Reshape operations in the forward direction.
-
class TSUnsqueezeBackward : public ov::pass::MatcherPass#
- #include <ts_unsqueeze.hpp>
TSUnsqueezeBackward transformation sinks Transpose through Unsqueeze, Reshape operations in the backward direction.
-
namespace ov#
transformation aligns elementwise constant inputs ranks with its output rank
A namespace with const values for Execution Graph parameters names.
Executable Model Info is represented in ov::Model format with general ExecutionNode nodes inside including connections between the nodes. Each node describes an executable hardware-specific primitive and stores its parameters within ExecutionNode::get_rt_info map. There is a list of general keys for the parameters map.
OpenVINO C++ API.
Resolves transpose_b key from MatMul operation if corresponding input is constant or FakeQuantize by inserting Transpose.
Unnamed Group
- OPENVINO_API void serialize (const std::shared_ptr< const ov::Model > &m, const std::string &xml_path, const std::string &bin_path="", ov::pass::Serialize::Version version=ov::pass::Serialize::Version::UNSPECIFIED)
Serialize given model into IR. The generated .xml and .bin files will be saved into provided paths. This method serializes model “as-is” that means no weights compression and other possible transformations are applied. It is recommended to use ov::save_model function instead of ov::serialize, because it is aligned with default model conversion flow.
Functions
- LP_TRANSFORMATIONS_API void mark_as_bias (const std::shared_ptr< Node > &node)
- LP_TRANSFORMATIONS_API bool marked_as_bias (const std::shared_ptr< const Node > &node)
-
void postpone_fp16_compression(RTMap &rt_info)#
-
bool is_fp16_compression_postponed(const RTMap &rt_info)#
-
void do_not_postpone_fp16_compression(RTMap &rt_info)#
getFusedNames return string with operation names separated by coma in alphabetical order
- Parameters:
node – [in] The node will be used to get FusedNames attribute
getFusedNamesVector return vector of fused names sorted in alphabetical order
- Parameters:
node – [in] The node will be used to get FusedNames attribute
- Returns:
vector of strings
getPrimitivesPriority return string with primitive priorities value
- Parameters:
node – [in] The node will be used to get PrimitivesPriority attribute
-
std::shared_ptr<ov::MappedMemory> load_mmap_object(const std::string &path)#
Returns mapped memory for a file from provided path. Instead of reading files, we can map the memory via mmap for Linux in order to avoid time-consuming reading and reduce memory consumption.
- Parameters:
path – Path to a file which memory will be mmaped.
- Returns:
MappedMemory shared ptr object which keep mmaped memory and control the lifetime.
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const AxisSet &axis_set)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const AxisVector &axis_vector)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const Coordinate &coordinate)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const CoordinateDiff &coordinate_diff)
- OPENVINO_API std::ostream & operator<< (std::ostream &str, const Dimension &dimension)
Insert a human-readable representation of a dimension into an output stream.
Inserts the string
?
ifdimension
is dynamic; else insertsdimension.get_length()
.- Parameters:
str – The output stream targeted for insertion.
dimension – The dimension to be inserted into
str
.
- Returns:
A reference to
str
after insertion.
-
template<typename Type, typename Value>
std::enable_if<std::is_convertible<Value, std::string>::value, Type>::type as_enum(const Value &value)# Returns the enum value matching the string.
-
template<typename Value>
const std::string &as_string(Value value)# Returns the string matching the enum value.
-
static inline std::ostream &write_all_to_stream(std::ostream &str)#
-
template<typename T, typename ...TS>
std::ostream &write_all_to_stream(std::ostream &str, T &&arg, TS&&... args)#
-
template<class T, typename std::enable_if<!std::is_same<typename std::decay<T>::type, std::string>::value>::type* = nullptr>
std::string stringify(T &&arg)#
-
template<class T, typename std::enable_if<std::is_same<typename std::decay<T>::type, std::string>::value>::type* = nullptr>
T &stringify(T &&arg)#
- OPENVINO_API void traverse_nodes (const std::shared_ptr< const Model > &p, const std::function< void(const std::shared_ptr< Node > &)> &f)
- OPENVINO_API void traverse_nodes (const Model *p, const std::function< void(const std::shared_ptr< Node > &)> &f)
- OPENVINO_API void traverse_nodes (const NodeVector &subgraph_results, const std::function< void(const std::shared_ptr< Node > &)> &f, const NodeVector &subgraph_params={})
Visit each node in a sub-graph of the entire graph.
Traverses a sub-graph starting from subgraph_results moving up towards parameter nodes. Traversal stops if it hits a node in subgraph_params.
Most useful for finding parameters of a graph directly from the result nodes and not from function parameters or extracting a subgraph relevant to the computation of certain outputs
- OPENVINO_API void replace_node (const std::shared_ptr< Node > &target, const std::shared_ptr< Node > &replacement, const std::vector< int64_t > &output_order)
Replace the node
target
with the nodereplacement
, i.e., redirect all users and control dependencies oftarget
toreplacement
.This is primarily used in graph-rewriting passes. For example, we might “fuse” two Concat operations as follows:
(Step 0: Original graph)
A B | | v v N0[Concat, concatenation_axis=3] C | | v v N1[Concat, concatenation_axis=3] | | v v some_user another_user
(Step 1: Construct replacement)
shared_ptr<Node> new_N1 = make_shared<op::Concat>({A,B,C},3);
A————————————-—. | | | B————-—)—. | | | | v v | | N0[Concat, concatenation_axis=3] C–—)—)—. | | | | | v v v v v N1[Concat, concatenation_axis=3] new_N1[Concat, concatenation_axis=3] | | v v some_user another_user
(Step 2: Replace N1 with new_N1)
replace_node(N1, new_N1);
A————————————-—. | | | B————-—)—. | | | | v v | | N0[Concat, concatenation_axis=3] C–—)—)—. | | | | | v v v v v N1[Concat, concatenation_axis=3] new_N1[Concat, concatenation_axis=3] | | v v some_user another_user
(Step 3: N0 and N1 are now dead, nodes will be freed)
[happens automatically, once all shared_ptrs to N1 are released]
A————————————-—. | B————-—)—. | | | | C–—)—)—. | | | v v v new_N1[Concat, concatenation_axis=3] | | v v some_user another_user
NOTE 1: replace_node is not type-safe (the graph is not revalidated). For example, the following is allowed, even if node
some_user
requires an input of shape 2x2:(Before) A(shape=2x2) B(shape=3x3) | v some_user(requires 2x2 input)
(After — graph is now invalid)
NOTE 2: it is possible to insert a cycle into the graph with replace_node, resulting in an invalid graph. Care must be taken to avoid this. One common example is when you are attempting to insert a new nodereplace_node(A, B); A(shape=2x2) B(shape=3x3) | v some_user(requires 2x2 input)
M
“after”a node
N`. For example, you might expect this to work:shared_ptr<Node> M = make_shared<SomeUnaryOp>(N); replace_node(M, N);
The problem is that at replacement time, N itself is a user of M. So we end up introducing a cycle as follows:
other users…N | v
other users…||| vvv N------------>M | v
To avoid the cycle, a valid way to perform the above desired insertion would be,||| vvv .----. | | | | N `----->M | v other users...
auto new_N = N->clone_with_new_inputs(N->input_values()); shared_ptr<Node> M = make_shared<SomeUnaryOp>(new_N); replace_node(N, M);
- OPENVINO_API void replace_node (const std::shared_ptr< Node > &target, const OutputVector &replacement_values)
Replace target.outputs[i] with replacement_values[i] and transfer control dependents and.
- OPENVINO_API void replace_node (const std::shared_ptr< Node > &target, const std::shared_ptr< Node > &replacement)
- OPENVINO_API void replace_nodes (const std::shared_ptr< Model > &f, const std::unordered_map< std::shared_ptr< op::v0::Parameter >, std::shared_ptr< op::v0::Parameter > > ¶meter_replacement_map, const std::unordered_map< std::shared_ptr< Node >, std::shared_ptr< Node > > &body_replacement_map)
Replace multiple nodes in a function.
Limitations:
No check is made that the replaced nodes in
parameter_replacement_map
are actually among the bound parameters off
. (If a parameter appears in the map that is not bound byf
, it will be silently ignored.)If a parameter node appears as a key in both
parameter_replacement_map
and inbody_replacement_map
, behavior is unspecified.
- Parameters:
f – Model where replacement is taking place.
parameter_replacement_map – A mapping from parameter shared pointers to parameter shared pointers. For each pair (k,v) in the map, parameter k is replaced by parameter v, except if k==v or k is not a parameter bound by f, in which case the pair (k,v) is ignored.
body_replacement_map – A mapping from node shared pointers to node shared pointers. For each pair (k,v) in the map, node k is replaced by node v, except if k==v, the pair (k,v) is ignored. Note that if k is a parameter, its users will be redirected to v, but k will not be replaced in the function’s parameter list.
Topological sort of nodes needed to compute root_nodes.
- OPENVINO_API bool compare_constants (const std::shared_ptr< Node > &n1, const std::shared_ptr< Node > &n2)
- OPENVINO_API bool replace_output_update_name (Output< Node > node, const Output< Node > &node_input)
- OPENVINO_API bool replace_node_update_name (const std::shared_ptr< Node > &target, const std::shared_ptr< Node > &replacement)
- OPENVINO_API void save_model (const std::shared_ptr< const ov::Model > &model, const std::string &output_model, bool compress_to_fp16=true)
Save given model into IR. Floating point weights are compressed to FP16 by default. This method saves a model to IR applying all necessary transformations that usually applied in model conversion flow provided by OVC tool. Particularly, floating point weights are compressed to FP16.
- Parameters:
model – Model which will be converted to IR representation.
output_model – Path to the output model file, must have extension .xml
compress_to_fp16 – Whether to compress floating point weights to FP16 (true by default)
- OPENVINO_API std::ostream & operator<< (std::ostream &str, const Interval &interval)
- OPENVINO_API std::ostream & operator<< (std::ostream &, const Model &)
- OPENVINO_API ov::Dimension get_batch (const std::shared_ptr< const ov::Model > &f)
Helper method to get associated batch size for a Model.
Checks layout of each parameter in a Model and extracts value for N (B) dimension. All values are then merged and returned
- Throws:
ov::AssertFailure – with details in case of error. Possible errors are:
There is no parameter with layout set. Model shall have at least one parameter with layout with ‘N’ dimension. Recommended fix is to use
Parameter::set_layout
API, e.g.model->get_parameters()[some_index]->set_layout("NCHW");
Several parameters have conflicting N dimension, e.g. param1 NCHW{1,3,224,224} and param2 NCHW{2,3,224,224}. This is ambiguous, most probably first dimension is incorrectly marked as ‘batch’ (N) in some layout. User shall fix it before using of ‘get_batch’ (in example above correct layout for param2 from ‘NCHW’ to ‘CHWN’)
- Parameters:
f – Model where to look for a batch_size value
- Returns:
Dimension representing current batch size. Can represent a number or be a dynamic
- OPENVINO_API void set_batch (const std::shared_ptr< ov::Model > &model, ov::Dimension batch_size)
Helper method to set batch size to a Model.
Checks layout of each parameter in a Model and sets value for N (B) dimension. Then performs validation and type propagation
- Throws:
ov::AssertFailure – with details in case of error. Possible errors are:
There is no parameter with N dimension in layout. Model shall have at least one parameter with layout with ‘N’ dimension. Recommended fix is to use
Parameter::set_layout
API, e.g.model->get_parameters()[some_index]->set_layout("NCHW");
Several parameters have conflicting N dimension, e.g. param1 NCHW{1,3,224,224} and param2 NCHW{3,224,224,1}. This is ambiguous (1 != 3), most probably some dimension is incorrectly marked as ‘batch’ (N) in some layout. User shall fix it before using of ‘set_batch’ (in example above correct layout for param2 from ‘NCHW’ to ‘CHWN’)
Validation fails after setting batch_size. Model becomes in inconsistent state after new batch size value is applied. Possible reason could be that layout was not set for some parameters, or batch size can’t be applied to model at all
- Parameters:
model – model where to set batch_size value
batch_size – Batch size value. For dynamic batch size, Dimension::dynamic() can be passed.
- OPENVINO_API std::string node_validation_failure_loc_string (const Node *node)
- OPENVINO_API std::ostream & operator<< (std::ostream &, const Node &)
- OPENVINO_API std::ostream & operator<< (std::ostream &, const Node *)
- void OPENVINO_API check_new_args_count (const Node *const node, const OutputVector &new_args)
Check new arguments size if match node inputs count.
This check is required in cloning ov::Node.
- Parameters:
node – Pointer to node.
new_args – Vector with new outputs to check.
- OPENVINO_API std::ostream & operator<< (std::ostream &out, const Input< Node > &input)
- OPENVINO_API std::ostream & operator<< (std::ostream &out, const Input< const Node > &input)
- OPENVINO_API std::ostream & operator<< (std::ostream &out, const Output< Node > &output)
- OPENVINO_API std::ostream & operator<< (std::ostream &out, const Output< const Node > &output)
- OPENVINO_API OutputVector as_output_vector (const NodeVector &args)
- OPENVINO_API NodeVector as_node_vector (const OutputVector &values)
- OPENVINO_API ResultVector as_result_vector (const OutputVector &values)
Returns a ResultVector referencing values.
- OPENVINO_API PartialShape operator+ (const PartialShape &s1, const PartialShape &s2)
Elementwise addition of two PartialShape objects.
If
s1
ors2
has dynamic rank, returns PartialShape::dynamic().If
s1 and
s2` both have static rank, and their ranks are unequal, throws std::invalid_argument.If
s1
ands2
both have static rank, and their ranks are equal, returns a new shape whosei
th dimension iss1[i] + s2[i]
.
- Parameters:
s1 – Left operand for addition.
s2 – Right operand for addition.
- Throws:
std::invalid_argument – If
s1
ands2
have inconsistent ranks.- Returns:
The result of elementwise adding
s1
tos2
(see description).
- OPENVINO_API std::ostream & operator<< (std::ostream &str, const PartialShape &shape)
Inserts a human-readable representation of a PartialShape into an output stream.
The output to the stream is in “informal” notation. In other words:
If
shape
has dynamic rank, inserts the string?
.If
shape
has static rank, inserts the string{
, then inserts each dimension ofshape
into the output stream separated by commas, then inserts}
.
PartialShape s1{PartialShape::dynamic())}; PartialShape s2{}; PartialShape s3{1,Dimension::dynamic(),2,3}; PartialShape s4{2,3,4}; std::cout << s1 << std::endl << s2 << std::endl << s3 << std::endl << s4 << std::endl;
? {} {1,?,2,3} {2,3,4}
- Parameters:
str – The output stream targeted for insertion.
shape – The shape to be inserted into
str
.
- Returns:
A reference to
str
after insertion.
- OPENVINO_API void copy_runtime_info (const std::shared_ptr< ov::Node > &from, const std::shared_ptr< ov::Node > &to)
- OPENVINO_API void copy_runtime_info (const std::shared_ptr< ov::Node > &from, ov::NodeVector to)
- OPENVINO_API void copy_runtime_info (const ov::NodeVector &from, const std::shared_ptr< ov::Node > &to)
- OPENVINO_API void copy_runtime_info (const ov::NodeVector &from, ov::NodeVector to)
- OPENVINO_API void copy_output_runtime_info (const ov::OutputVector &from, ov::OutputVector to)
- OPENVINO_API std::ostream & operator<< (std::ostream &os, const RuntimeAttribute &attrubute)
-
template<typename ForwardIt>
size_t shape_size(ForwardIt start_dim, const ForwardIt end_dim)# Number of elements in a subset of dimensions of a shape. Returns a product of dimensions in a range [start_dim;end_dim)
-
template<typename SHAPE_TYPE>
size_t shape_size(const SHAPE_TYPE &shape)# Number of elements in spanned by a shape.
-
template<typename SHAPE_TYPE>
std::vector<size_t> row_major_strides(const SHAPE_TYPE &shape)# Row-major strides for a shape.
-
template<typename SHAPE_TYPE>
size_t row_major_stride(const SHAPE_TYPE &shape, size_t axis)#
-
template<typename SHAPE_TYPE>
inline bool is_scalar(const SHAPE_TYPE &shape)#
-
template<typename SHAPE_TYPE>
inline bool is_vector(const SHAPE_TYPE &shape)#
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const Shape &shape)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const Strides &strides)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const DiscreteTypeInfo &info)
- bool ::type is_type (Value value)
- Type *::type as_type (Value value)
-
template<typename T, typename U>
auto as_type_ptr(const U &value) -> decltype(::ov::util::AsTypePtr<U>::template call<T>(value))# Casts a std::shared_ptr<Value> to a std::shared_ptr<Type> if it is of type Type, nullptr otherwise
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const Version &version)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const std::map< std::string, Version > &versions)
- OPENVINO_API_C (const Version) get_openvino_version() noexcept
Gets the current OpenVINO version.
- Returns:
The current OpenVINO version
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v1::BinaryConvolution::BinaryConvolutionMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v0::DepthToSpace::DepthToSpaceMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v9::GridSample::InterpolationMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v9::GridSample::PaddingMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v0::Interpolate::InterpolateMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::LSTMWeightsFormat &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v8::MatrixNms::DecayFunction &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v8::MatrixNms::SortResultType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v1::NonMaxSuppression::BoxEncodingType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v3::NonMaxSuppression::BoxEncodingType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v5::NonMaxSuppression::BoxEncodingType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v9::NonMaxSuppression::BoxEncodingType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v1::Reverse::Mode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v5::Round::RoundMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v15::ScatterNDUpdate::Reduction &reduction)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::v0::SpaceToDepth::SpaceToDepthMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::util::EmbeddingBagOffsetsBase::Reduction &reduction)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::util::EmbeddingBagPackedBase::Reduction &reduction)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::util::InterpolateBase::InterpolateMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::util::InterpolateBase::CoordinateTransformMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::util::InterpolateBase::NearestMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::util::InterpolateBase::ShapeCalcMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const op::util::MulticlassNmsBase::SortResultType &type)
- void OPENVINO_API mark_as_precision_sensitive (ov::Input< ov::Node > node_input)
- void OPENVINO_API unmark_as_precision_sensitive (ov::Input< ov::Node > node_input)
- bool OPENVINO_API is_precision_sensitive (const ov::Input< ov::Node > &node_input)
- OPENVINO_API void skip_invalidation (const ov::Output< ov::Node > &output)
- OPENVINO_API bool skip_invalidation (const ov::descriptor::Tensor &tensor)
- OPENVINO_API void remove_skip_invalidation_rti (const std::shared_ptr< ov::Model > &model, bool outermost_model=true)
- OPENVINO_API void populate_tensor_with_missing_symbols (ov::descriptor::Tensor &tensor)
- const OPENVINO_API OpSet & get_opset1 ()
Returns opset1.
- const OPENVINO_API OpSet & get_opset2 ()
Returns opset2.
- const OPENVINO_API OpSet & get_opset3 ()
Returns opset3.
- const OPENVINO_API OpSet & get_opset4 ()
Returns opset4.
- const OPENVINO_API OpSet & get_opset5 ()
Returns opset5.
- const OPENVINO_API OpSet & get_opset6 ()
Returns opset6.
- const OPENVINO_API OpSet & get_opset7 ()
Returns opset7.
- const OPENVINO_API OpSet & get_opset8 ()
Returns opset8.
- const OPENVINO_API OpSet & get_opset9 ()
Returns opset9.
- const OPENVINO_API OpSet & get_opset10 ()
Returns opset10.
- const OPENVINO_API OpSet & get_opset11 ()
Returns opset11.
- const OPENVINO_API OpSet & get_opset12 ()
Returns opset12.
- const OPENVINO_API OpSet & get_opset13 ()
Returns opset13.
- const OPENVINO_API OpSet & get_opset14 ()
Returns opset14.
- const OPENVINO_API OpSet & get_opset15 ()
Returns opset15.
- const OPENVINO_API OpSet & get_opset16 ()
Returns opset16.
- const OPENVINO_API std::map< std::string, std::function< const ov::OpSet &()> > & get_available_opsets ()
Returns map of available opsets.
- OPENVINO_API pass::pattern::op::ValuePredicate operator|| (const std::function< bool(Output< Node >)> &a, const std::function< bool(Output< Node >)> &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator|| (const pass::pattern::op::ValuePredicate &a, const pass::pattern::op::ValuePredicate &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator|| (const pass::pattern::op::NodePredicate &a, const pass::pattern::op::NodePredicate &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator|| (const pass::pattern::op::ValuePredicate &a, const pass::pattern::op::NodePredicate &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator|| (const pass::pattern::op::NodePredicate &a, const pass::pattern::op::ValuePredicate &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator&& (const std::function< bool(Output< Node >)> &a, const std::function< bool(Output< Node >)> &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator&& (const pass::pattern::op::ValuePredicate &a, const pass::pattern::op::ValuePredicate &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator&& (const pass::pattern::op::NodePredicate &a, const pass::pattern::op::NodePredicate &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator&& (const pass::pattern::op::ValuePredicate &a, const pass::pattern::op::NodePredicate &b)
- OPENVINO_API pass::pattern::op::ValuePredicate operator&& (const pass::pattern::op::NodePredicate &a, const pass::pattern::op::ValuePredicate &b)
-
template<class ElementIter>
constexpr bool is_nf4_iterator()#
-
bool with_cpu_x86_avx2()#
Checks whether CPU supports AVX2 capability.
- Returns:
True
is AVX2 instructions are available,false
otherwise
-
std::size_t coordinate_index(const Coordinate &c, const Shape &s)#
-
size_t coordinate_offset(const std::vector<size_t> &coordinate, const std::vector<size_t> &strides)#
Calculate offset from begin of buffer based on coordinate and strides.
If coordinates and strides have different sizes then result is undefined behaviour.
- Parameters:
coordinate – Vector with multi-dimension coordinates.
strides – Vector with multi-dimension strides
- Returns:
Offset of element from start of buffer.
-
template<class T>
constexpr bool is_floating_point()# Check if T is OpenVINO floating point precision.
- Returns:
True if OpenVino floating point precision.
-
OV_ITT_DOMAIN(OV_PP_CAT(TYPE_LIST_, ov_eval))#
-
template<class TContainer>
constexpr auto make_tensor_accessor(const TContainer &c) -> TensorAccessor<TContainer># Makes TensorAccessor for specific tensor container.
See also
TensorAccessor for supported types.
- Template Parameters:
TContainer – Type of tensor containers
- Parameters:
c – Container of tensors.
- Returns:
TensorContainer for specific type.
-
auto make_tensor_accessor() -> const TensorAccessor<void>&#
Makes empty TensorAccessor which return empty tensor for any port number.
- Returns:
TensorAccessor to return empty tensor.
-
template<class T, class TResult = std::vector<T>, class UnaryOperation>
TResult get_raw_data_as(const element::Type_t et, const void *const ptr, const size_t size, UnaryOperation &&func)# Get the raw data as TResult object.
- Template Parameters:
T – TResult data type.
TResult – Type of return object, must support creation of std::inserter. Default std::vector<T>.
UnaryOperation – Unary function object applied on data with signature (T f(const U u)).
- Parameters:
et – Element type of input data.
ptr – Pointer to data of type et.
size – Data size as number of elements.
func – Unary operation function object.
- Throws:
ov::AssertionFailure – for not supported element type.
- Returns:
Object of TResult with data from input pointer and transformed by unary operation.
-
template<class T, class TResult = std::vector<T>, class UnaryOperation = ov::util::Cast<T>>
TResult get_tensor_data_as(const Tensor &t, UnaryOperation &&func = ov::util::Cast<T>())# Get data from ov:tensor as object TResult.
- Template Parameters:
T – TResult data type.
TResult – Type of return object, must support creation of std::inserter. Default std::vector<T>.
UnaryOperation – Unary function object applied on data with signature (T f(const U u)).
- Parameters:
t – Input tensor.
func – Unary operation function object.
- Returns:
Object of TResult with data from tensor.
-
void shutdown()#
Shut down the OpenVINO by deleting all static-duration objects allocated by the library and releasing dependent resources.
You might want to use this function if you are developing a dynamically-loaded library which should clean up all resources after itself when the library is unloaded.
Note
This function should be used by advanced user to control unload the resources.
Returns set of nodes from original model which are determined as supported after applied transformation pipeline.
- Parameters:
model – Original model
transform – Transformation pipeline function
is_node_supported – Function returning whether node is supported or not
query_model_ratio – The percentage of the model can be queried during query model (0 if not query)
- Returns:
Set of strings which contains supported node names
-
std::shared_ptr<ITensor> make_tensor(const element::Type type, const Shape &shape, const Allocator &allocator = {})#
Constructs Tensor using element type and shape. Allocate internal host storage using default allocator.
-
std::shared_ptr<ITensor> make_tensor(const element::Type type, const Shape &shape, void *host_ptr, const Strides &strides = {})#
Constructs Tensor using element type and shape. Wraps allocated host memory.
Note
Does not perform memory allocation internally
Constructs region of interest (ROI) tensor form another tensor.
Note
Does not perform memory allocation internally
Note
A Number of dimensions in
begin
andend
must match number of dimensions inother.get_shape()
- Parameters:
other – original tensor
begin – start coordinate of ROI object inside of the original object.
end – end coordinate of ROI object inside of the original object.
-
bool check_open_mp_env_vars(bool include_omp_num_threads = true)#
Checks whether OpenMP environment variables are defined.
- Parameters:
include_omp_num_threads – [in] Indicates if the omp number threads is included
- Returns:
True
if any OpenMP environment variable is defined,false
otherwise
-
std::vector<int> get_available_numa_nodes()#
Returns available CPU NUMA nodes (on Linux, and Windows [only with TBB], single node is assumed on all other OSes)
- Returns:
NUMA nodes
-
std::vector<int> get_available_cores_types()#
Returns available CPU cores types (on Linux, and Windows) and ONLY with TBB, single core type is assumed otherwise.
- Returns:
Vector of core types
-
int get_number_of_cpu_cores(bool big_cores_only = false)#
Returns number of CPU physical cores on Linux/Windows (which is considered to be more performance friendly for servers) (on other OSes it simply relies on the original parallel API of choice, which usually uses the logical cores). call function with ‘false’ to get #phys cores of all types call function with ‘true’ to get #phys ‘Big’ cores number of ‘Little’ = ‘all’ - ‘Big’.
- Parameters:
big_cores_only – [in] Additionally limits the number of reported cores to the ‘Big’ cores only.
- Returns:
Number of physical CPU cores.
-
int get_number_of_logical_cpu_cores(bool big_cores_only = false)#
Returns number of CPU logical cores on Linux/Windows (on other OSes it simply relies on the original parallel API of choice, which uses the ‘all’ logical cores). call function with ‘false’ to get #logical cores of all types call function with ‘true’ to get #logical ‘Big’ cores number of ‘Little’ = ‘all’ - ‘Big’.
- Parameters:
big_cores_only – [in] Additionally limits the number of reported cores to the ‘Big’ cores only.
- Returns:
Number of logical CPU cores.
-
int get_number_of_blocked_cores()#
Returns number of blocked CPU cores. Please note that this is a temporary interface for performance optimization on a specific platform. May be removed in future release.
- Returns:
Number of blocked CPU cores.
-
bool with_cpu_x86_sse42()#
Checks whether CPU supports SSE 4.2 capability.
- Returns:
True
is SSE 4.2 instructions are available,false
otherwise
-
bool with_cpu_neon_fp16()#
Checks whether CPU supports ARM NEON FP16 capability.
- Returns:
True
is ARM NEON FP16 instructions are available,false
otherwise
-
bool with_cpu_sve()#
Checks whether CPU supports ARM SVE capability.
- Returns:
True
if ARM SVE instructions are available,false
otherwise
-
bool with_cpu_x86_avx()#
Checks whether CPU supports AVX capability.
- Returns:
True
is AVX instructions are available,false
otherwise
-
bool with_cpu_x86_avx2_vnni()#
Checks whether CPU supports AVX2_VNNI capability.
- Returns:
True
is AVX2_VNNI instructions are available,false
otherwise
-
bool with_cpu_x86_avx512f()#
Checks whether CPU supports AVX 512 capability.
- Returns:
True
is AVX512F (foundation) instructions are available,false
otherwise
-
bool with_cpu_x86_avx512_core()#
Checks whether CPU supports AVX 512 capability.
- Returns:
True
is AVX512F, AVX512BW, AVX512DQ instructions are available,false
otherwise
-
bool with_cpu_x86_avx512_core_vnni()#
Checks whether CPU supports AVX 512 VNNI capability.
- Returns:
True
is AVX512F, AVX512BW, AVX512DQ, AVX512_VNNI instructions are available,false
otherwise
-
bool with_cpu_x86_bfloat16()#
Checks whether CPU supports BFloat16 capability.
- Returns:
True
is tAVX512_BF16 instructions are available,false
otherwise
-
bool with_cpu_x86_avx512_core_fp16()#
Checks whether CPU supports fp16 capability.
- Returns:
True
is tAVX512_FP16 instructions are available,false
otherwise
-
bool with_cpu_x86_avx512_core_amx_int8()#
Checks whether CPU supports AMX int8 capability.
- Returns:
True
is tAMX_INT8 instructions are available,false
otherwise
-
bool with_cpu_x86_avx512_core_amx_bf16()#
Checks whether CPU supports AMX bf16 capability.
- Returns:
True
is tAMX_BF16 instructions are available,false
otherwise
-
bool with_cpu_x86_avx512_core_amx_fp16()#
Checks whether CPU supports AMX fp16 capability.
- Returns:
True
is tAMX_FP16 instructions are available,false
otherwise
-
bool with_cpu_x86_avx512_core_amx()#
Checks whether CPU supports AMX capability.
- Returns:
True
is tAMX_INT8 or tAMX_BF16 instructions are available,false
otherwise
-
bool is_cpu_map_available()#
Checks whether cpu_mapping Available.
- Returns:
True
is CPU mapping is available,false
otherwise
-
int get_num_numa_nodes()#
Get number of numa nodes.
- Returns:
Number of numa nodes
-
int get_num_sockets()#
Get number of sockets.
- Returns:
Number of sockets
-
std::vector<std::vector<int>> get_proc_type_table()#
Returns a table of number of processor types on Linux/Windows.
Processor table of one socket CPU desktop ALL_PROC | MAIN_CORE_PROC | EFFICIENT_CORE_PROC | HYPER_THREADING_PROC 32 8 16 8 // Total number of one socket
- Returns:
A table about number of CPU cores of different types defined with ColumnOfProcessorTypeTable The following are two example of processor type table.
Processor table of two socket CPUs XEON server ALL_PROC | MAIN_CORE_PROC | EFFICIENT_CORE_PROC | HYPER_THREADING_PROC 96 48 0 48 // Total number of two sockets 48 24 0 24 // Number of socket one 48 24 0 24 // Number of socket two
-
int get_current_socket_id()#
Returns the socket ID in cpu mapping table of the currently running thread.
- Returns:
socket ID in cpu mapping
-
std::vector<std::vector<int>> get_org_proc_type_table()#
Returns a table of original number of processor types without filtering other plugins occupying CPU resources. The difference from get_proc_type_table: This is used to get the configuration of current machine. For example, GPU plugin occupies all Pcores, there is only one type core in proc_type_table from get_proc_type_table(). If user wants to get the real configuration of this machine which should be got from get_org_proc_type_table.
- Returns:
A table about number of CPU cores of different types defined with ColumnOfProcessorTypeTable
-
void reserve_available_cpus(const std::vector<std::vector<int>> streams_info_table, std::vector<std::vector<int>> &stream_processors, const int cpu_status = NOT_USED)#
Get and reserve available cpu ids.
- Parameters:
streams_info_table – [in] streams information table.
stream_processors – [in] processors grouped in stream which is used in core binding in cpu streams executor
cpu_status – [in] set cpu status
-
void set_cpu_used(const std::vector<int> &cpu_ids, const int used)#
Set CPU_MAP_USED_FLAG of cpu_mapping.
- Parameters:
cpu_ids – [in] cpus in cpu_mapping.
used – [in] update CPU_MAP_USED_FLAG of cpu_mapping with this flag bit
-
int get_socket_by_numa_node(int numa_node_id)#
Get socket id by current numa node id.
- Parameters:
numa_node_id – [in] numa node id
- Returns:
socket id
-
int get_org_socket_id(int socket_id)#
Get original socket id by current socket id, the input socket id is recalculated after filtering (like numactl), while the original socket id is the original id before filtering.
- Parameters:
socket_id – [in] socket id
- Returns:
socket id
-
int get_org_numa_id(int numa_node_id)#
Get original numa node id by current numa node id, the input numa node id is recalculated after filtering (like numactl), while the original numa node id is the original id before filtering.
- Parameters:
numa_node_id – [in] numa node id
- Returns:
numa node id
-
class Allocator
- #include <allocator.hpp>
Wraps allocator implementation to provide safe way to store allocater loaded from shared library And constructs default based on
new
delete
c++ calls allocator if created without parameters Accepts any std::pmr::memory_resource like allocator.Public Functions
-
~Allocator()
Destructor preserves unloading order of implementation object and reference to library.
-
Allocator()
Default constructor.
-
Allocator(const Allocator &other) = default
Default copy constructor.
- Parameters:
other – other Allocator object
-
Allocator &operator=(const Allocator &other) = default
Default copy assignment operator.
- Parameters:
other – other Allocator object
- Returns:
reference to the current object
-
Allocator(Allocator &&other) = default
Default move constructor.
- Parameters:
other – other Allocator object
-
Allocator &operator=(Allocator &&other) = default
Default move assignment operator.
- Parameters:
other – other Allocator object
- Returns:
reference to the current object
Initialize allocator using any allocator like object.
- Template Parameters:
A – Type of allocator
- Parameters:
a – allocator object
-
void *allocate(const size_t bytes, const size_t alignment = alignof(max_align_t))
Allocates memory.
- Parameters:
bytes – The size in bytes at least to allocate
alignment – The alignment of storage
- Throws:
Exception – if specified size and alignment is not supported
- Returns:
Handle to the allocated resource
-
void deallocate(void *ptr, const size_t bytes = 0, const size_t alignment = alignof(max_align_t))
Releases the handle and all associated memory resources which invalidates the handle.
- Parameters:
ptr – The handle to free
bytes – The size in bytes that was passed into allocate() method
alignment – The alignment of storage that was passed into allocate() method
-
bool operator==(const Allocator &other) const
Compares with other Allocator.
- Parameters:
other – Other instance of allocator
- Returns:
true
if and only if memory allocated from one Allocator can be deallocated from the other and vice versa
-
~Allocator()
-
class Any#
- #include <any.hpp>
This class represents an object to work with different types.
Public Functions
-
Any() = default#
Default constructor.
-
Any &operator=(const Any &other)#
Copy assignment operator.
- Parameters:
other – other Any object
- Returns:
reference to the current object
-
Any &operator=(Any &&other) = default#
Default move assignment operator.
- Parameters:
other – other Any object
- Returns:
reference to the current object
-
~Any()#
Destructor preserves unloading order of implementation object and reference to library.
-
template<typename T, typename std::enable_if<!std::is_same<decay_t<T>, Any>::value && !std::is_abstract<decay_t<T>>::value && !std::is_convertible<decay_t<T>, Base::Ptr>::value, bool>::type = true>
inline Any(T &&value)# Constructor creates any with object.
- Template Parameters:
T – Any type
- Parameters:
value – object
-
Any(const char *str)#
Constructor creates string any from char *.
- Parameters:
str – char array
-
Any(const std::nullptr_t)#
Empty constructor.
-
const std::type_info &type_info() const#
Returns type info
- Returns:
type info
-
bool empty() const#
Checks that any contains a value
- Returns:
false if any contains a value else false
-
template<class T>
inline bool is() const# Check that stored type can be casted to specified type. If internal type supports Base.
- Template Parameters:
T – Type of value
- Returns:
true if type of value is correct. Return false if any is empty
-
template<class T>
inline T &as()# Dynamic as to specified type
- Template Parameters:
T – type
- Returns:
reference to caster object
-
template<class T>
inline const T &as() const# Dynamic as to specified type
- Template Parameters:
T – type
- Returns:
const reference to caster object
-
bool operator==(const Any &other) const#
The comparison operator for the Any.
- Parameters:
other – object to compare
- Returns:
true if objects are equal
-
bool operator==(const std::nullptr_t&) const#
The comparison operator for the Any.
- Parameters:
other – object to compare
- Returns:
true if objects are equal
-
bool operator!=(const Any &other) const#
The comparison operator for the Any.
- Parameters:
other – object to compare
- Returns:
true if objects aren’t equal
-
void print(std::ostream &stream) const#
Prints underlying object to the given output stream. Uses operator<< if it is defined, leaves stream unchanged otherwise. In case of empty any or nullptr stream immediately returns.
- Parameters:
stream – Output stream object will be printed to.
-
void read(std::istream &stream)#
Read into underlying object from the given input stream. Uses operator>> if it is defined, leaves stream unchanged otherwise. In case of empty any or nullptr stream immediately returns.
- Parameters:
stream – Output stream object will be printed to.
-
void *addressof()#
Returns address to internal value if any is not empty and
nullptr
instead.- Returns:
address to internal stored value
-
const void *addressof() const#
Returns address to internal value if any is not empty and
nullptr
instead.- Returns:
address to internal stored value
-
Any() = default#
-
class AssertFailure : public ov::Exception#
- #include <except.hpp>
Base class for check failure exceptions.
Subclassed by ov::NodeValidationFailure, ov::NotImplemented, ov::frontend::GeneralFailure, ov::frontend::InitializationFailure, ov::frontend::NotImplementedFailure, ov::frontend::OpConversionFailure, ov::frontend::OpValidationFailure
-
template<typename AT>
class AttributeAdapter# - #include <attribute_adapter.hpp>
An AttributeAdapter “captures” an attribute as an AT& and makes it available as a ValueAccessor<VAT>.
-
template<>
class AttributeAdapter<AxisVector> : public ov::IndirectVectorValueAccessor<AxisVector, std::vector<int64_t>># - #include <axis_vector.hpp>
-
template<>
class AttributeAdapter<bool> : public ov::DirectValueAccessor<bool># - #include <attribute_adapter.hpp>
Access a bool as a bool.
-
template<>
class AttributeAdapter<Coordinate> : public ov::IndirectVectorValueAccessor<Coordinate, std::vector<int64_t>># - #include <coordinate.hpp>
-
template<>
class AttributeAdapter<CoordinateDiff> : public ov::IndirectVectorValueAccessor<CoordinateDiff, std::vector<int64_t>># - #include <coordinate_diff.hpp>
-
template<>
class AttributeAdapter<double> : public ov::DirectValueAccessor<double># - #include <attribute_adapter.hpp>
Access a double as a double.
-
template<>
class AttributeAdapter<float> : public ov::IndirectScalarValueAccessor<float, double># - #include <attribute_adapter.hpp>
-
template<>
class AttributeAdapter<int16_t> : public ov::IndirectScalarValueAccessor<int16_t, int64_t># - #include <attribute_adapter.hpp>
Access an int16_t as an int64_t.
-
template<>
class AttributeAdapter<int32_t> : public ov::IndirectScalarValueAccessor<int32_t, int64_t># - #include <attribute_adapter.hpp>
Access an int32_t as an int64_t.
-
template<>
class AttributeAdapter<int64_t> : public ov::DirectValueAccessor<int64_t># - #include <attribute_adapter.hpp>
Access an int64_t as an int64_t.
-
template<>
class AttributeAdapter<int8_t> : public ov::IndirectScalarValueAccessor<int8_t, int64_t># - #include <attribute_adapter.hpp>
Access an int8_t and an int64_t.
-
template<>
class AttributeAdapter<Layout> : public ov::ValueAccessor<std::string># - #include <layout.hpp>
- template<> AutoBroadcastSpec > : public ov::VisitorAdapter
- #include <attr_types.hpp>
- template<> AutoBroadcastType > : public ov::EnumAttributeAdapterBase< op::AutoBroadcastType >
- #include <attr_types.hpp>
- template<> BroadcastModeSpec > : public ov::VisitorAdapter
- #include <attr_types.hpp>
- template<> BroadcastType > : public ov::EnumAttributeAdapterBase< op::BroadcastType >
- #include <attr_types.hpp>
- template<> EpsMode > : public ov::EnumAttributeAdapterBase< op::EpsMode >
- #include <attr_types.hpp>
- template<> GeluApproximationMode > : public ov::EnumAttributeAdapterBase< op::GeluApproximationMode >
- #include <gelu.hpp>
- template<> GluType > : public ov::EnumAttributeAdapterBase< op::internal::GLU::GluType >
- #include <glu.hpp>
- template<> LSTMWeightsFormat > : public ov::EnumAttributeAdapterBase< op::LSTMWeightsFormat >
- #include <lstm_cell.hpp>
- template<> MVNEpsMode > : public ov::EnumAttributeAdapterBase< op::MVNEpsMode >
- #include <mvn.hpp>
- template<> PadMode > : public ov::EnumAttributeAdapterBase< op::PadMode >
- #include <attr_types.hpp>
- template<> PadType > : public ov::EnumAttributeAdapterBase< op::PadType >
- #include <attr_types.hpp>
- template<> PhiloxAlignment > : public ov::EnumAttributeAdapterBase< op::PhiloxAlignment >
- #include <attr_types.hpp>
- template<> RecurrentSequenceDirection > : public ov::EnumAttributeAdapterBase< op::RecurrentSequenceDirection >
- #include <attr_types.hpp>
- template<> RoundingType > : public ov::EnumAttributeAdapterBase< op::RoundingType >
- #include <attr_types.hpp>
- template<> TopKMode > : public ov::EnumAttributeAdapterBase< op::TopKMode >
- #include <attr_types.hpp>
- template<> TopKSortType > : public ov::EnumAttributeAdapterBase< op::TopKSortType >
- #include <attr_types.hpp>
- template<> Reduction > : public ov::EnumAttributeAdapterBase< op::util::EmbeddingBagOffsetsBase::Reduction >
- #include <embeddingbag_offsets_base.hpp>
- template<> Reduction > : public ov::EnumAttributeAdapterBase< op::util::EmbeddingBagPackedBase::Reduction >
- #include <embeddingbag_packed_base.hpp>
- template<> CoordinateTransformMode > : public ov::EnumAttributeAdapterBase< op::util::InterpolateBase::CoordinateTransformMode >
- #include <interpolate_base.hpp>
- template<> InterpolateMode > : public ov::EnumAttributeAdapterBase< op::util::InterpolateBase::InterpolateMode >
- #include <interpolate_base.hpp>
- template<> NearestMode > : public ov::EnumAttributeAdapterBase< op::util::InterpolateBase::NearestMode >
- #include <interpolate_base.hpp>
- template<> ShapeCalcMode > : public ov::EnumAttributeAdapterBase< op::util::InterpolateBase::ShapeCalcMode >
- #include <interpolate_base.hpp>
- template<> SortResultType > : public ov::EnumAttributeAdapterBase< op::util::MulticlassNmsBase::SortResultType >
- #include <multiclass_nms_base.hpp>
- template<> DepthToSpaceMode > : public ov::EnumAttributeAdapterBase< op::v0::DepthToSpace::DepthToSpaceMode >
- #include <depth_to_space.hpp>
- template<> InterpolateMode > : public ov::EnumAttributeAdapterBase< op::v0::Interpolate::InterpolateMode >
- #include <interpolate.hpp>
- template<> SpaceToDepthMode > : public ov::EnumAttributeAdapterBase< op::v0::SpaceToDepth::SpaceToDepthMode >
- #include <space_to_depth.hpp>
- template<> Reduction > : public ov::EnumAttributeAdapterBase< op::v12::ScatterElementsUpdate::Reduction >
- #include <scatter_elements_update.hpp>
- template<> Reduction > : public ov::EnumAttributeAdapterBase< op::v15::ScatterNDUpdate::Reduction >
- #include <scatter_nd_update.hpp>
- template<> BinaryConvolutionMode > : public ov::EnumAttributeAdapterBase< op::v1::BinaryConvolution::BinaryConvolutionMode >
- #include <binary_convolution.hpp>
- template<> BoxEncodingType > : public ov::EnumAttributeAdapterBase< op::v1::NonMaxSuppression::BoxEncodingType >
- #include <non_max_suppression.hpp>
- template<> Mode > : public ov::EnumAttributeAdapterBase< op::v1::Reverse::Mode >
- #include <reverse.hpp>
- template<> BoxEncodingType > : public ov::EnumAttributeAdapterBase< op::v3::NonMaxSuppression::BoxEncodingType >
- #include <non_max_suppression.hpp>
- template<> PoolingMode > : public ov::EnumAttributeAdapterBase< op::v3::ROIAlign::PoolingMode >
- #include <roi_align.hpp>
- template<> SpecialBodyPorts > : public ov::DirectValueAccessor< op::v5::Loop::SpecialBodyPorts >
- #include <loop.hpp>
- template<> BoxEncodingType > : public ov::EnumAttributeAdapterBase< op::v5::NonMaxSuppression::BoxEncodingType >
- #include <non_max_suppression.hpp>
- template<> RoundMode > : public ov::EnumAttributeAdapterBase< op::v5::Round::RoundMode >
- #include <round.hpp>
- template<> DecayFunction > : public ov::EnumAttributeAdapterBase< op::v8::MatrixNms::DecayFunction >
- #include <matrix_nms.hpp>
- template<> SortResultType > : public ov::EnumAttributeAdapterBase< op::v8::MatrixNms::SortResultType >
- #include <matrix_nms.hpp>
- template<> InterpolationMode > : public ov::EnumAttributeAdapterBase< op::v9::GridSample::InterpolationMode >
- #include <grid_sample.hpp>
- template<> PaddingMode > : public ov::EnumAttributeAdapterBase< op::v9::GridSample::PaddingMode >
- #include <grid_sample.hpp>
- template<> BoxEncodingType > : public ov::EnumAttributeAdapterBase< op::v9::NonMaxSuppression::BoxEncodingType >
- #include <non_max_suppression.hpp>
- template<> AlignedMode > : public ov::EnumAttributeAdapterBase< op::v9::ROIAlign::AlignedMode >
- #include <roi_align.hpp>
- template<> PoolingMode > : public ov::EnumAttributeAdapterBase< op::v9::ROIAlign::PoolingMode >
- #include <roi_align.hpp>
- template<> AxisSet > : public ov::ValueAccessor< std::vector< int64_t > >
- #include <axis_set.hpp>
- template<> Dimension > : public ov::DirectValueAccessor< ov::Dimension >
- #include <dimension.hpp>
- template<> Type > : public ov::ValueAccessor< std::string >
- #include <element_type.hpp>
Public Functions
-
virtual const std::string &get() override
Returns the value.
-
virtual void set(const std::string &value) override#
Sets the value.
-
virtual const std::string &get() override
- template<> Type_t > : public ov::EnumAttributeAdapterBase< ov::element::Type_t >
- #include <element_type.hpp>
- template<> TypeVector > : public ov::DirectValueAccessor< ov::element::TypeVector >
- #include <element_type.hpp>
- template<> NodeVector > : public ov::VisitorAdapter
- #include <node.hpp>
- template<> FrameworkNodeAttrs > : public ov::DirectValueAccessor< ov::op::util::FrameworkNodeAttrs >
- #include <framework_node.hpp>
- template<> PartialShape > : public ov::DirectValueAccessor< ov::PartialShape >
- #include <partial_shape.hpp>
- template<> Shape > : public ov::IndirectVectorValueAccessor< ov::Shape, std::vector< int64_t > >
- #include <shape.hpp>
-
template<>
class AttributeAdapter<ParameterVector> : public ov::VisitorAdapter# - #include <parameter.hpp>
-
template<>
class AttributeAdapter<ResultVector> : public ov::VisitorAdapter# - #include <result.hpp>
- template<> string > > : public ov::DirectValueAccessor< std::set< std::string > >
- #include <attribute_adapter.hpp>
- template<> Variable > > : public ov::DirectValueAccessor< std::shared_ptr< op::util::Variable > >
- #include <variable.hpp>
- template<> Model > > : public ov::DirectValueAccessor< std::shared_ptr< ov::Model > >
- #include <model.hpp>
- template<> Node > > : public ov::VisitorAdapter
- #include <node.hpp>
Visits a reference to a node that has been registered with the visitor.
- template<> string > : public ov::DirectValueAccessor< std::string >
- #include <attribute_adapter.hpp>
Access a string as a string.
- template<> vector< double > > : public ov::DirectValueAccessor< std::vector< double > >
- #include <attribute_adapter.hpp>
Access a vector<double>
- template<> vector< float > > : public ov::DirectValueAccessor< std::vector< float > >
- #include <attribute_adapter.hpp>
Access a vector<float>
- template<> vector< int16_t > > : public ov::DirectValueAccessor< std::vector< int16_t > >
- #include <attribute_adapter.hpp>
Access a vector<int16_t>
- template<> vector< int32_t > > : public ov::DirectValueAccessor< std::vector< int32_t > >
- #include <attribute_adapter.hpp>
Access a vector<int32_t>
- template<> vector< int64_t > > : public ov::DirectValueAccessor< std::vector< int64_t > >
- #include <attribute_adapter.hpp>
Access a vector<int64_t>
- template<> vector< int8_t > > : public ov::DirectValueAccessor< std::vector< int8_t > >
- #include <attribute_adapter.hpp>
Access a vector<int8_t>
Note: These class bodies cannot be defined with templates because of interactions between dllexport and templates on Windows.
- template<> InputDescription > > > : public ov::DirectValueAccessor< std::vector< std::shared_ptr< op::util::MultiSubGraphOp::InputDescription > > >
- #include <multi_subgraph_base.hpp>
- template<> OutputDescription > > > : public ov::DirectValueAccessor< std::vector< std::shared_ptr< op::util::MultiSubGraphOp::OutputDescription > > >
- #include <multi_subgraph_base.hpp>
- template<> string > > : public ov::DirectValueAccessor< std::vector< std::string > >
- #include <attribute_adapter.hpp>
Access a vector<string>
- template<> vector< uint16_t > > : public ov::DirectValueAccessor< std::vector< uint16_t > >
- #include <attribute_adapter.hpp>
Access a vector<uint16_t>
- template<> vector< uint32_t > > : public ov::DirectValueAccessor< std::vector< uint32_t > >
- #include <attribute_adapter.hpp>
Access a vector<uint32_t>
- template<> vector< uint64_t > > : public ov::DirectValueAccessor< std::vector< uint64_t > >
- #include <attribute_adapter.hpp>
Access a vector<uint64_t>
- template<> vector< uint8_t > > : public ov::DirectValueAccessor< std::vector< uint8_t > >
- #include <attribute_adapter.hpp>
Access a vector<uint8_t>
-
template<>
class AttributeAdapter<Strides> : public ov::IndirectVectorValueAccessor<Strides, std::vector<int64_t>># - #include <strides.hpp>
-
template<>
class AttributeAdapter<uint16_t> : public ov::IndirectScalarValueAccessor<uint16_t, int64_t># - #include <attribute_adapter.hpp>
Access a uint16_t as an int64_t.
-
template<>
class AttributeAdapter<uint32_t> : public ov::IndirectScalarValueAccessor<uint32_t, int64_t># - #include <attribute_adapter.hpp>
Access a uint32_t as an int64_t.
-
template<>
class AttributeAdapter<uint64_t> : public ov::IndirectScalarValueAccessor<uint64_t, int64_t># - #include <attribute_adapter.hpp>
Access a uint64_t as an int64_t.
-
template<>
class AttributeAdapter<uint8_t> : public ov::IndirectScalarValueAccessor<uint8_t, int64_t># - #include <attribute_adapter.hpp>
Access a uint8_t as an int64_t.
-
class AttributeVisitor#
- #include <attribute_visitor.hpp>
Visits the attributes of a node, primarily for serialization-like tasks.
Attributes are the node parameters that are always compile-time constants. Values computed from the graph topology and attributes during compilation are not attributes.
Attributes have a wide variety of types, but serialization formats are more restricted. We assume serialization easily supports scalar types of bool 64-bit signed, string, and double, and has specialized ways to support numeric arrays and raw data+size. The visitor and adapter convert between the limited serialization types and the unlimited attribute types.
A visitor is passed to an op’s visit_attributes method. The visit_attributes method calls the template method visitor.on_attribute<AT>(const std::string& name, AT& value) on each attribute. The visitor can read or write the attribute’s value. The on_attribute method creates an AttributeAdapter<AT> for the value and passes it to one of the visitors on_adapter methods. The on_adapter methods expect a reference to a ValueAccessor<VAT> or a VisitorAdapter. A ValueAccessor<VAT> has get/set methods that can be used to read/write the attribute value as type VAT. These methods are triggered by deriving AttributeAdapter<AT> from ValueAccessor<VAT>. For more complex cases, such as structs, the on_adapter method for VisitorAdapter passes the name and visitor to the adapter, so that the adapter can perform additional work such as visiting struct members or sequence values.
When a node visits an attribute with structure, the node’s on_attribute passes a name for the entire attribute, but the struct will have its own methods to be visited. Similarly, a vector will have a sequence of members to be visited. The adapter may use the visitor methods start_struct/finish_struct and start_vector/next_vector/finish_vector to inidicate nexted members.
The visitor method get_name_with_context creates a generic nested version of the name. Visitors can override according to their serialization requirements.
Attributes that are shared_ptr<Node> are special. They must have been already been registered with the visitor using register_node, which needs a shared pointer to a node and a string ID. The ID string will be used to serialize the node or find the node during deserialization.
Subclassed by ov::frontend::FWVisitor, ov::frontend::FWVisitorInputAttributes, ov::gen_pattern::detail::AttrMatcher, ov::gen_pattern::detail::AttrSetter, ov::pass::detail::OstreamAttributeVisitor
Public Functions
-
virtual void on_adapter(const std::string &name, ValueAccessor<void> &adapter) = 0#
handles all specialized on_adapter methods implemented by the visitor.
The adapter implements get_type_info(), which can be used to determine the adapter directly or via is_type and as_type on any platform
-
virtual void on_adapter(const std::string &name, VisitorAdapter &adapter)#
Hook for adapters that need visitor access.
Provides API to handle openvino Function attribute type, accessed as ValueAccessor.
- Parameters:
name – attribute name
adapter – reference to a Function ValueAccessor<VAT>
-
template<typename AT>
inline void on_attribute(const std::string &name, AT &value)# The generic visitor. There must be a definition of AttributeAdapter<T> that can convert to a ValueAccessor
-
inline const std::vector<std::string> &get_context() const#
- Returns:
The nested context of visits
-
virtual std::string get_name_with_context()#
- Returns:
context prepended to names
-
virtual void start_structure(const std::string &name)#
Start visiting a nested structure.
-
virtual std::string finish_structure()#
Finish visiting a nested structure.
Associate a node with an id.
No node may be used as an attribute unless it has already been registered with an ID. References to nodes are visited with a ValueAccessor of their ID.
-
virtual std::shared_ptr<Node> get_registered_node(node_id_t id)#
Returns the node with the given id, or nullptr if there is no registered node.
Returns the id for the node, or -1 if the node is not registered.
-
virtual void on_adapter(const std::string &name, ValueAccessor<void> &adapter) = 0#
-
class AvgPoolPrecisionPreservedAttribute : public ov::PrecisionPreservedAttribute
- #include <avg_pool_precision_preserved_attribute.hpp>
AvgPoolPrecisionPreservedAttribute is utility attribute which is used only during
AvgPool
operation precision preserved property definition.For more details about the attribute, refer to AvgPoolPrecisionPreservedAttribute page in the OpenVINO Developer Guide.
-
class AxisSet : public std::set<size_t>#
- #include <axis_set.hpp>
A set of axes.
-
class AxisVector : public std::vector<size_t>#
- #include <axis_vector.hpp>
A vector of axes.
-
class BaseOpExtension : public ov::Extension#
- #include <op_extension.hpp>
The base interface for OpenVINO operation extensions.
Subclassed by ov::OpExtension< T >
Public Functions
-
virtual const ov::DiscreteTypeInfo &get_type_info() const = 0#
Returns the type info of operation.
- Returns:
-
virtual ov::OutputVector create(const ov::OutputVector &inputs, ov::AttributeVisitor &visitor) const = 0#
Method creates an OpenVINO operation.
- Parameters:
inputs – vector of input ports
visitor – attribute visitor which allows to read necessaty arguments
- Returns:
vector of output ports
-
virtual std::vector<ov::Extension::Ptr> get_attached_extensions() const = 0#
Returns extensions that should be registered together with this extension class object.
Attached extensions may include frontend extensions that OpenVINO op to framework ops or necessary transformations that should be applied to the network which consist of target op.
- Returns:
-
virtual ~BaseOpExtension() override#
Destructor.
-
virtual const ov::DiscreteTypeInfo &get_type_info() const = 0#
-
class bfloat16#
- #include <bfloat16.hpp>
-
class BiasAttribute : public ov::RuntimeAttribute#
- #include <bias_attribute.hpp>
-
class Busy : public ov::Exception
- #include <exception.hpp>
Thrown in case of calling the InferRequest methods while the request is busy with compute operation.
-
class Cancelled : public ov::Exception
- #include <exception.hpp>
Thrown in case of cancelled asynchronous operation.
-
class CompiledBlobHeader#
- #include <compilation_context.hpp>
-
class CompiledModel
- #include <compiled_model.hpp>
This class represents a compiled model.
A model is compiled by a specific device by applying multiple optimization transformations, then mapping to compute kernels.
Public Functions
-
CompiledModel() = default
Default constructor.
-
~CompiledModel()
Destructor that preserves unloading order of an implementation object and reference to library.
-
std::shared_ptr<const Model> get_runtime_model() const
Gets runtime model information from a device. This object represents an internal device-specific model that is optimized for a particular accelerator. It contains device-specific nodes, runtime information and can be used only to understand how the source model is optimized and which kernels, element types, and layouts are selected for optimal inference.
- Returns:
A model containing Executable Graph Info.
-
const std::vector<ov::Output<const ov::Node>> &inputs() const
Gets all inputs of a compiled model. Inputs are represented as a vector of outputs of the ov::op::v0::Parameter operations. They contain information about input tensors such as tensor shape, names, and element type.
- Returns:
std::vector of model inputs.
-
const ov::Output<const ov::Node> &input() const
Gets a single input of a compiled model. The input is represented as an output of the ov::op::v0::Parameter operation. The input contains information about input tensor such as tensor shape, names, and element type.
Note
If a model has more than one input, this method throws ov::Exception.
- Returns:
Compiled model input.
-
const ov::Output<const ov::Node> &input(size_t i) const
Gets input of a compiled model identified by
i
. The input contains information about input tensor such as tensor shape, names, and element type.Note
The method throws ov::Exception if input with the specified index
i
is not found.- Parameters:
i – Index of input.
- Returns:
Compiled model input.
-
const ov::Output<const ov::Node> &input(const std::string &tensor_name) const
Gets input of a compiled model identified by
tensor_name
. The input contains information about input tensor such as tensor shape, names, and element type.Note
The method throws ov::Exception if input with the specified tensor name
tensor_name
is not found.- Parameters:
tensor_name – The input tensor name.
- Returns:
Compiled model input.
-
const std::vector<ov::Output<const ov::Node>> &outputs() const
Get all outputs of a compiled model. Outputs are represented as a vector of output from the ov::op::v0::Result operations. Outputs contain information about output tensors such as tensor shape, names, and element type.
- Returns:
std::vector of model outputs.
-
const ov::Output<const ov::Node> &output() const
Gets a single output of a compiled model. The output is represented as an output from the ov::op::v0::Result operation. The output contains information about output tensor such as tensor shape, names, and element type.
Note
If a model has more than one output, this method throws ov::Exception.
- Returns:
Compiled model output.
-
const ov::Output<const ov::Node> &output(size_t i) const
Gets output of a compiled model identified by
index
. The output contains information about output tensor such as tensor shape, names, and element type.Note
The method throws ov::Exception if output with the specified index
index
is not found.- Parameters:
i – Index of input.
- Returns:
Compiled model output.
-
const ov::Output<const ov::Node> &output(const std::string &tensor_name) const
Gets output of a compiled model identified by
tensor_name
. The output contains information about output tensor such as tensor shape, names, and element type.Note
The method throws ov::Exception if output with the specified tensor name
tensor_name
is not found.- Parameters:
tensor_name – Output tensor name.
- Returns:
Compiled model output.
-
InferRequest create_infer_request()
Creates an inference request object used to infer the compiled model. The created request has allocated input and output tensors (which can be changed later).
- Returns:
InferRequest object
-
void export_model(std::ostream &model_stream)
Exports the current compiled model to an output stream
std::ostream
. The exported model can also be imported via the ov::Core::import_model method.See also
- Parameters:
model_stream – Output stream to store the model to.
-
void set_property(const AnyMap &properties)
Sets properties for the current compiled model.
- Parameters:
properties – Map of pairs: (property name, property value).
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<void, Properties...> set_property(Properties&&... properties) Sets properties for the current compiled model.
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types.- Parameters:
properties – Optional pack of pairs: (property name, property value).
-
Any get_property(const std::string &name) const
Gets properties for current compiled model.
The method is responsible for extracting information that affects compiled model inference. The list of supported configuration values can be extracted via CompiledModel::get_property with the ov::supported_properties key, but some of these keys cannot be changed dynamically, for example, ov::device::id cannot be changed if a compiled model has already been compiled for a particular device.
-
template<typename T, PropertyMutability mutability>
inline T get_property(const ov::Property<T, mutability> &property) const Gets properties related to device behaviour.
The method extracts information that can be set via the set_property method.
- Template Parameters:
T – Type of a returned value.
- Parameters:
property – Property object.
- Returns:
Value of property.
-
void release_memory()
Release intermediate memory.
This method forces the Compiled model to release memory allocated for intermediate structures, e.g. caches, tensors, temporal buffers etc., when possible
-
RemoteContext get_context() const
Returns pointer to device-specific shared context on a remote accelerator device that was used to create this CompiledModel.
- Returns:
A context.
-
bool operator!() const noexcept
Checks if the current CompiledModel object is not initialized.
- Returns:
true
if the current CompiledModel object is not initialized;false
, otherwise.
-
explicit operator bool() const noexcept
Checks if the current CompiledModel object is initialized.
- Returns:
true
if the current CompiledModel object is initialized;false
, otherwise.
-
CompiledModel() = default
-
class Coordinate : public std::vector<size_t>#
- #include <coordinate.hpp>
Coordinates for a tensor element.
-
class CoordinateDiff : public std::vector<std::ptrdiff_t>#
- #include <coordinate_diff.hpp>
A difference (signed) of tensor element coordinates.
-
class CoordinateIterator#
- #include <coordinate_transform.hpp>
A useful class that allows to iterate over the tensor coordinates. For example, for tensor with dimensions {2, 3} this iterator produces the following coordinates: {0,0}, {0,1}, {0,2}, {1,0}, {1,1}, {2,2}.
Public Functions
-
inline CoordinateIterator(const Shape &target_shape)#
Coordinates iterator constructor.
- Parameters:
target_shape – The target shape for coordinates iteration
-
void operator++()#
The postfix operation increment the iterator by one.
-
CoordinateIterator operator++(int)#
The prefix operation increment the iterator by one.
-
void operator+=(size_t n)#
Increments iterator n times.
- Parameters:
n – number of elements it should be advanced
-
const Coordinate &operator*() const noexcept#
Iterator dereferencing operator returns reference to current pointed coordinate.
-
bool operator!=(const CoordinateIterator &it) const noexcept#
Checks for iterator inequality.
- Parameters:
it – second iterator to compare
-
bool operator==(const CoordinateIterator &it) const noexcept#
Checks for iterator equality.
- Parameters:
it – second iterator to compare
-
size_t advance(size_t axis) noexcept#
Increments iterator using specified axis of the shape n times.
- Parameters:
axis – index used for iteration
Public Static Functions
-
static const CoordinateIterator &end()#
Useful function to build the last iterator. Returns a singleton that points to the last iterator.
-
inline CoordinateIterator(const Shape &target_shape)#
-
class CoordinateTransformBasic#
- #include <coordinate_transform.hpp>
Class which allows to calculate item index with given coordinates in tensor and helps to iterate over all coordinates. Tensor items should be placed in memory in row-major order.
Public Functions
-
CoordinateIterator begin() const noexcept#
Returns an iterator to the first coordinate of the tensor.
-
const CoordinateIterator &end() const noexcept#
Returns an iterator to the coordinate following the last element of the tensor.
-
CoordinateIterator begin() const noexcept#
-
class Core
- #include <core.hpp>
This class represents an OpenVINO runtime Core entity.
User applications can create several Core class instances, but in this case the underlying plugins are created multiple times and not shared between several Core instances. The recommended way is to have a single Core instance per application.
Unnamed Group
-
std::shared_ptr<ov::Model> read_model(const std::string &model_path, const std::string &bin_path = {}, const ov::AnyMap &properties = {}) const
Reads models from IR / ONNX / PDPD / TF / TFLite file formats.
- Parameters:
model_path – Path to a model.
bin_path – Path to a data file. For IR format (*.bin):
if
bin_path
is empty, will try to read a bin file with the same name as xml andif the bin file with the same name is not found, will load IR without weights. For the following file formats the
bin_path
parameter is not used:ONNX format (*.onnx)
PDPD (*.pdmodel)
TF (*.pb, *.meta, SavedModel directory)
TFLite (*.tflite)
properties – Optional map of pairs: (property name, property value) relevant only for this read operation.
- Returns:
A model.
Unnamed Group
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<CompiledModel, Properties...> read_model(const std::string &model_path, const std::string &bin_path, Properties&&... properties) const Reads models from IR / ONNX / PDPD / TF / TFLite file formats.
- Parameters:
model_path – Path to a model.
bin_path – Path to a data file. For IR format (*.bin):
if
bin_path
is empty, will try to read a bin file with the same name as xml andif the bin file with the same name is not found, will load IR without weights. For the following file formats the
bin_path
parameter is not used:ONNX format (*.onnx)
PDPD (*.pdmodel)
TF (*.pb, *.meta, SavedModel directory)
TFLite (*.tflite)
properties – Optional pack of pairs: (property name, property value) relevant only for this read operation.
- Returns:
A model.
Unnamed Group
-
CompiledModel compile_model(const std::string &model_path, const AnyMap &properties = {})
Reads and loads a compiled model from the IR/ONNX/PDPD file to the default OpenVINO device selected by the AUTO plugin.
This can be more efficient than using the Core::read_model + Core::compile_model(model_in_memory_object) flow, especially for cases when caching is enabled and a cached model is available.
- Parameters:
model_path – Path to a model.
properties – Optional map of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
Unnamed Group
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<CompiledModel, Properties...> compile_model(const std::string &model_path, Properties&&... properties) Reads and loads a compiled model from IR / ONNX / PDPD file to the default OpenVINO device selected by AUTO plugin.
This can be more efficient than using read_model + compile_model(Model) flow especially for cases when caching is enabled and cached model is available
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types- Parameters:
model_path – path to model with string or wstring
properties – Optional pack of pairs: (property name, property value) relevant only for this load operation
- Returns:
A compiled model
Unnamed Group
-
CompiledModel compile_model(const std::string &model_path, const std::string &device_name, const AnyMap &properties = {})
Reads a model and creates a compiled model from the IR/ONNX/PDPD file.
This can be more efficient than using the Core::read_model + Core::compile_model(model_in_memory_object) flow, especially for cases when caching is enabled and a cached model is available.
- Parameters:
model_path – Path to a model.
device_name – Name of a device to load a model to.
properties – Optional map of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
Unnamed Group
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<CompiledModel, Properties...> compile_model(const std::string &model_path, const std::string &device_name, Properties&&... properties) Reads a model and creates a compiled model from the IR/ONNX/PDPD file.
This can be more efficient than using read_model + compile_model(Model) flow especially for cases when caching is enabled and cached model is available.
- Template Parameters:
Properties – Should be a pack of
std::pair<std::string, ov::Any>
types.- Parameters:
model_path – Path to a model.
device_name – Name of a device to load a model to.
properties – Optional pack of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
Unnamed Group
-
void add_extension(const std::string &library_path)
Registers an extension to a Core object.
- Parameters:
library_path – Path to the library with ov::Extension.
Public Functions
-
explicit Core(const std::string &xml_config_file = {})
Constructs an OpenVINO Core instance with devices and their plugins description.
There are two ways how to configure device plugins:
(default) Use XML configuration file in case of dynamic libraries build;
Use strictly defined configuration in case of static libraries build.
- Parameters:
xml_config_file – Path to the .xml file with plugins to load from. If path contains only file name with extension, file will be searched in a folder with OpenVINO runtime shared library. If the XML configuration file is not specified, default OpenVINO Runtime plugins are loaded from:
(dynamic build) default
plugins.xml
file located in the same folder as OpenVINO runtime shared library;(static build) statically defined configuration. In this case path to the .xml file is ignored.
-
std::map<std::string, Version> get_versions(const std::string &device_name) const
Returns device plugins version information. Device name can be complex and identify multiple devices at once like
HETERO:CPU,GPU
; in this case, std::map contains multiple entries, each per device.- Parameters:
device_name – Device name to identify a plugin.
- Returns:
A vector of versions.
-
std::shared_ptr<ov::Model> read_model(const std::string &model, const Tensor &weights) const
Reads models from IR / ONNX / PDPD / TF / TFLite formats.
Note
Created model object shares the weights with the
weights
object. Thus, do not createweights
on temporary data that can be freed later, since the model constant data will point to an invalid memory.- Parameters:
model – String with a model in IR / ONNX / PDPD / TF / TFLite format.
weights – Shared pointer to a constant tensor with weights. Reading ONNX / PDPD / TF / TFLite models does not support loading weights from the
weights
tensors.
- Returns:
A model.
Creates and loads a compiled model from a source model to the default OpenVINO device selected by the AUTO plugin.
Users can create as many compiled models as they need and use them simultaneously (up to the limitation of the hardware resources).
- Parameters:
model – Model object acquired from Core::read_model.
properties – Optional map of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
Creates and loads a compiled model from a source model to the default OpenVINO device selected by AUTO plugin.
Users can create as many compiled models as they need and use them simultaneously (up to the limitation of the hardware resources)
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types- Parameters:
model – Model object acquired from Core::read_model
properties – Optional pack of pairs: (property name, property value) relevant only for this load operation
- Returns:
A compiled model
Creates a compiled model from a source model object.
Users can create as many compiled models as they need and use them simultaneously (up to the limitation of the hardware resources).
- Parameters:
model – Model object acquired from Core::read_model.
device_name – Name of a device to load a model to.
properties – Optional map of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
Creates a compiled model from a source model object.
Users can create as many compiled models as they need and use them simultaneously (up to the limitation of the hardware resources)
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types- Parameters:
model – Model object acquired from Core::read_model
device_name – Name of device to load model to
properties – Optional pack of pairs: (property name, property value) relevant only for this load operation
- Returns:
A compiled model
-
CompiledModel compile_model(const std::string &model, const ov::Tensor &weights, const std::string &device_name, const AnyMap &properties = {})
Reads a model and creates a compiled model from the IR/ONNX/PDPD memory.
Note
Created model object shares the weights with the
weights
object. Thus, do not createweights
on temporary data that can be freed later, since the model constant data will point to an invalid memory.- Parameters:
model – String with a model in IR/ONNX/PDPD format.
weights – Shared pointer to a constant tensor with weights. Reading ONNX/PDPD models does not support loading weights from the
weights
tensors.device_name – Name of a device to load a model to.
properties – Optional map of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<CompiledModel, Properties...> compile_model(const std::string &model, const ov::Tensor &weights, const std::string &device_name, Properties&&... properties) Reads a model and creates a compiled model from the IR/ONNX/PDPD memory.
Note
Created model object shares the weights with the
weights
object. Thus, do not createweights
on temporary data that can be freed later, since the model constant data will point to an invalid memory.- Parameters:
model – String with a model in IR/ONNX/PDPD format.
weights – Shared pointer to a constant tensor with weights. Reading ONNX/PDPD models does not support loading weights from the
weights
tensors.device_name – Name of a device to load a model to.
- Template Parameters:
Properties – Should be a pack of
std::pair<std::string, ov::Any>
types.- Returns:
A compiled model.
Creates a compiled model from a source model within a specified remote context.
- Parameters:
model – Model object acquired from Core::read_model.
context – A reference to a RemoteContext object.
properties – Optional map of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model object.
Creates a compiled model from a source model within a specified remote context.
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types- Parameters:
model – Model object acquired from Core::read_model
context – Pointer to RemoteContext object
properties – Optional pack of pairs: (property name, property value) relevant only for this load operation
- Returns:
A compiled model object
Registers an extension to a Core object.
- Parameters:
extension – Pointer to the extension.
Registers extensions to a Core object.
- Parameters:
extensions – Vector of loaded extensions.
-
template<class T, typename std::enable_if<std::is_base_of<ov::Extension, T>::value, bool>::type = true>
inline void add_extension(const T &extension) Registers an extension to a Core object.
- Parameters:
extension – Extension class that is inherited from the ov::Extension class.
-
template<class T, class ...Targs, typename std::enable_if<std::is_base_of<ov::Extension, T>::value, bool>::type = true>
inline void add_extension(const T &extension, Targs... args) Registers extensions to a Core object.
- Parameters:
extension – Extension class that is inherited from the ov::Extension class.
args – A list of extensions.
-
template<class T, typename std::enable_if<std::is_base_of<ov::op::Op, T>::value, bool>::type = true>
inline void add_extension() Registers a custom operation inherited from ov::op::Op.
-
template<class T, class ...Targs, typename std::enable_if<std::is_base_of<ov::op::Op, T>::value && sizeof...(Targs), bool>::type = true>
inline void add_extension() Registers custom operations inherited from ov::op::Op.
-
CompiledModel import_model(std::istream &model_stream, const std::string &device_name, const AnyMap &properties = {})
Imports a compiled model from the previously exported one.
- Parameters:
model_stream – std::istream input stream containing a model previously exported using the ov::CompiledModel::export_model method.
device_name – Name of a device to import a compiled model for. Note, if
device_name
device was not used to compile the original mode, an exception is thrown.properties – Optional map of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<CompiledModel, Properties...> import_model(std::istream &model_stream, const std::string &device_name, Properties&&... properties) Imports a compiled model from the previously exported one.
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types.- Parameters:
model_stream – Model stream.
device_name – Name of a device to import a compiled model for. Note, if
device_name
device was not used to compile the original mode, an exception is thrown.properties – Optional pack of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
-
CompiledModel import_model(std::istream &model_stream, const RemoteContext &context, const AnyMap &properties = {})
Imports a compiled model from the previously exported one with the specified remote context.
- Parameters:
model_stream – std::istream input stream containing a model previously exported from ov::CompiledModel::export_model
context – A reference to a RemoteContext object. Note, if the device from
context
was not used to compile the original mode, an exception is thrown.properties – Optional map of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<CompiledModel, Properties...> import_model(std::istream &model_stream, const RemoteContext &context, Properties&&... properties) Imports a compiled model from the previously exported one with the specified remote context.
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types.- Parameters:
model_stream – Model stream.
context – Pointer to a RemoteContext object.
properties – Optional pack of pairs: (property name, property value) relevant only for this load operation.
- Returns:
A compiled model.
Query device if it supports the specified model with specified properties.
- Parameters:
device_name – Name of a device to query.
model – Model object to query.
properties – Optional map of pairs: (property name, property value).
- Returns:
An object containing a map of pairs an operation name -> a device name supporting this operation.
Queries a device if it supports the specified model with specified properties.
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types.- Parameters:
device_name – Name of a device to query.
model – Model object to query.
properties – Optional pack of pairs: (property name, property value) relevant only for this query operation.
- Returns:
An object containing a map of pairs an operation name -> a device name supporting this operation.
-
void set_property(const AnyMap &properties)
Sets properties for all the registered devices, acceptable keys can be found in openvino/runtime/properties.hpp.
- Parameters:
properties – Map of pairs: (property name, property value).
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<void, Properties...> set_property(Properties&&... properties) Sets properties for all the registered devices, acceptable keys can be found in openvino/runtime/properties.hpp.
- Template Parameters:
Properties – Should be a pack of
std::pair<std::string, ov::Any>
types.- Parameters:
properties – Optional pack of pairs: property name, property value.
-
void set_property(const std::string &device_name, const AnyMap &properties)
Sets properties for a device, acceptable keys can be found in openvino/runtime/properties.hpp.
- Parameters:
device_name – Name of a device.
properties – Map of pairs: (property name, property value).
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<void, Properties...> set_property(const std::string &device_name, Properties&&... properties) Sets properties for a device, acceptable keys can be found in openvino/runtime/properties.hpp.
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types.- Parameters:
device_name – Name of a device.
properties – Optional pack of pairs: (property name, property value).
-
Any get_property(const std::string &device_name, const std::string &name) const
Gets properties related to device behaviour.
The method extracts information that can be set via the set_property method.
- Parameters:
device_name – Name of a device to get a property value.
name – Property name.
- Returns:
Value of a property corresponding to the property name.
-
Any get_property(const std::string &device_name, const std::string &name, const AnyMap &arguments) const
Gets properties related to device behaviour.
The method extracts information that can be set via the set_property method.
- Parameters:
device_name – Name of a device to get a property value.
name – Property name.
arguments – Additional arguments to get a property.
- Returns:
Value of a property corresponding to the property name.
-
inline Any get_property(const std::string &name) const
Gets properties related to core behaviour.
The method extracts information that can be set via the set_property method.
- Parameters:
name – Property name.
- Returns:
Value of a property corresponding to the property name.
-
template<typename T, PropertyMutability M>
inline T get_property(const std::string &device_name, const ov::Property<T, M> &property) const Gets properties related to device behaviour.
The method is needed to request common device or system properties. It can be device name, temperature, and other devices-specific values.
-
template<typename T, PropertyMutability M>
inline T get_property(const std::string &device_name, const ov::Property<T, M> &property, const AnyMap &arguments) const Gets properties related to device behaviour.
The method is needed to request common device or system properties. It can be device name, temperature, other devices-specific values.
-
template<typename T, PropertyMutability M, typename ...Args>
inline util::EnableIfAllStringAny<T, Args...> get_property(const std::string &device_name, const ov::Property<T, M> &property, Args&&... args) const Gets properties related to device behaviour.
The method is needed to request common device or system properties. It can be device name, temperature, other devices-specific values.
- Template Parameters:
T – Type of a returned value.
M – Property mutability.
Args – Set of additional arguments ended with property object variable.
- Parameters:
device_name – Name of a device to get a property value.
property – Property object.
args – Optional pack of pairs: (argument name, argument value) ended with property object.
- Returns:
Property value.
-
std::vector<std::string> get_available_devices() const
Returns devices available for inference. Core objects go over all registered plugins and ask about available devices.
- Returns:
A vector of devices. The devices are returned as { CPU, GPU.0, GPU.1, NPU }. If there is more than one device of a specific type, they are enumerated with the .# suffix. Such enumerated device can later be used as a device name in all Core methods like Core::compile_model, Core::query_model, Core::set_property and so on.
-
void register_plugin(const std::string &plugin, const std::string &device_name, const ov::AnyMap &config = {})
Register a new device and plugin that enables this device inside OpenVINO Runtime.
Note
For security purposes it suggested to specify absolute path to register plugin.
- Parameters:
plugin – Path (absolute or relative) or name of a plugin. Depending on platform,
plugin
is wrapped with shared library suffix and prefix to identify library full name. For example, on Linux platform, plugin name specified asplugin_name
will be wrapped aslibplugin_name.so
. Plugin search algorithm:If
plugin
points to an exact library path (absolute or relative), it will be used.If
plugin
specifies file name (libplugin_name.so
) or plugin name (plugin_name
), it will be searched by file name (libplugin_name.so
) in CWD or in paths pointed by PATH/LD_LIBRARY_PATH/DYLD_LIBRARY_PATH environment variables depending on the platform.
device_name – Device name to register a plugin for.
config – Plugin configuration options
-
void unload_plugin(const std::string &device_name)
Unloads the previously loaded plugin identified by
device_name
from OpenVINO Runtime. The method is needed to remove loaded plugin instance and free its resources. If plugin for a specified device has not been created before, the method throws an exception.Note
This method does not remove plugin from the plugins known to OpenVINO Core object.
- Parameters:
device_name – Device name identifying plugin to remove from OpenVINO Runtime.
-
void register_plugins(const std::string &xml_config_file)
Registers a device plugin to the OpenVINO Runtime Core instance using an XML configuration file with plugins description.
The XML file has the following structure:
<ie> <plugins> <plugin name="" location=""> <extensions> <extension location=""/> </extensions> <properties> <property key="" value=""/> </properties> </plugin> </plugins> </ie>
name
identifies name of a device enabled by a plugin.location
specifies absolute path to dynamic library with a plugin. The path can also be relative to XML file directory. It allows having common config for different systems with different configurations.properties
are set to a plugin via the ov::Core::set_property method.extensions
are set to a plugin via the ov::Core::add_extension method.
Note
For security purposes it suggested to specify absolute path to register plugin.
- Parameters:
xml_config_file – A path to .xml file with plugins to register.
-
RemoteContext create_context(const std::string &device_name, const AnyMap &remote_properties)
Creates a new remote shared context object on the specified accelerator device using specified plugin-specific low-level device API parameters (device handle, pointer, context, etc.).
- Parameters:
device_name – Name of a device to create a new shared context on.
remote_properties – Map of device-specific shared context remote properties.
- Returns:
Reference to a created remote context.
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<RemoteContext, Properties...> create_context(const std::string &device_name, Properties&&... remote_properties) Creates a new shared context object on specified accelerator device using specified plugin-specific low level device API properties (device handle, pointer, etc.)
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types- Parameters:
device_name – Name of a device to create new shared context on.
remote_properties – Pack of device-specific shared context remote properties.
- Returns:
A shared pointer to a created remote context.
-
RemoteContext get_default_context(const std::string &device_name)
Gets a pointer to default (plugin-supplied) shared context object for the specified accelerator device.
- Parameters:
device_name – Name of a device to get a default shared context from.
- Returns:
Reference to a default remote context.
-
std::shared_ptr<ov::Model> read_model(const std::string &model_path, const std::string &bin_path = {}, const ov::AnyMap &properties = {}) const
-
class Decompression : public ov::RuntimeAttribute#
- #include <decompression.hpp>
Decompression class represents runtime info attribute that marks operation as used as decompression for Compressed Only format.
-
class DequantizationNode : public ov::RuntimeAttribute#
- #include <dequantization_node.hpp>
DequantizationNode class represents runtime info attribute that marks operation that are part of dequantization subgraph.
-
class DeviceIDParser#
- #include <device_id_parser.hpp>
Class parses device name and id.
-
class Dimension#
- #include <dimension.hpp>
Class representing a dimension, which may be dynamic (undetermined until runtime), in a shape or shape-like object.
Static dimensions may be implicitly converted from value_type. A dynamic dimension is constructed with Dimension() or Dimension::dynamic().
Public Functions
-
Dimension(value_type dimension)#
Construct a static dimension.
- Parameters:
dimension – Value of the dimension.
-
Dimension(value_type min_dimension, value_type max_dimension)#
Construct a dynamic dimension with bounded range.
- Parameters:
min_dimension – The lower inclusive limit for the dimension
max_dimension – The upper inclusive limit for the dimension
-
Dimension(const std::string &str)#
Construct a dimension from string.
- Parameters:
str – String to parse to dimension.
-
Dimension() = default#
Construct a dynamic dimension with range [0, …].
-
inline bool is_static() const#
Check whether this dimension is static.
- Returns:
true
if the dimension is static, elsefalse
.
-
inline bool is_dynamic() const#
Check whether this dimension is dynamic.
- Returns:
false
if the dimension is static, elsetrue
.
-
value_type get_length() const#
Convert this dimension to
value_type
. This dimension must be static and non-negative.- Throws:
std::invalid_argument – If this dimension is dynamic or negative.
-
bool same_scheme(const Dimension &dim) const#
Check whether this dimension represents the same scheme as the argument (both dynamic, or equal).
- Parameters:
dim – The other dimension to compare this dimension to.
- Returns:
true
if this dimension anddim
are both dynamic, or if they are both static and equal; otherwise,false
.
-
bool compatible(const Dimension &d) const#
Check whether this dimension is capable of being merged with the argument dimension.
Two dimensions are considered compatible if it is possible to merge them. (See Dimension::merge.)
- Parameters:
d – The dimension to compare this dimension with.
- Returns:
true
if this dimension is compatible withd
, elsefalse
.
-
bool relaxes(const Dimension &d) const#
Check whether this dimension is a relaxation of the argument.
A dimension
d1
relaxes (or is a relaxation of)d2
ifd1
andd2
are static and equal, ord1
is dynamic.d1.relaxes(d2)
is equivalent tod2.refines(d1)
.- Parameters:
d – The dimension to compare this dimension with.
- Returns:
true
if this dimension relaxesd
, elsefalse
.
-
bool refines(const Dimension &d) const#
Check whether this dimension is a refinement of the argument.
A dimension
d2
refines (or is a refinement of)d1
ifd1
andd2
are static and equal, ord2
is dynamic.d1.refines(d2)
is equivalent tod2.relaxes(d1)
.- Parameters:
d – The dimension to compare this dimension with.
- Returns:
true
if this dimension relaxesd
, elsefalse
.
-
Dimension operator+(const Dimension &dim) const#
Addition operator for Dimension.
- Parameters:
dim – Right operand for addition.
- Returns:
Smallest interval dimension enclosing inputs
-
Dimension operator-(const Dimension &dim) const#
Subtraction operator for Dimension.
- Parameters:
dim – Right operand for subtraction.
- Returns:
Smallest interval dimension enclosing inputs
-
Dimension operator/(const value_type divisor) const#
Division operator for Dimension divided by a value_type parameter.
- Parameters:
divisor – Right operand for division.
- Returns:
Smallest interval dimension enclosing inputs
-
inline Dimension &operator/=(const value_type divisor)#
Divided-into operator for Dimension.
- Parameters:
divisor – Right operand for multiplication.
- Returns:
A reference to
*this
, after updating*this
to the value*this * dim
.
-
Dimension operator*(const Dimension &dim) const#
Multiplication operator for Dimension.
- Parameters:
dim – Right operand for multiplicaiton.
- Returns:
Smallest interval containing all “produces” which are 0 if either of
this
ordim
has length0
, else unbounded if either is unbounded, else product of lengths.
-
inline Dimension &operator+=(const Dimension &dim)#
Add-into operator for Dimension.
- Parameters:
dim – Right operand for addition.
- Returns:
A reference to
*this
, after updating*this
to the value*this + dim
.
-
inline Dimension &operator*=(const Dimension &dim)#
Multiply-into operator for Dimension.
- Parameters:
dim – Right operand for multiplication.
- Returns:
A reference to
*this
, after updating*this
to the value*this * dim
.
Sets symbol of the Dimension.
Public Static Functions
-
static bool merge(Dimension &dst, const Dimension &d1, const Dimension &d2)#
Try to merge two Dimension objects together.
If
d1
is dynamic, writesd2
todst
and returnstrue
.If
d2
is dynamic, writesd1
todst
and returnstrue
.If
d1
andd2
are static and equal, writesd1
todst
and returnstrue
.If
d1
andd2
are both static and unequal, leavesdst
unchanged and returnsfalse
.
- Parameters:
dst – [out] Reference to write the merged Dimension into.
d1 – First dimension to merge.
d2 – Second dimension to merge.
- Returns:
true
if merging succeeds, elsefalse
.
-
Dimension(value_type dimension)#
-
template<typename AT>
class DirectValueAccessor : public ov::ValueAccessor<AT># - #include <attribute_adapter.hpp>
-
class DisableCleanupAttribute : public ov::RuntimeAttribute#
- #include <disable_cleanup_attribute.hpp>
-
class DisableFP16Compression : public ov::RuntimeAttribute#
- #include <disable_fp16_compression.hpp>
DisableFP16Compression class represents runtime info attribute that marks operation as prohibited to convert to lower precision (e.g. to FP16) and they should be inferred precisely in the original precision.
-
struct DiscreteTypeInfo#
- #include <type.hpp>
Type information for a type system without inheritance; instances have exactly one type not related to any other type.
Supports three functions, ov::is_type<Type>, ov::as_type<Type>, and ov::as_type_ptr<Type> for type-safe dynamic conversions via static_cast/static_ptr_cast without using C++ RTTI. Type must have a static type_info member and a virtual get_type_info() member that returns a reference to its type_info member.
- template<> bf16 >
- #include <element_type_traits.hpp>
- template<> boolean >
- #include <element_type_traits.hpp>
- template<> f16 >
- #include <element_type_traits.hpp>
- template<> f32 >
- #include <element_type_traits.hpp>
- template<> f4e2m1 >
- #include <element_type_traits.hpp>
- template<> f64 >
- #include <element_type_traits.hpp>
- template<> f8e4m3 >
- #include <element_type_traits.hpp>
- template<> f8e5m2 >
- #include <element_type_traits.hpp>
- template<> f8e8m0 >
- #include <element_type_traits.hpp>
- template<> i16 >
- #include <element_type_traits.hpp>
- template<> i32 >
- #include <element_type_traits.hpp>
- template<> i4 >
- #include <element_type_traits.hpp>
- template<> i64 >
- #include <element_type_traits.hpp>
- template<> i8 >
- #include <element_type_traits.hpp>
- template<> nf4 >
- #include <element_type_traits.hpp>
- template<> string >
- #include <element_type_traits.hpp>
- template<> u1 >
- #include <element_type_traits.hpp>
- template<> u16 >
- #include <element_type_traits.hpp>
- template<> u2 >
- #include <element_type_traits.hpp>
- template<> u3 >
- #include <element_type_traits.hpp>
- template<> u32 >
- #include <element_type_traits.hpp>
- template<> u4 >
- #include <element_type_traits.hpp>
- template<> u6 >
- #include <element_type_traits.hpp>
- template<> u64 >
- #include <element_type_traits.hpp>
- template<> u8 >
- #include <element_type_traits.hpp>
-
struct EncryptionCallbacks#
- #include <properties.hpp>
-
template<typename AT>
class EnumAttributeAdapterBase : public ov::ValueAccessor<std::string># - #include <attribute_adapter.hpp>
Access an enum via a string.
- Template Parameters:
AT – The attribute type enum class
-
template<typename T>
class EnumMask# - #include <enum_mask.hpp>
Public Types
Public Functions
-
constexpr EnumMask() = default#
Some bit operations are not safe for signed values, we require enum type to use unsigned underlying type.
-
inline bool is_any_set(const EnumMask &p) const#
Check if any of the input parameter enum bit mask match.
-
inline bool is_set(const EnumMask &p) const#
Check if all of the input parameter enum bit mask match.
-
constexpr EnumMask() = default#
-
template<typename EnumType>
class EnumNames# - #include <enum_names.hpp>
Uses a pairings defined by EnumTypes::get() to convert between strings and enum values.
-
class Exception : public std::runtime_error#
- #include <except.hpp>
Base error for ov runtime errors.
Subclassed by ov::AssertFailure, ov::Busy, ov::Cancelled, ov::op::util::error::UnknownActivationFunction
-
class Extension#
- #include <extension.hpp>
The class provides the base interface for OpenVINO extensions.
Subclassed by ov::BaseOpExtension, ov::frontend::ConversionExtensionBase, ov::frontend::DecoderTransformationExtension, ov::frontend::ProgressReporterExtension, ov::frontend::TelemetryExtension
-
class float16#
- #include <float16.hpp>
-
class float4_e2m1#
- #include <float4_e2m1.hpp>
Class to represent the f4e2m1 type.
-
class float8_e4m3#
- #include <float8_e4m3.hpp>
Class to represent the f8e4m3 type.
-
class float8_e5m2#
- #include <float8_e5m2.hpp>
Class to represent the f8e5m2 type.
-
class float8_e8m0#
- #include <float8_e8m0.hpp>
Class to represent the f8e8m0 type.
-
class FusedNames : public ov::RuntimeAttribute#
- #include <fused_names_attribute.hpp>
FusedName class represents runtime info attribute that stores all operation names that was fully or partially fused into node.
Public Functions
-
FusedNames() = default#
A default constructor
-
inline explicit FusedNames(const std::string &name)#
Constructs a new object consisting of a single name *.
- Parameters:
name – [in] The name
-
void fuseWith(const FusedNames &names)#
Unites current set of already fused names with another FusedNames object.
- Parameters:
names – [in] Another object to fuse with
-
std::string getNames() const#
return string with operation names separated by coma in alphabetical order
-
std::vector<std::string> getVectorNames() const#
return vector of fused names sorted in alphabetical order
- Returns:
vector if strings
-
FusedNames() = default#
-
class IAsyncInferRequest : public ov::IInferRequest#
- #include <iasync_infer_request.hpp>
Base class with default implementation of asynchronous multi staged inference request. To customize pipeline stages derived class should change the content of IAsyncInferRequest::m_pipeline member container. It consists of pairs of tasks and executors which will run the task. The class is recommended to be used by plugins as a base class for asynchronous inference request implementation.
- Example
Here is an example of asynchronous inference request implementation for some accelerator device. It uses 5 different executors to run different stages of a synchronous inference request.
Note
To synchronize derived context with stages derived class should call IAsyncInferRequest::stop_and_wait() function in destructor.
Public Functions
-
virtual void start_async()#
Start inference of specified input(s) in asynchronous mode.
Note
The method returns immediately. Inference starts also immediately.
-
virtual void wait()#
Waits for the result to become available.
-
virtual bool wait_for(const std::chrono::milliseconds &timeout)#
Waits for the result to become available. Blocks until specified timeout has elapsed or the result becomes available, whichever comes first.
- Parameters:
timeout – - maximum duration in milliseconds to block for
- Returns:
A true if results are ready.
-
virtual void cancel()#
Cancel current inference request execution.
-
virtual void set_callback(std::function<void(std::exception_ptr)> callback)#
Set callback function which will be called on success or failure of asynchronous request.
- Parameters:
callback – - function to be called with the following description:
-
virtual void infer() override#
Infers specified input(s) in synchronous mode.
Note
blocks all method of InferRequest while request is ongoing (running or waiting in queue)
-
virtual std::vector<ov::ProfilingInfo> get_profiling_info() const override#
Queries performance measures per layer to identify the most time consuming operation.
Note
Not all plugins provide meaningful data.
- Returns:
Vector of profiling information for operations in a model.
-
virtual ov::SoPtr<ov::ITensor> get_tensor(const ov::Output<const ov::Node> &port) const override#
Gets an input/output tensor for inference.
Note
If the tensor with the specified
port
is not found, an exception is thrown.- Parameters:
port – Port of the tensor to get.
- Returns:
Tensor for the port
port
.
-
virtual void set_tensor(const ov::Output<const ov::Node> &port, const ov::SoPtr<ov::ITensor> &tensor) override#
Sets an input/output tensor to infer.
- Parameters:
port – Port of the input or output tensor.
tensor – Reference to a tensor. The element_type and shape of a tensor must match the model’s input/output element_type and size.
-
virtual std::vector<ov::SoPtr<ov::ITensor>> get_tensors(const ov::Output<const ov::Node> &port) const override#
Gets a batch of tensors for input data to infer by input port. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Ifport
is associated with output (or any other non-input node), an exception is thrown.- Parameters:
port – Port of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
- Returns:
vector of tensors
-
virtual void set_tensors(const ov::Output<const ov::Node> &port, const std::vector<ov::SoPtr<ov::ITensor>> &tensors) override#
Sets a batch of tensors for input data to infer by input port. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Ifport
is associated with output (or any other non-input node), an exception is thrown.- Parameters:
port – Port of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
virtual std::vector<ov::SoPtr<ov::IVariableState>> query_state() const override#
Gets state control interface for the given infer request.
State control essential for recurrent models.
- Returns:
Vector of Variable State objects.
-
virtual const std::shared_ptr<const ov::ICompiledModel> &get_compiled_model() const override#
Gets pointer to compiled model (usually synchronous request holds the compiled model)
- Returns:
Pointer to the compiled model
-
class ICompiledModel : public std::enable_shared_from_this<ICompiledModel>#
- #include <icompiled_model.hpp>
OpenVINO ICompiledModel interface.
Public Functions
Constructor for ICompiledModel interface.
- Parameters:
model – OpenVINO model representation
plugin – Pointer to plugin
task_executor – Task executor (CPUStreamsExecutor by default)
callback_executor – Callback executor (CPUStreamsExecutor by default)
Constructor for ICompiledModel interface with remote context.
- Parameters:
model – OpenVINO model representation
plugin – Pointer to plugin
context – Remote context
task_executor – Task executor (CPUStreamsExecutor by default)
callback_executor – Callback executor (CPUStreamsExecutor by default)
-
virtual const std::vector<ov::Output<const ov::Node>> &outputs() const#
Gets all outputs from compiled model.
- Returns:
model outputs
-
virtual const std::vector<ov::Output<const ov::Node>> &inputs() const#
Gets all inputs from compiled model.
- Returns:
model inputs
-
virtual std::shared_ptr<ov::IAsyncInferRequest> create_infer_request() const#
Create infer request.
- Returns:
Asynchronous infer request interface
-
virtual void export_model(std::ostream &model) const = 0#
Export compiled model to stream.
- Parameters:
model – output stream
-
virtual std::shared_ptr<const ov::Model> get_runtime_model() const = 0#
Returns runtime model.
- Returns:
OpenVINO Model which represents runtime graph
-
virtual void set_property(const ov::AnyMap &properties) = 0#
Allows to set property.
- Parameters:
properties – new plugin properties
-
ov::SoPtr<ov::IRemoteContext> get_context() const#
Creates device specific remote context.
- Returns:
OpenVINO RemoteContext
-
virtual void release_memory()#
Release intermediate memory.
-
interface ICore#
- #include <icore.hpp>
Minimal ICore interface to allow plugin to get information from Core OpenVINO class.
Public Functions
-
virtual std::shared_ptr<ov::Model> read_model(const std::string &model, const ov::Tensor &weights, bool frontend_mode = false) const = 0#
Reads IR xml and bin (with the same name) files.
- Parameters:
model – string with IR
weights – shared pointer to constant blob with weights
frontend_mode – read network without post-processing or other transformations
- Returns:
shared pointer to ov::Model
Reads IR xml and bin from buffer.
- Parameters:
model – shared pointer to aligned buffer with IR
weights – shared pointer to aligned buffer with weights
- Returns:
shared pointer to ov::Model
-
virtual std::shared_ptr<ov::Model> read_model(const std::string &model_path, const std::string &bin_path, const AnyMap &properties) const = 0#
Reads IR xml and bin files.
- Parameters:
model_path – path to IR file
bin_path – path to bin file, if path is empty, will try to read bin file with the same name as xml and if bin file with the same name was not found, will load IR without weights.
properties – Optional map of pairs: (property name, property value) relevant only for this read operation.
- Returns:
shared pointer to ov::Model
Creates a compiled mdel from a model object.
Users can create as many models as they need and use them simultaneously (up to the limitation of the hardware resources)
- Parameters:
model – OpenVINO Model
device_name – Name of device to load model to
config – Optional map of pairs: (config parameter name, config parameter value) relevant only for this load operation
- Returns:
A pointer to compiled model
Creates a compiled model from a model object.
Users can create as many models as they need and use them simultaneously (up to the limitation of the hardware resources)
- Parameters:
model – OpenVINO Model
context – “Remote” (non-CPU) accelerator device-specific execution context to use
config – Optional map of pairs: (config parameter name, config parameter value) relevant only for this load operation
- Returns:
A pointer to compiled model
-
virtual ov::SoPtr<ov::ICompiledModel> compile_model(const std::string &model_path, const std::string &device_name, const ov::AnyMap &config) const = 0#
Creates a compiled model from a model file.
Users can create as many models as they need and use them simultaneously (up to the limitation of the hardware resources)
- Parameters:
model_path – Path to model
device_name – Name of device to load model to
config – Optional map of pairs: (config parameter name, config parameter value) relevant only for this load operation
- Returns:
A pointer to compiled model
-
virtual ov::SoPtr<ov::ICompiledModel> compile_model(const std::string &model_str, const ov::Tensor &weights, const std::string &device_name, const ov::AnyMap &config) const = 0#
Creates a compiled model from a model memory.
Users can create as many models as they need and use them simultaneously (up to the limitation of the hardware resources)
- Parameters:
model_str – String data of model
weights – Model’s weights
device_name – Name of device to load model to
config – Optional map of pairs: (config parameter name, config parameter value) relevant only for this load operation
- Returns:
A pointer to compiled model
-
virtual ov::SoPtr<ov::ICompiledModel> import_model(std::istream &model, const std::string &device_name, const ov::AnyMap &config = {}) const = 0#
Creates a compiled model from a previously exported model.
- Parameters:
model – model stream
device_name – Name of device load executable model on
config – Optional map of pairs: (config parameter name, config parameter value) relevant only for this load operation*
- Returns:
A pointer to compiled model
-
virtual ov::SoPtr<ov::ICompiledModel> import_model(std::istream &modelStream, const ov::SoPtr<ov::IRemoteContext> &context, const ov::AnyMap &config = {}) const = 0#
Creates a compiled model from a previously exported model.
- Parameters:
model – model stream
context – Remote context
config – Optional map of pairs: (config parameter name, config parameter value) relevant only for this load operation*
- Returns:
A pointer to compiled model
Query device if it supports specified network with specified configuration.
- Parameters:
model – OpenVINO Model
device_name – A name of a device to query
config – Optional map of pairs: (config parameter name, config parameter value)
- Returns:
An object containing a map of pairs a layer name -> a device name supporting this layer.
-
virtual std::vector<std::string> get_available_devices() const = 0#
Returns devices available for neural networks inference.
- Returns:
A vector of devices. The devices are returned as { CPU, GPU.0, GPU.1, MYRIAD } If there more than one device of specific type, they are enumerated with .# suffix.
-
virtual ov::SoPtr<ov::IRemoteContext> create_context(const std::string &device_name, const AnyMap &args) const = 0#
Create a new shared context object on specified accelerator device using specified plugin-specific low level device API parameters (device handle, pointer, etc.)
- Parameters:
device_name – Name of a device to create new shared context on.
params – Map of device-specific shared context parameters.
- Returns:
A shared pointer to a created remote context.
-
virtual ov::SoPtr<ov::IRemoteContext> get_default_context(const std::string &device_name) const = 0#
Get a pointer to default shared context object for the specified device.
- Parameters:
device_name – - A name of a device to get create shared context from.
- Returns:
A shared pointer to a default remote context.
-
virtual Any get_property(const std::string &device_name, const std::string &name, const AnyMap &arguments) const = 0#
Gets properties related to device behaviour.
- Parameters:
device_name – Name of a device to get a property value.
name – Property name.
arguments – Additional arguments to get a property.
- Returns:
Value of a property corresponding to the property name.
-
template<typename T, PropertyMutability M>
inline T get_property(const std::string &device_name, const Property<T, M> &property) const# Gets properties related to device behaviour.
-
template<typename T, PropertyMutability M>
inline T get_property(const std::string &device_name, const Property<T, M> &property, const AnyMap &arguments) const# Gets properties related to device behaviour.
-
virtual AnyMap get_supported_property(const std::string &full_device_name, const AnyMap &properties, const bool keep_core_property = true) const = 0#
Get only properties that are supported by specified device.
- Parameters:
full_device_name – Name of a device (can be either virtual or hardware)
properties – Properties that can contains configs that are not supported by device
keep_core_property – Whether to return core-level properties
- Returns:
map of properties that are supported by device
-
virtual ~ICore()#
Default virtual destructor.
-
virtual std::shared_ptr<ov::Model> read_model(const std::string &model, const ov::Tensor &weights, bool frontend_mode = false) const = 0#
-
class IInferRequest#
- #include <iinfer_request.hpp>
An internal API of inference request to be implemented by plugin.
Subclassed by ov::IAsyncInferRequest, ov::ISyncInferRequest
Public Functions
-
virtual void infer() = 0#
Infers specified input(s) in synchronous mode.
Note
blocks all method of InferRequest while request is ongoing (running or waiting in queue)
-
virtual std::vector<ov::ProfilingInfo> get_profiling_info() const = 0#
Queries performance measures per layer to identify the most time consuming operation.
Note
Not all plugins provide meaningful data.
- Returns:
Vector of profiling information for operations in a model.
-
virtual ov::SoPtr<ov::ITensor> get_tensor(const ov::Output<const ov::Node> &port) const = 0#
Gets an input/output tensor for inference.
Note
If the tensor with the specified
port
is not found, an exception is thrown.- Parameters:
port – Port of the tensor to get.
- Returns:
Tensor for the port
port
.
-
virtual void set_tensor(const ov::Output<const ov::Node> &port, const ov::SoPtr<ov::ITensor> &tensor) = 0#
Sets an input/output tensor to infer.
- Parameters:
port – Port of the input or output tensor.
tensor – Reference to a tensor. The element_type and shape of a tensor must match the model’s input/output element_type and size.
-
virtual std::vector<ov::SoPtr<ov::ITensor>> get_tensors(const ov::Output<const ov::Node> &port) const = 0#
Gets a batch of tensors for input data to infer by input port. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Ifport
is associated with output (or any other non-input node), an exception is thrown.- Parameters:
port – Port of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
- Returns:
vector of tensors
-
virtual void set_tensors(const ov::Output<const ov::Node> &port, const std::vector<ov::SoPtr<ov::ITensor>> &tensors) = 0#
Sets a batch of tensors for input data to infer by input port. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Ifport
is associated with output (or any other non-input node), an exception is thrown.- Parameters:
port – Port of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
virtual std::vector<ov::SoPtr<ov::IVariableState>> query_state() const = 0#
Gets state control interface for the given infer request.
State control essential for recurrent models.
- Returns:
Vector of Variable State objects.
-
virtual const std::shared_ptr<const ov::ICompiledModel> &get_compiled_model() const = 0#
Gets pointer to compiled model (usually synchronous request holds the compiled model)
- Returns:
Pointer to the compiled model
-
virtual void infer() = 0#
-
template<typename AT, typename VAT>
class IndirectScalarValueAccessor : public ov::ValueAccessor<VAT># - #include <attribute_adapter.hpp>
-
template<typename AT, typename VAT>
class IndirectVectorValueAccessor : public ov::ValueAccessor<VAT># - #include <attribute_adapter.hpp>
-
class InferRequest
- #include <infer_request.hpp>
This is a class of infer request that can be run in asynchronous or synchronous manners.
Public Functions
-
InferRequest() = default
Default constructor.
-
InferRequest(const InferRequest &other) = default
Default copy constructor.
- Parameters:
other – Another InferRequest object.
-
InferRequest &operator=(const InferRequest &other) = default
Default copy assignment operator.
- Parameters:
other – Another InferRequest object.
- Returns:
Reference to the current object.
-
InferRequest(InferRequest &&other) = default
Default move constructor.
- Parameters:
other – Another InferRequest object.
-
InferRequest &operator=(InferRequest &&other) = default
Default move assignment operator.
- Parameters:
other – Another InferRequest object.
- Returns:
Reference to the current object.
-
~InferRequest()
Destructor that preserves unloading order of implementation object and reference to the library.
Note
To preserve destruction order inside the default generated assignment operator,
_impl
is stored before_so
. Use the destructor to remove implementation object before referencing to the library explicitly.
-
void set_tensor(const std::string &tensor_name, const Tensor &tensor)
Sets an input/output tensor to infer on.
- Parameters:
tensor_name – Name of the input or output tensor.
tensor – Reference to the tensor. The element_type and shape of the tensor must match the model’s input/output element_type and size.
-
void set_tensor(const ov::Output<const ov::Node> &port, const Tensor &tensor)
Sets an input/output tensor to infer.
- Parameters:
port – Port of the input or output tensor. Use the following methods to get the ports:
tensor – Reference to a tensor. The element_type and shape of a tensor must match the model’s input/output element_type and size.
-
void set_tensor(const ov::Output<ov::Node> &port, const Tensor &tensor)
Sets an input/output tensor to infer.
- Parameters:
port – Port of the input or output tensor. Use the following methods to get the ports:
tensor – Reference to a tensor. The element_type and shape of a tensor must match the model’s input/output element_type and size.
-
void set_tensors(const std::string &tensor_name, const std::vector<Tensor> &tensors)
Sets a batch of tensors for input data to infer by tensor name. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Iftensor_name
is associated with output (or any other non-input node), an exception is thrown.- Parameters:
tensor_name – Name of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
void set_tensors(const ov::Output<const ov::Node> &port, const std::vector<Tensor> &tensors)
Sets a batch of tensors for input data to infer by input port. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Ifport
is associated with output (or any other non-input node), an exception is thrown.- Parameters:
port – Port of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
void set_input_tensor(size_t idx, const Tensor &tensor)
Sets an input tensor to infer.
- Parameters:
idx – Index of the input tensor. If
idx
is greater than the number of model inputs, an exception is thrown.tensor – Reference to the tensor. The element_type and shape of the tensor must match the model’s input/output element_type and size.
-
void set_input_tensor(const Tensor &tensor)
Sets an input tensor to infer models with single input.
Note
If model has several inputs, an exception is thrown.
- Parameters:
tensor – Reference to the input tensor.
-
void set_input_tensors(const std::vector<Tensor> &tensors)
Sets a batch of tensors for single input data. Model input must have batch dimension, and the number of
tensors
must match the batch size.- Parameters:
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
void set_input_tensors(size_t idx, const std::vector<Tensor> &tensors)
Sets a batch of tensors for input data to infer by input name. Model input must have batch dimension, and number of
tensors
must match the batch size.- Parameters:
idx – Name of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
void set_output_tensor(size_t idx, const Tensor &tensor)
Sets an output tensor to infer.
Note
Index of the input preserved accross ov::Model, ov::CompiledModel, and ov::InferRequest.
- Parameters:
idx – Index of the output tensor.
tensor – Reference to the output tensor. The type of the tensor must match the model output element type and shape.
-
void set_output_tensor(const Tensor &tensor)
Sets an output tensor to infer models with single output.
Note
If model has several outputs, an exception is thrown.
- Parameters:
tensor – Reference to the output tensor.
-
Tensor get_tensor(const std::string &tensor_name)
Gets an input/output tensor for inference by tensor name.
- Parameters:
tensor_name – Name of a tensor to get.
- Returns:
The tensor with name
tensor_name
. If the tensor is not found, an exception is thrown.
-
Tensor get_tensor(const ov::Output<const ov::Node> &port)
Gets an input/output tensor for inference.
Note
If the tensor with the specified
port
is not found, an exception is thrown.- Parameters:
port – Port of the tensor to get.
- Returns:
Tensor for the port
port
.
-
Tensor get_tensor(const ov::Output<ov::Node> &port)
Gets an input/output tensor for inference.
Note
If the tensor with the specified
port
is not found, an exception is thrown.- Parameters:
port – Port of the tensor to get.
- Returns:
Tensor for the port
port
.
-
Tensor get_input_tensor(size_t idx)
Gets an input tensor for inference.
- Parameters:
idx – Index of the tensor to get.
- Returns:
Tensor with the input index
idx
. If the tensor with the specifiedidx
is not found, an exception is thrown.
-
Tensor get_input_tensor()
Gets an input tensor for inference.
- Returns:
The input tensor for the model. If model has several inputs, an exception is thrown.
-
Tensor get_output_tensor(size_t idx)
Gets an output tensor for inference.
- Parameters:
idx – Index of the tensor to get.
- Returns:
Tensor with the output index
idx
. If the tensor with the specifiedidx
is not found, an exception is thrown.
-
Tensor get_output_tensor()
Gets an output tensor for inference.
- Returns:
Output tensor for the model. If model has several outputs, an exception is thrown.
-
void infer()
Infers specified input(s) in synchronous mode.
Note
It blocks all methods of InferRequest while request is ongoing (running or waiting in a queue). Calling any method leads to throwing the ov::Busy exception.
-
void cancel()
Cancels inference request.
-
std::vector<ProfilingInfo> get_profiling_info() const
Queries performance measures per layer to identify the most time consuming operation.
Note
Not all plugins provide meaningful data.
- Returns:
Vector of profiling information for operations in a model.
-
void start_async()
Starts inference of specified input(s) in asynchronous mode.
Note
It returns immediately. Inference starts also immediately. Calling any method while the request in a running state leads to throwing the ov::Busy exception.
-
void wait()
Waits for the result to become available. Blocks until the result becomes available.
-
bool wait_for(const std::chrono::milliseconds timeout)
Waits for the result to become available. Blocks until the specified timeout has elapsed or the result becomes available, whichever comes first.
- Parameters:
timeout – Maximum duration, in milliseconds, to block for.
- Returns:
True if inference request is ready and false, otherwise.
-
void set_callback(std::function<void(std::exception_ptr)> callback)
Sets a callback std::function that is called on success or failure of an asynchronous request.
Warning
Do not capture strong references to OpenVINO runtime objects into callback. Following objects should not be captured like:
ov::ExecutableNetwork
ov::Core As specified objects implement shared reference concept do not capture this objects by value. It can lead to memory leaks or undefined behaviour! Try to use weak references or pointers.
- Parameters:
callback – callback object which will be called on when inference finish.
-
std::vector<VariableState> query_state()
Gets state control interface for the given infer request.
State control essential for recurrent models.
- Returns:
Vector of Variable State objects.
-
void reset_state()
Resets all internal variable states for relevant infer request to a value specified as default for the corresponding
ReadValue
node.
-
CompiledModel get_compiled_model()
Returns a compiled model that creates this inference request.
- Returns:
Compiled model object.
-
bool operator!() const noexcept
Checks if the current InferRequest object is not initialized.
- Returns:
True if the current InferRequest object is not initialized; false, otherwise.
-
explicit operator bool() const noexcept
Checks if the current InferRequest object is initialized.
- Returns:
True if the current InferRequest object is initialized; false, otherwise.
-
bool operator!=(const InferRequest &other) const noexcept
Compares whether this request wraps the same impl underneath.
- Parameters:
other – Another inference request.
- Returns:
True if the current InferRequest object does not wrap the same impl as the operator’s arg.
-
bool operator==(const InferRequest &other) const noexcept
Compares whether this request wraps the same impl underneath.
- Parameters:
other – Another inference request.
- Returns:
True if the current InferRequest object wraps the same impl as the operator’s arg.
-
InferRequest() = default
-
template<typename NodeType>
class Input# - #include <node_input.hpp>
-
template<>
class Input<const Node># - #include <node_input.hpp>
A handle for one of a node’s inputs.
Public Functions
-
Input(const Node *node, size_t index)#
Constructs a Input.
- Parameters:
node – Pointer to the node for the input handle.
index – The index of the input.
-
size_t get_index() const#
- Returns:
The index of the input referred to by this input handle.
- OV_NO_DANGLING const element::Type & get_element_type () const
- Returns:
The element type of the input referred to by this input handle.
- OV_NO_DANGLING const Shape & get_shape () const
- Returns:
The shape of the input referred to by this input handle.
- OV_NO_DANGLING const PartialShape & get_partial_shape () const
- Returns:
The partial shape of the input referred to by this input handle.
-
Output<Node> get_source_output() const#
- Returns:
A handle to the output that is connected to this input.
- OV_NO_DANGLING descriptor::Tensor & get_tensor () const
- Returns:
A reference to the tensor descriptor for this input.
-
std::shared_ptr<descriptor::Tensor> get_tensor_ptr() const#
- Returns:
A shared pointer to the tensor descriptor for this input.
-
bool get_is_relevant_to_shapes() const#
- Returns:
true if this input is relevant to its node’s output shapes; else false.
-
bool get_is_relevant_to_values() const#
- Returns:
true if this input is relevant to its node’s output values; else false.
- OV_NO_DANGLING const RTMap & get_rt_info () const
- Returns:
The constant reference to runtime info map
-
Input(const Node *node, size_t index)#
-
template<>
class Input<Node># - #include <node_input.hpp>
A handle for one of a node’s inputs.
Public Functions
-
Input(Node *node, size_t index)#
Constructs a Input.
- Parameters:
node – Pointer to the node for the input handle.
index – The index of the input.
-
size_t get_index() const#
- Returns:
The index of the input referred to by this input handle.
- OV_NO_DANGLING const element::Type & get_element_type () const
- Returns:
The element type of the input referred to by this input handle.
- OV_NO_DANGLING const Shape & get_shape () const
- Returns:
The shape of the input referred to by this input handle.
- OV_NO_DANGLING const PartialShape & get_partial_shape () const
- Returns:
The partial shape of the input referred to by this input handle.
-
Output<Node> get_source_output() const#
- Returns:
A handle to the output that is connected to this input.
- OV_NO_DANGLING descriptor::Tensor & get_tensor () const
- Returns:
A reference to the tensor descriptor for this input.
-
std::shared_ptr<descriptor::Tensor> get_tensor_ptr() const#
- Returns:
A shared pointer to the tensor descriptor for this input.
-
bool get_is_relevant_to_shapes() const#
- Returns:
true if this input is relevant to its node’s output shapes; else false.
-
bool get_is_relevant_to_values() const#
- Returns:
true if this input is relevant to its node’s output values; else false.
-
void replace_source_output(const Output<Node> &new_source_output) const#
Replaces the source output of this input.
- Parameters:
new_source_output – A handle for the output that will replace this input’s source.
-
RTMap &get_rt_info()#
- Returns:
The reference to runtime info map
- OV_NO_DANGLING const RTMap & get_rt_info () const
- Returns:
The constant reference to runtime info map
-
Input(Node *node, size_t index)#
-
class Interval#
- #include <interval.hpp>
Interval arithmetic.
An interval is the set of integers from m_min_val through m_max_val. The value s_max acts like infinity. The addition, subtraction, or multiplication of intervals is the smallest interval containing the sums, differences, or products of elements of the two intervals. An empty interval is canonicalized to [s_max, s_max].
Public Functions
-
Interval(value_type min_val, value_type max_val)#
Closed interval {x|min_val <= x <= max_val}.
-
Interval(value_type val)#
Single-valued interval; just contains val.
-
inline size_type size() const#
The number of elements in the interval. Zero if max < min.
-
inline bool empty() const#
Returns true if the interval has no elements.
-
inline value_type get_min_val() const#
the inclusive lower bound of the interval
-
inline void set_min_val(value_type val)#
Set the inclusive lower bound of the interval.
-
inline value_type get_max_val() const#
the inclusive upper bound of the interval
-
inline void set_max_val(value_type val)#
Set the inclusive upper bound of the interval.
-
inline bool has_upper_bound() const#
True if the upper bound is finite.
-
Interval operator+(const Interval &interval) const#
The interval whose elements are a sum of an element from each interval.
-
Interval &operator+=(const Interval &interval)#
Extend this interval to sums of elements in this interval and interval.
-
Interval operator-(const Interval &interval) const#
The interval whose elements are a difference of an element from each interval.
-
Interval &operator-=(const Interval &interval)#
Extend this interval to differences of elements in this interval and interval.
-
Interval operator*(const Interval &interval) const#
The smallest interval whose elements are a product of an element from each interval.
-
Interval &operator*=(const Interval &interval)#
Extend this interval to products of elements in this interval and interval.
-
Interval operator&(const Interval &interval) const#
The interval that is the intersection of this interval and interval.
-
Interval &operator&=(const Interval &interval)#
Change this interval to only include elements also in interval.
-
inline bool contains(value_type value) const#
True if this interval includes value.
Public Static Attributes
-
static constexpr value_type s_max = {std::numeric_limits<value_type>::max()}#
The value used for no upper bound.
-
Interval(value_type min_val, value_type max_val)#
-
class IntervalsAlignmentAttribute : public SharedAttribute<IntervalsAlignmentSharedValue>
- #include <intervals_alignment_attribute.hpp>
IntervalsAlignmentAttribute defines subgraph with the same quantization intervals alignment. FakeQuantize operations are included. The attribute is used by quantization operations.
For more details about the attribute, refer to IntervalsAlignmentAttribute page in the OpenVINO Developer Guide.
-
class IntervalsAlignmentSharedValue
- #include <intervals_alignment_attribute.hpp>
IntervalsAlignmentSharedValue is used by IntervalsAlignmentAttribute as attribute shared value.
-
class Interval
- #include <intervals_alignment_attribute.hpp>
-
class Interval
-
class IPlugin : public std::enable_shared_from_this<IPlugin>#
- #include <iplugin.hpp>
OpenVINO Plugin Interface 2.0.
Public Functions
-
void set_version(const Version &version)#
Sets a plugin version.
- Parameters:
version – A version to set
-
const Version &get_version() const#
Returns a plugin version.
- Returns:
A constant ov::Version object
Compiles model from ov::Model object.
- Parameters:
model – A model object acquired from ov::Core::read_model or source construction
properties – A ov::AnyMap of properties relevant only for this load operation
- Returns:
Created Compiled Model object
-
virtual std::shared_ptr<ov::ICompiledModel> compile_model(const std::string &model_path, const ov::AnyMap &properties) const#
Compiles model from ov::Model object.
- Parameters:
model_path – A path to model (path can be converted from unicode representation)
properties – A ov::AnyMap of properties relevant only for this load operation
- Returns:
Created Compiled Model object
Compiles model from ov::Model object, on specified remote context.
- Parameters:
model – A model object acquired from ov::Core::read_model or source construction
properties – A ov::AnyMap of properties relevant only for this load operation
context – A pointer to plugin context derived from RemoteContext class used to execute the model
- Returns:
Created Compiled Model object
-
virtual void set_property(const ov::AnyMap &properties) = 0#
Sets properties for plugin, acceptable keys can be found in openvino/runtime/properties.hpp.
- Parameters:
properties – ov::AnyMap of properties
-
virtual ov::Any get_property(const std::string &name, const ov::AnyMap &arguments) const = 0#
Gets properties related to plugin behaviour.
- Parameters:
name – Property name.
arguments – Additional arguments to get a property.
- Returns:
Value of a property corresponding to the property name.
-
virtual ov::SoPtr<ov::IRemoteContext> create_context(const ov::AnyMap &remote_properties) const = 0#
Creates a remote context instance based on a map of properties.
- Parameters:
remote_properties – Map of device-specific shared context remote properties.
- Returns:
A remote context object
-
virtual ov::SoPtr<ov::IRemoteContext> get_default_context(const ov::AnyMap &remote_properties) const = 0#
Provides a default remote context instance if supported by a plugin.
- Parameters:
remote_properties – Map of device-specific shared context remote properties.
- Returns:
The default context.
-
virtual std::shared_ptr<ov::ICompiledModel> import_model(std::istream &model, const ov::AnyMap &properties) const = 0#
Creates an compiled model from an previously exported model using plugin implementation and removes OpenVINO Runtime magic and plugin name.
- Parameters:
model – Reference to model output stream
properties – A ov::AnyMap of properties
- Returns:
An Compiled model
-
virtual std::shared_ptr<ov::ICompiledModel> import_model(std::istream &model, const ov::SoPtr<ov::IRemoteContext> &context, const ov::AnyMap &properties) const = 0#
Creates an compiled model from an previously exported model using plugin implementation and removes OpenVINO Runtime magic and plugin name.
- Parameters:
model – Reference to model output stream
context – A pointer to plugin context derived from RemoteContext class used to execute the network
properties – A ov::AnyMap of properties
- Returns:
An Compiled model
Queries a plugin about supported layers in model.
- Parameters:
model – Model object to query.
properties – Optional map of pairs: (property name, property value).
- Returns:
An object containing a map of pairs an operation name -> a device name supporting this operation.
-
void set_core(const std::weak_ptr<ov::ICore> &core)#
Sets pointer to ICore interface.
- Parameters:
core – Pointer to Core interface
-
std::shared_ptr<ov::ICore> get_core() const#
Gets reference to ICore interface.
- Returns:
Reference to ICore interface
-
const std::shared_ptr<ov::threading::ExecutorManager> &get_executor_manager() const#
Gets reference to tasks execution manager.
- Returns:
Reference to ExecutorManager interface
-
void set_version(const Version &version)#
-
class IRemoteContext : public std::enable_shared_from_this<IRemoteContext>#
- #include <iremote_context.hpp>
Public Functions
-
virtual const ov::AnyMap &get_property() const = 0#
Returns a map of device-specific parameters required for low-level operations with underlying object. Parameters include device/context handles, access flags, etc. Contents of the map returned depend on remote execution context that is currently set on the device (working scenario). Abstract method.
- Returns:
A map of name/Any elements.
-
virtual ov::SoPtr<ov::IRemoteTensor> create_tensor(const ov::element::Type &type, const ov::Shape &shape, const ov::AnyMap ¶ms = {}) = 0#
Allocates memory tensor in device memory or wraps user-supplied memory handle using the specified tensor description and low-level device-specific parameters. Returns a pointer to the object that implements the RemoteTensor interface.
- Parameters:
type – Defines the element type of the tensor.
shape – Defines the shape of the tensor.
params – Map of the low-level tensor object parameters.
- Returns:
Pointer to a plugin object that implements the RemoteTensor interface.
-
virtual ov::SoPtr<ov::ITensor> create_host_tensor(const ov::element::Type type, const ov::Shape &shape)#
This method is used to create a host tensor object friendly for the device in current context. For example, GPU context may allocate USM host memory (if corresponding extension is available), which could be more efficient than regular host memory.
-
virtual const ov::AnyMap &get_property() const = 0#
-
class IRemoteTensor : public ITensor#
- #include <iremote_tensor.hpp>
Public Functions
-
virtual const AnyMap &get_properties() const = 0#
Returns additional information associated with tensor.
- Returns:
Map of property names to properties
-
virtual const AnyMap &get_properties() const = 0#
-
class ISyncInferRequest : public ov::IInferRequest#
- #include <isync_infer_request.hpp>
Interface for syncronous infer request.
Public Functions
Constructs syncronous inference request.
- Parameters:
compiled_model – pointer to compiled model
-
virtual ov::SoPtr<ov::ITensor> get_tensor(const ov::Output<const ov::Node> &port) const override#
Gets an input/output tensor for inference.
Note
If the tensor with the specified
port
is not found, an exception is thrown.- Parameters:
port – Port of the tensor to get.
- Returns:
Tensor for the port
port
.
-
virtual void set_tensor(const ov::Output<const ov::Node> &port, const ov::SoPtr<ov::ITensor> &tensor) override#
Sets an input/output tensor to infer.
- Parameters:
port – Port of the input or output tensor.
tensor – Reference to a tensor. The element_type and shape of a tensor must match the model’s input/output element_type and size.
-
virtual std::vector<ov::SoPtr<ov::ITensor>> get_tensors(const ov::Output<const ov::Node> &port) const override#
Gets a batch of tensors for input data to infer by input port. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Ifport
is associated with output (or any other non-input node), an exception is thrown.- Parameters:
port – Port of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
- Returns:
vector of tensors
-
virtual void set_tensors(const ov::Output<const ov::Node> &port, const std::vector<ov::SoPtr<ov::ITensor>> &tensors) override#
Sets a batch of tensors for input data to infer by input port. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Ifport
is associated with output (or any other non-input node), an exception is thrown.- Parameters:
port – Port of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
virtual const std::vector<ov::Output<const ov::Node>> &get_inputs() const override#
Gets inputs for infer request.
- Returns:
vector of input ports
-
virtual const std::vector<ov::Output<const ov::Node>> &get_outputs() const override#
Gets outputs for infer request.
- Returns:
vector of output ports
-
virtual const std::shared_ptr<const ov::ICompiledModel> &get_compiled_model() const override#
Gets pointer to compiled model (usually synchronous request holds the compiled model)
- Returns:
Pointer to the compiled model
-
class ITensorAccessor#
- #include <tensor_data_accessor.hpp>
Interface for data accessor.
Subclassed by ov::TensorAccessor< TContainer >
-
interface IVariableState : public std::enable_shared_from_this<IVariableState>#
- #include <ivariable_state.hpp>
Minimal interface for variable state implementation.
Public Functions
-
virtual const std::string &get_name() const#
Gets a variable state name.
- Returns:
A string representing variable state name
-
virtual void reset()#
Reset internal variable state for relevant infer request, to a value specified as default for according
ReadValue
node.
-
virtual const std::string &get_name() const#
-
class KeepConstPrecision : public ov::RuntimeAttribute#
- #include <keep_const_precision.hpp>
KeepConstPrecision class represents runtime info attribute that marks a Constant as prohibitted to fuse precision in ConvertPrecision.
-
class Layout#
- #include <layout.hpp>
ov::Layout represents the text information of tensor’s dimensions/axes. E.g. layout
NCHW
means that 4D tensor{-1, 3, 480, 640}
will have:0:
N = -1
: batch dimension is dynamic1:
C = 3
: number of channels is ‘3’2:
H = 480
: image height is 4803:
W = 640
: image width is 640
Examples:
ov::Layout
can be specified for:Preprocessing purposes. E.g.
To apply normalization (means/scales) it is usually required to set ‘C’ dimension in a layout.
To resize the image to specified width/height it is needed to set ‘H’ and ‘W’ dimensions in a layout
To transpose image - source and target layout can be set (see
ov::preprocess::PreProcessSteps::convert_layout
)
To set/get model’s batch (see
ov::get_batch
/ov::set_batch) it is required in general to specify ‘N’ dimension in layout for appropriate inputs
Refer also to
ov::layout
namespace for various additional helper functions ofov::Layout
Public Functions
-
inline Layout(const char *layoutStr)#
Constructs a Layout with static or dynamic layout information based on string representation.
- Parameters:
layoutStr – The string used to construct Layout from. The string representation can be in the following form:
can define order and meaning for dimensions “NCHW”
partial layout specialization:
”NC?” defines 3 dimensional layout, first two NC, 3rd one is not defined
”N…C” defines layout with dynamic rank where 1st dimension is N, last one is C
”NC…” defines layout with dynamic rank where first two are NC, others are not defined
only order of dimensions “adbc” (0312)
Advanced syntax can be used for multi-character names like “[N,C,H,W,…,CustomName]”
-
bool has_name(const std::string &dimensionName) const#
Checks if dimension with specified name is in layout.
- Returns:
true
if layout has information about dimension index with a given name
-
std::int64_t get_index_by_name(const std::string &dimensionName) const#
Gets index of dimension with a specified name.
- Throws:
ov::AssertFailure – if dimension name is not found in a layout
- Returns:
Index of given dimension name
-
class LayoutAttribute : public ov::RuntimeAttribute#
- #include <layout.hpp>
-
class MappedMemory#
- #include <mmap_object.hpp>
This class represents a mapped memory. Instead of reading files, we can map the memory via mmap for Linux or MapViewOfFile for Windows. The MappedMemory class is a abstraction to handle such memory with os-dependent details.
-
class Mask : public std::vector<std::set<uint64_t>>, public std::enable_shared_from_this<Mask>#
- #include <mask_attribute.hpp>
each element in vector represents dimension and each element in set is an id of dimensions which contains zeros.
-
struct MemBandwidthPressure#
- #include <performance_heuristics.hpp>
-
class MemorySolver#
- #include <memory_solver.hpp>
Helps to solve issue of optimal memory allocation only for particular execution order.
It works with abstract data description where
Example:
Mem(offset) | |____| Box {4, 5} | |_____________| Box {2, 6} | |____| Box {3, 4} | |____| Box {2, 3} | |____| Box {6, 7} |_____________________________________ 1 2 3 4 5 6 7 8 9 ExecOrder
Boxes which has an ExecOrder-axis intersection should have no Mem-axis intersections. The goal is to define a minimal required memory blob to store all boxes with such constraints and specify all corresponding position on Mem axis(through offset field).
NOTE! Exec order is predefined.
Public Functions
-
inline int64_t solve()#
Solve memory location with maximal reuse.
- Returns:
Size of common memory blob required for storing all
-
inline int64_t get_offset(int id) const#
Provides calculated offset for specified box id
-
inline int64_t max_depth()#
Additional info. Max sum of box sizes required for any time stamp.
-
inline int64_t max_top_depth()#
Additional info. Max num of boxes required for any time stamp.
Public Static Functions
-
struct Box#
- #include <memory_solver.hpp>
Representation of edge (size and live time)
Public Members
-
int start#
Execution order index of first use. The data will be produced here.
-
int finish#
The execution order index of last use. After that data will be released. -1 is a reserved value for “till to end”. The data will be alive to very end of execution.
-
int64_t size#
Size of data. In abstract unit of measure (byte, simd, cache line, …)
-
int start#
-
inline int64_t solve()#
-
class Model : public std::enable_shared_from_this<Model>#
- #include <model.hpp>
A user-defined model.
Public Functions
-
explicit Model(const ov::OutputVector &results, const std::string &name = "")#
Constructs a Model. Lists of parameters and variables will be generated automatically based on traversing the graph from the results.
-
Model(const ov::OutputVector &results, const ov::SinkVector &sinks, const std::string &name = "")#
Constructs a Model. Lists of parameters and variables will be generated automatically based on traversing the graph from the results and the sinks.
-
const ov::element::Type &get_output_element_type(size_t i) const#
Return the element type of output i.
-
const PartialShape &get_output_partial_shape(size_t i) const#
Return the partial shape of element i.
-
const std::string &get_name() const#
Get the unique name of the model.
- Returns:
A const reference to the model’s unique name.
-
void set_friendly_name(const std::string &name)#
Sets a friendly name for a model. This does not overwrite the unique name of the model and is retrieved via get_friendly_name(). Used mainly for debugging.
- Parameters:
name – is the friendly name to set
-
const std::string &get_friendly_name() const#
Gets the friendly name for a model. If no friendly name has been set via set_friendly_name then the model’s unique name is returned.
- Returns:
A const reference to the model’s friendly name.
-
size_t get_graph_size() const#
Returns the sum of the size of all nodes in the graph plus the size of all constant data. This has little value beyond comparing the relative size of graphs and should not be considered the actual memory consumption of a graph.
-
bool is_dynamic() const#
Returns true if any of the op’s defined in the model contains partial shape.
Replace the
parameter_index
th parameter of the model withparameter
.All users of the
parameter_index
th parameter are redirected toparameter
, and theparameter_index
th entry in the model parameter list is replaced withparameter
.- Parameters:
parameter_index – The index of the parameter to replace.
parameter – The parameter to substitute for the
parameter_index
th parameter.
Index for parameter, or -1.
-
int64_t get_result_index(const ov::Output<ov::Node> &value) const#
Return the index of this model’s Result represented by the “value” Output object. This method returns -1 if an the passed output is not related to the Results of a model.
-
int64_t get_result_index(const ov::Output<const ov::Node> &value) const#
Return the index of this model’s Result represented by the “value” Output object. This method returns -1 if an the passed output is not related to the Results of a model.
-
bool evaluate(ov::TensorVector &output_tensors, const ov::TensorVector &input_tensors, ov::EvaluationContext &evaluation_context) const#
Evaluate the model on inputs, putting results in outputs.
- Parameters:
output_tensors – Tensors for the outputs to compute. One for each result
input_tensors – Tensors for the inputs. One for each inputs.
evaluation_context – Storage of additional settings and attributes that can be used when evaluating the model. This additional information can be shared across nodes.
-
bool evaluate(ov::TensorVector &output_tensors, const ov::TensorVector &input_tensors) const#
Evaluate the model on inputs, putting results in outputs.
- Parameters:
output_tensors – Tensors for the outputs to compute. One for each result
input_tensors – Tensors for the inputs. One for each inputs.
-
void add_sinks(const ov::SinkVector &sinks)#
Add new sink nodes to the list. Method doesn’t validate graph, it should be done manually after all changes.
- Parameters:
sinks – new sink nodes
Delete sink node from the list of sinks. Method doesn’t delete node from graph.
- Parameters:
sink – Sink to delete
-
void add_results(const ov::ResultVector &results)#
Add new Result nodes to the list. Method doesn’t validate graph, it should be done manually after all changes.
- Parameters:
results – new Result nodes
Delete Result node from the list of results. Method will not delete node from graph.
- Parameters:
result – Result node to delete
-
void add_parameters(const ov::ParameterVector ¶ms)#
Add new Parameter nodes to the list.
Method doesn’t change or validate graph, it should be done manually. For example, if you want to replace
ReadValue
node byParameter
, you should do the following steps:replace node
ReadValue
byParameter
in graphcall add_parameter() to add new input to the list
call graph validation to check correctness of changes
- Parameters:
params – new Parameter nodes
Delete Parameter node from the list of parameters. Method will not delete node from graph. You need to replace Parameter with other operation manually. Attention: Indexing of parameters can be changed.
Possible use of method is to replace input by variable. For it the following steps should be done:
Parameter
node should be replaced byReadValue
call remove_parameter(param) to remove input from the list
check if any parameter indexes are saved/used somewhere, update it for all inputs because indexes can be changed
call graph validation to check all changes
- Parameters:
param – Parameter node to delete
-
void add_variables(const ov::op::util::VariableVector &variables)#
Add new variables to the list. Method doesn’t validate graph, it should be done manually after all changes.
- Parameters:
variables – new variables to add
-
void remove_variable(const ov::op::util::Variable::Ptr &variable)#
Delete variable from the list of variables. Method doesn’t delete nodes that used this variable from the graph.
- Parameters:
variable – Variable to delete
-
inline const ov::op::util::VariableVector &get_variables() const#
Return a list of model’s variables.
-
ov::op::util::Variable::Ptr get_variable_by_id(const std::string &variable_id) const#
Return a variable by specified variable_id.
-
inline RTMap &get_rt_info()#
Returns a runtime info.
- Returns:
reference to ov::AnyMap with runtime info
-
inline const RTMap &get_rt_info() const#
Returns a constant runtime info.
- Returns:
reference to const ov::AnyMap with runtime info
-
template<class T, class ...Args, typename std::enable_if<!std::is_same<T, ov::Any>::value, bool>::type = true>
inline const T &get_rt_info(Args... args) const# Returns a runtime attribute for the path, throws an ov::Exception if path doesn’t exist.
- Template Parameters:
T – the type of returned value
Args – types of variadic arguments
- Parameters:
args – path to the runtime attribute
- Returns:
constant reference to value from runtime info
-
template<class T, class ...Args, typename std::enable_if<std::is_same<T, ov::Any>::value, bool>::type = true>
inline const T &get_rt_info(Args... args) const# Returns a runtime attribute for the path, throws an ov::Exception if path doesn’t exist.
- Template Parameters:
T – the type of returned value
Args – types of variadic arguments
- Parameters:
args – path to the runtime attribute
- Returns:
constant reference to value from runtime info
-
template<class T, typename std::enable_if<!std::is_same<T, ov::Any>::value, bool>::type = true>
inline const T &get_rt_info(const std::vector<std::string> &args) const# Returns a runtime attribute for the path, throws an ov::Exception if path doesn’t exist.
- Template Parameters:
T – the type of returned value
- Parameters:
args – vector with path to the runtime attribute
- Returns:
constant reference to value from runtime info
-
template<class T, typename std::enable_if<std::is_same<T, ov::Any>::value, bool>::type = true>
inline const T &get_rt_info(const std::vector<std::string> &args) const# Returns a runtime attribute for the path, throws an ov::Exception if path doesn’t exist.
- Template Parameters:
T – the type of returned value
- Parameters:
args – vector with path to the runtime attribute
- Returns:
constant reference to value from runtime info
-
template<class ...Args>
inline bool has_rt_info(Args... args) const# Checks if given path exists in runtime info.
- Template Parameters:
Args – types of variadic arguments
- Parameters:
args – path to the runtime attribute
- Returns:
true if path exists, otherwise false
-
bool has_rt_info(const std::vector<std::string> &args) const#
Checks if given path exists in runtime info.
- Parameters:
args – vector with path to the runtime attribute
- Returns:
true if path exists, otherwise false
-
explicit Model(const ov::OutputVector &results, const std::string &name = "")#
-
class ModelCache#
- #include <compilation_context.hpp>
-
class NmsSelectedIndices : public ov::RuntimeAttribute#
- #include <nms_selected_indices.hpp>
-
class Node : public std::enable_shared_from_this<Node>#
- #include <node.hpp>
Nodes are the backbone of the graph of Value dataflow. Every node has zero or more nodes as arguments and one value, which is either a tensor or a (possibly empty) tuple of values.
Subclassed by ov::op::Op, ov::pass::pattern::op::Pattern
Public Functions
-
virtual void validate_and_infer_types()#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual const ov::op::AutoBroadcastSpec &get_autob() const#
- Returns:
the autobroadcasr spec
-
virtual bool has_evaluate() const#
Allows to get information about availability of evaluate method for the current operation.
-
virtual bool evaluate(ov::TensorVector &output_values, const ov::TensorVector &input_values) const#
Evaluates the op on input_values putting results in output_values.
- Parameters:
output_values – Tensors for the outputs to compute. One for each result
input_values – Tensors for the inputs. One for each inputs.
- Returns:
true if successful
-
virtual bool evaluate(ov::TensorVector &output_values, const ov::TensorVector &input_values, const ov::EvaluationContext &evaluationContext) const#
Evaluates the op on input_values putting results in output_values.
- Parameters:
output_values – Tensors for the outputs to compute. One for each result
input_values – Tensors for the inputs. One for each inputs.
evaluation_context – Storage of additional settings and attributes that can be used when evaluating the op.
- Returns:
true if successful
-
inline virtual OutputVector decompose_op() const#
Decomposes the FusedOp into a sub-graph consisting of core openvino ops.
- Returns:
A vector of nodes comprising the sub-graph. The order of output tensors must match the match output tensors of the FusedOp
-
virtual const type_info_t &get_type_info() const = 0#
Returns the NodeTypeInfo for the node’s class. During transition to type_info, returns a dummy type_info for Node if the class has not been updated yet.
-
void set_arguments(const NodeVector &arguments)#
Sets/replaces the arguments with new arguments.
-
void set_arguments(const OutputVector &arguments)#
Sets/replaces the arguments with new arguments.
-
void set_argument(size_t position, const Output<Node> &argument)#
Sets/replaces the arguments with new arguments.
-
void set_output_size(size_t output_size)#
Sets the number of outputs.
-
virtual std::string description() const#
Get the string name for the type of the node, such as
Add
orMultiply
. The class name, must not contain spaces as it is used for codegen.- Returns:
A const reference to the node’s type name
-
const std::string &get_name() const#
Get the unique name of the node.
- Returns:
A const reference to the node’s unique name.
-
void set_friendly_name(const std::string &name)#
Sets a friendly name for a node. This does not overwrite the unique name of the node and is retrieved via get_friendly_name(). Used mainly for debugging. The friendly name may be set exactly once.
- Parameters:
name – is the friendly name to set
-
const std::string &get_friendly_name() const#
Gets the friendly name for a node. If no friendly name has been set via set_friendly_name then the node’s unique name is returned.
- Returns:
A const reference to the node’s friendly name.
-
virtual std::ostream &write_description(std::ostream &os, uint32_t depth = 0) const#
Writes a description of a node to a stream.
- Parameters:
os – The stream; should be returned
depth – How many levels of inputs to describe
- Returns:
The stream os
-
const std::vector<std::shared_ptr<Node>> &get_control_dependencies() const#
Get control dependencies registered on the node.
This node cannot execute until node executes.
Remove the dependency of this node on node.
-
void clear_control_dependencies()#
Remove all dependencies from this node.
-
void clear_control_dependents()#
Remove this node as a dependency from all dependent nodes.
This node absorbs the control dependencies of source_node.
This node becomes a dependent of every node dependent on source_node.
This node’s control dependencies are replaced by replacement.
-
size_t get_output_size() const#
Returns the number of outputs from the node.
-
const element::Type &get_output_element_type(size_t i) const#
Returns the element type for output i.
-
const element::Type &get_element_type() const#
Checks that there is exactly one output and returns its element type.
-
const PartialShape &get_output_partial_shape(size_t i) const#
Returns the partial shape for output i.
-
Output<const Node> get_default_output() const#
Return the output to use when converting to an Output<Node> with no index specified. Throws when not supported.
-
virtual size_t get_default_output_index() const#
Returns the output of the default output, or throws if there is none.
-
size_t no_default_index() const#
Throws no default.
-
descriptor::Tensor &get_output_tensor(size_t i) const#
Returns the tensor for output or input i.
-
size_t get_input_size() const#
Returns the number of inputs for the op.
-
const PartialShape &get_input_partial_shape(size_t i) const#
Returns the partial shape of input i.
True if this and node have one output with same element type and shape.
-
NodeVector get_users(bool check_is_used = false) const#
Get all the nodes that uses the current node.
-
inline bool operator<(const Node &other) const#
Use instance ids for comparison instead of memory addresses to improve determinism.
-
std::vector<Input<Node>> inputs()#
- Returns:
A vector containing a handle for each of this node’s inputs, in order.
-
std::vector<Input<const Node>> inputs() const#
- Returns:
A vector containing a handle for each of this node’s inputs, in order.
-
std::vector<Output<Node>> input_values() const#
- Returns:
A vector containing the values for each input
-
std::vector<Output<Node>> outputs()#
- Returns:
A vector containing a handle for each of this node’s outputs, in order.
-
std::vector<Output<const Node>> outputs() const#
- Returns:
A vector containing a handle for each of this node’s outputs, in order.
-
Input<Node> input(size_t input_index)#
- Throws:
std::out_of_range – if the node does not have at least
input_index+1
inputs.- Returns:
A handle to the
input_index
th input of this node.
-
Input<const Node> input(size_t input_index) const#
- Throws:
std::out_of_range – if the node does not have at least
input_index+1
inputs.- Returns:
A handle to the
input_index
th input of this node.
-
virtual void validate_and_infer_types()#
-
class NodeValidationFailure : public ov::AssertFailure#
- #include <node.hpp>
Public Functions
- template<> OPENVINO_API void create (const char *file, int line, const char *check_string, std::pair< const Node *, const std::vector< PartialShape > * > &&ctx, const std::string &explanation)
Specialization to throw the
NodeValidationFailure
for shape inference usingPartialShape
- Parameters:
check_loc_info – Exception location details to print.
ctx – NodeValidationFailure context which got pointer to node and input shapes used for shape inference.
explanation – Exception explanation string.
-
class NonconvertibleDivide : public ov::RuntimeAttribute#
- #include <nonconvertible_divide.hpp>
NonconvertibleDivide class represents runtime info attribute that marks a Divide as prohibitted to transform it to power.
-
class NotImplemented : public ov::AssertFailure#
- #include <except.hpp>
Exception class to be thrown on not implemented code.
-
class NoTransposeSinkingAttr : public ov::RuntimeAttribute#
- #include <transpose_sinking_attr.hpp>
NoTransposeSinkingAttr class represents runtime info attribute that marks transpose operation should not be moved be backward sinking propagation.
-
class OldApiMapElementType : public ov::RuntimeAttribute#
- #include <old_api_map_element_type_attribute.hpp>
OldApiMapElementType class represents runtime info attribute that stores legacy type that is required for obtaining IR in old API.
Public Functions
-
OldApiMapElementType() = default#
A default constructor
-
inline OldApiMapElementType(const ov::element::Type &value)#
Constructs a new OldApiMapElementType object.
- Parameters:
value – [in] The object that stores values of OldApiMapElementType.
-
OldApiMapElementType() = default#
-
class OldApiMapOrder : public ov::RuntimeAttribute#
- #include <old_api_map_order_attribute.hpp>
OldApiMapOrder class represents runtime info attribute that stores order of the transpose that is required for obtaining IR in old API.
OldApiMapOrder stores the following information. Parameter: Order of the transpose which should be applied to Parameter with old API layout to obtain Parameter with new API layout.
Result: Order of the transpose which should be applied to Result with new API layout to obtain Result with old API layout.
Public Functions
-
OldApiMapOrder() = default#
A default constructor
-
inline OldApiMapOrder(const std::vector<uint64_t> &value)#
Constructs a new OldApiMapOrder object.
- Parameters:
value – [in] The object that stores values of OldApiMapOrder.
-
OldApiMapOrder() = default#
-
template<class T>
class OpExtension : public ov::BaseOpExtension# - #include <op_extension.hpp>
The default implementation of OpenVINO operation extensions.
Public Functions
-
inline OpExtension()#
Default constructor.
-
inline virtual const ov::DiscreteTypeInfo &get_type_info() const override#
Returns the type info of operation.
- Returns:
-
inline virtual ov::OutputVector create(const ov::OutputVector &inputs, ov::AttributeVisitor &visitor) const override#
Method creates an OpenVINO operation.
- Parameters:
inputs – vector of input ports
visitor – attribute visitor which allows to read necessaty arguments
- Returns:
vector of output ports
-
inline virtual std::vector<ov::Extension::Ptr> get_attached_extensions() const override#
Returns extensions that should be registered together with this extension class object.
Attached extensions may include frontend extensions that OpenVINO op to framework ops or necessary transformations that should be applied to the network which consist of target op.
- Returns:
-
inline OpExtension()#
-
class OpSet#
- #include <opset.hpp>
Run-time opset information.
Public Functions
-
template<typename OP_TYPE>
inline void insert(const std::string &name)# Insert OP_TYPE into the opset with a special name and the default factory.
-
template<typename OP_TYPE>
inline void insert()# Insert OP_TYPE into the opset with the default name and factory.
-
ov::Node *create_insensitive(const std::string &name) const#
Create the op named name using it’s factory.
-
bool contains_type(const NodeTypeInfo &type_info) const#
Return true if OP_TYPE is in the opset.
-
template<typename OP_TYPE>
inline bool contains_type() const# Return true if OP_TYPE is in the opset.
-
bool contains_type(const std::string &name) const#
Return true if name is in the opset.
-
bool contains_type_insensitive(const std::string &name) const#
Return true if name is in the opset.
-
template<typename OP_TYPE>
-
template<class T>
class optional# - #include <ov_optional.hpp>
Store optional object of type T (basic version of std::optional).
Note
If cpp17 used this class should be replaced by std::optional.
- Template Parameters:
T – Type of stored object.
-
class OriginalPrecisionAttribute : public ov::RuntimeAttribute#
- #include <original_precision_attribute.hpp>
OriginalPrecisionAttribute stores the original precision of the node to pass this information to plugins.
-
template<typename NodeType>
class Output# - #include <node_output.hpp>
-
template<>
class Output<const Node># - #include <node_output.hpp>
A handle for one of a node’s outputs.
Public Functions
-
Output(const Node *node, size_t index)#
Constructs a Output.
- Parameters:
node – A pointer to the node for the output handle.
index – The index of the output.
Constructs a Output.
- Parameters:
node – A
shared_ptr
to the node for the output handle.index – The index of the output.
Constructs a Output, referencing the zeroth output of the node.
- Parameters:
node – A
shared_ptr
to the node for the output handle.
-
Output() = default#
A null output.
- Returns:
A
shared_ptr
to the node referred to by this output handle.
-
size_t get_index() const#
- Returns:
The index of the output referred to by this output handle.
- OV_NO_DANGLING descriptor::Tensor & get_tensor () const
- Returns:
A reference to the tensor descriptor for this output.
-
std::shared_ptr<descriptor::Tensor> get_tensor_ptr() const#
- Returns:
A shared point to the tensor ptr for this output.
- OV_NO_DANGLING const element::Type & get_element_type () const
- Returns:
The element type of the output referred to by this output handle.
- OV_NO_DANGLING const Shape & get_shape () const
- Returns:
The shape of the output referred to by this output handle.
- OV_NO_DANGLING const PartialShape & get_partial_shape () const
- Returns:
The partial shape of the output referred to by this output handle.
- OV_NO_DANGLING const RTMap & get_rt_info () const
- Returns:
The constant reference to runtime info map
- OV_NO_DANGLING const std::unordered_set< std::string > & get_names () const
- Returns:
The tensor names associated with this output
-
Output(const Node *node, size_t index)#
-
template<>
class Output<Node># - #include <node_output.hpp>
A handle for one of a node’s outputs.
Public Functions
-
Output(Node *node, size_t index)#
Constructs a Output.
- Parameters:
node – A pointer to the node for the output handle.
index – The index of the output.
Constructs a Output.
- Parameters:
node – A
shared_ptr
to the node for the output handle.index – The index of the output.
Constructs a Output, referencing the default output of the node. If the node doesn’t have a default output, an exception will be thrown.
- Parameters:
node – A
shared_ptr
to the node for the output handle.
-
Output() = default#
A null output.
- Returns:
A
shared_ptr
to the node referred to by this output handle.
-
size_t get_index() const#
- Returns:
The index of the output referred to by this output handle.
- OV_NO_DANGLING descriptor::Tensor & get_tensor () const
- Returns:
A reference to the tensor descriptor for this output.
-
std::shared_ptr<descriptor::Tensor> get_tensor_ptr() const#
- Returns:
A shared point to the tensor ptr for this output.
- Returns:
Set new tensor desc shared pointer to this output
- OV_NO_DANGLING const element::Type & get_element_type () const
- Returns:
The element type of the output referred to by this output handle.
- OV_NO_DANGLING const Shape & get_shape () const
- Returns:
The shape of the output referred to by this output handle.
- OV_NO_DANGLING const PartialShape & get_partial_shape () const
- Returns:
The partial shape of the output referred to by this output handle.
-
RTMap &get_rt_info()#
- Returns:
The reference to runtime info map
- OV_NO_DANGLING const RTMap & get_rt_info () const
- Returns:
The constant reference to runtime info map
- OV_NO_DANGLING const std::unordered_set< std::string > & get_names () const
- Returns:
The tensor names associated with this output
-
void set_names(const std::unordered_set<std::string> &names)#
- Returns:
Set tensor names associated with this output
-
void add_names(const std::unordered_set<std::string> &names)#
- Returns:
Add tensor names associated with this output
-
std::set<Input<Node>> get_target_inputs() const#
- Returns:
A set containing handles for all inputs targeted by the output referenced by this output handle.
-
Output(Node *node, size_t index)#
-
class PartialShape#
- #include <partial_shape.hpp>
Class representing a shape that may be partially or totally dynamic.
A PartialShape may have:
Dynamic rank. (Informal notation:
?
)Static rank, but dynamic dimensions on some or all axes. (Informal notation examples:
{1,2,?,4}
,{?,?,?}
)Static rank, and static dimensions on all axes. (Informal notation examples:
{1,2,3,4}
,{6}
,{}
)
Public Functions
-
PartialShape(std::initializer_list<Dimension> init)#
Constructs a shape with static rank from an initializer list of Dimension.
Examples:
PartialShape s{2,3,4}; // rank=3, all dimensions static PartialShape s{}; // rank=0 PartialShape s{2,Dimension::dynamic(),3}; // rank=3, dimension 1 dynamic
- Parameters:
init – The Dimension values for the constructed shape.
-
PartialShape(std::vector<Dimension> dimensions)#
Constructs a PartialShape with static rank from a vector of Dimension.
- Parameters:
dimensions – The Dimension values for the constructed shape.
-
PartialShape(const std::vector<Dimension::value_type> &dimensions)#
Constructs a PartialShape with static rank from a vector of dimensions values.
- Parameters:
dimensions – The Dimension values for the constructed shape.
-
PartialShape()#
Constructs a static PartialShape with zero rank (the shape of a scalar).
-
PartialShape(const Shape &shape)#
Constructs a static PartialShape from a PartialShape.
- Parameters:
shape – The PartialShape to convert into PartialShape.
-
PartialShape(const std::string &shape)#
Constructs a static PartialShape from a string.
- Parameters:
shape – The string to parse into PartialShape.
-
bool is_static() const#
Check if this shape is static.
A shape is considered static if it has static rank, and all dimensions of the shape are static.
- Returns:
true
if this shape is static, elsefalse
.
-
inline bool is_dynamic() const#
Check if this shape is dynamic.
A shape is considered static if it has static rank, and all dimensions of the shape are static.
- Returns:
false
if this shape is static, elsetrue
.
-
inline Rank rank() const#
Get the rank of the shape.
- Returns:
The rank of the shape. This will be Rank::dynamic() if the rank of the shape is dynamic.
-
bool compatible(const PartialShape &s) const#
Check whether this shape is compatible with the argument, i.e., whether it is possible to merge them.
Two shapes are compatible if
one or both of them has dynamic rank, or
both shapes have dynamic and equal rank, and their dimensions are elementwise compatible (see Dimension::compatible()).
- Parameters:
s – The shape to be checked for compatibility with this shape.
- Returns:
true
if this shape is compatible withs
, elsefalse
.
-
bool same_scheme(const PartialShape &s) const#
Check whether this shape represents the same scheme as the argument.
Two shapes
s1
ands2
represent the same scheme ifthey both have dynamic rank, or
they both have static and equal rank
r
, and for everyi
from0
tor-1
,s1[i]
represents the same scheme ass2[i]
(see Dimension::same_scheme()).
- Parameters:
s – The shape whose scheme is being compared with this shape.
- Returns:
true
if this shape represents the same scheme ass
, elsefalse
.
-
bool relaxes(const PartialShape &s) const#
Check whether this shape is a relaxation of the argument.
Intuitively, a PartialShape
s1
is said to relaxs2
(or is a relaxation ofs2
) if it is “more permissive” thans2
. In other words,s1
is a relaxation ofs2
if anything you can form by plugging things into the dynamic dimensions ofs2
is also something you can form by plugging things into the dynamic dimensions ofs1
, but not necessarily the other way around.s1.relaxes(s2)
is equivalent tos2.refines(s1)
.Formally, PartialShape
s1
is said to relax PartialShapes2
if:For every
i
from0
tor-1
, eithers1[i]
contains s2[i].
- Parameters:
s – The shape which is being compared against this shape.
- Returns:
true
if this shape relaxess
, elsefalse
.
-
bool refines(const PartialShape &s) const#
Check whether this shape is a refinement of the argument.
Intuitively, a PartialShape
s1
is said to relaxs2
(or is a relaxation ofs2
) if it is “less permissive” thans2
. In other words,s1
is a relaxation ofs2
if anything you can form by plugging things into the dynamic dimensions ofs1
is also something you can form by plugging things into the dynamic dimensions ofs2
, but not necessarily the other way around.s1.refines(s2)
is equivalent tos2.relaxes(s1)
.Formally, PartialShape
s1
is said to refine PartialShapes2
if:s2
has dynamic rank, ors1
ands2
both have static rankr
, and for everyi
from0
tor-1
, eithers2[i]
is dynamic, ors1[i]
==s2[i]
.
- Parameters:
s – The shape which is being compared against this shape.
- Returns:
true
if this shape refiness
, elsefalse
.
-
bool merge_rank(const Rank &r)#
Checks that this shape’s rank is compatible with
r
, and, if this shape’s rank is dynamic andr
is static, updates this shape to have a rank ofr
with dimensions all dynamic.- Returns:
true
if this shape’s rank is compatible withr
, elsefalse
.
-
Shape to_shape() const#
Convert a static PartialShape to a PartialShape.
- Throws:
std::invalid_argument – If this PartialShape is dynamic.
- Returns:
A new PartialShape
s
wheres[i] = size_t((*this)[i])
.
-
bool all_non_negative() const#
Returns
true
if all static dimensions of the tensor are non-negative, elsefalse
.
-
Dimension &operator[](std::ptrdiff_t i)#
Index operator for PartialShape, with bound checking.
- Parameters:
i – The index of the dimension being selected in range [-rank, rank).
- Returns:
A reference to the
i
th Dimension of this shape.
-
const Dimension &operator[](std::ptrdiff_t i) const#
Index operator for PartialShape, with bound checking.
- Parameters:
i – The index of the dimension being selected in range [-rank, rank).
- Returns:
A reference to the
i
th Dimension of this shape.
-
inline explicit operator std::vector<Dimension>() const#
Returns a vector of the dimensions. This has no meaning if dynamic.
-
inline iterator begin() noexcept#
Returns a read/write iterator that points to the first element in the shape. Iteration is done in ordinary element order.
-
inline const_iterator begin() const noexcept#
Returns a read-only (constant) iterator that points to the first element in the shape. Iteration is done in ordinary element order.
-
inline iterator end() noexcept#
Returns a read/write iterator that points one past the last element in the shape. Iteration is done in ordinary element order.
-
inline const_iterator end() const noexcept#
Returns a read-only (constant) iterator that points one past the last element in the shape. Iteration is done in ordinary element order.
-
inline reverse_iterator rbegin() noexcept#
Returns a read/write reverse iterator that points to the last element in the shape. Iteration is done in reverse element order.
-
inline const_reverse_iterator rbegin() const noexcept#
Returns a read-only (constant) reverse iterator that points to the last element in the shape. Iteration is done in reverse element order.
-
inline reverse_iterator rend() noexcept#
Returns a read/write reverse iterator that points to one before the first element in the shape. Iteration is done in reverse element order.
-
inline const_reverse_iterator rend() const noexcept#
Returns a read-only (constant) reverse iterator that points to one before the first element in the shape. Iteration is done in reverse element order.
-
inline const_iterator cbegin() const noexcept#
Returns a read-only (constant) iterator that points to the first element in the shape. Iteration is done in ordinary element order.
-
inline const_iterator cend() const noexcept#
Returns a read-only (constant) iterator that points one past the last element in the shape. Iteration is done in ordinary element order.
-
inline const_reverse_iterator crbegin() const noexcept#
Returns a read-only (constant) reverse iterator that points to the last element in the shape. Iteration is done in reverse element order.
-
inline const_reverse_iterator crend() const noexcept#
Returns a read-only (constant) reverse iterator that points to one before the first element in the shape. Iteration is done in reverse element order.
-
inline void resize(size_t count)#
Resizes dimensions container to contain count elements.
-
inline size_t size() const#
Returns size of dimension vector. Requires rank to be static.
-
inline iterator insert(iterator position, const Dimension &val)#
Returns a read/write iterator that points to the inserted element in the shape.
-
inline void insert(iterator position, size_t n, const Dimension &val)#
Inserts count copies of the value before position.
-
template<class InputIterator>
inline void insert(iterator position, InputIterator first, InputIterator last)# Inserts elements from range [first, last) before position.
-
inline void reserve(size_t n)#
Requests that the dimensions vector capacity be enough to contain n elements.
-
template<class ...Args>
inline void emplace_back(Args&&... args)# emplace element to the end of partial shape
-
std::string to_string() const#
String representation of PartialShape.
Public Static Functions
-
static PartialShape dynamic(Rank r = Rank::dynamic())#
Construct a PartialShape with the given rank and all dimensions (if any) dynamic.
- Returns:
A PartialShape with the given rank, and all dimensions (if any) dynamic.
-
static bool merge_into(PartialShape &dst, const PartialShape &src)#
Try to merge one shape into another.
Merges
src
intodst
, returningtrue
on success andfalse
on failure. Iffalse
is returned, the effect ondst
is unspecified.To merge two partial shapes
s1
ands2
is to find the most permissive partial shapes
that is no more permissive thans1
ors2
, ifs
exists. For example:merge(?,?) -> ? merge(?,{?,?}) -> {?,?} merge({?,?},{?,?}) -> {?,?} merge({1,2,3,4},?) -> {1,2,3,4} merge({1,2},{1,?}) -> {1,2} merge({1,2,?,?},{1,?,3,?}) -> {1,2,3,?} merge({1,2,3},{1,2,3}) -> {1,2,3} merge({1,?},{2,?}) fails [dimension 0 constraints are inconsistent] merge({?,?},{?,?,?}) fails [ranks are inconsistent]
This function (merge_into) performs the “merge” operation described above on
dst
andsrc
, but overwritesdst
with the result and returnstrue
if merging is successful; if merging is unsuccessful, the function returnsfalse
and may make unspecified changes todst
.- Parameters:
dst – [inout] The shape that
src
will be merged into.src – The shape that will be merged into
dst
.
- Returns:
true
if merging succeeds, elsefalse
.
-
static bool broadcast_merge_into(PartialShape &dst, const PartialShape &src, const ov::op::AutoBroadcastSpec &autob)#
Try to merge one shape into another along with implicit broadcasting.
Friends
- friend OPENVINO_API std::ostream & operator<< (std::ostream &str, const PartialShape &shape)
Inserts a human-readable representation of a PartialShape into an output stream.
The output to the stream is in “informal” notation. In other words:
If
shape
has dynamic rank, inserts the string?
.If
shape
has static rank, inserts the string{
, then inserts each dimension ofshape
into the output stream separated by commas, then inserts}
.
PartialShape s1{PartialShape::dynamic())}; PartialShape s2{}; PartialShape s3{1,Dimension::dynamic(),2,3}; PartialShape s4{2,3,4}; std::cout << s1 << std::endl << s2 << std::endl << s3 << std::endl << s4 << std::endl;
? {} {1,?,2,3} {2,3,4}
- Parameters:
str – The output stream targeted for insertion.
shape – The shape to be inserted into
str
.
- Returns:
A reference to
str
after insertion.
- friend OPENVINO_API PartialShape operator+ (const PartialShape &s1, const PartialShape &s2)
Elementwise addition of two PartialShape objects.
If
s1
ors2
has dynamic rank, returns PartialShape::dynamic().If
s1 and
s2` both have static rank, and their ranks are unequal, throws std::invalid_argument.If
s1
ands2
both have static rank, and their ranks are equal, returns a new shape whosei
th dimension iss1[i] + s2[i]
.
- Parameters:
s1 – Left operand for addition.
s2 – Right operand for addition.
- Throws:
std::invalid_argument – If
s1
ands2
have inconsistent ranks.- Returns:
The result of elementwise adding
s1
tos2
(see description).
-
class PrecisionPreservedAttribute : public SharedAttribute<bool>
- #include <precision_preserved_attribute.hpp>
PrecisionPreservedAttribute defines the precision preserved operation. If the attribute is absent, then an operation is not precision preserved.
For more details about the attribute, refer to PrecisionPreservedAttribute page in the OpenVINO Developer Guide.
Subclassed by ov::AvgPoolPrecisionPreservedAttribute
-
class PrecisionsAttribute : public SharedAttribute<std::vector<ov::element::Type>>
- #include <precisions_attribute.hpp>
PrecisionsAttribute defines precision which is required for input/output port or an operation.
For more details about the attribute, refer to PrecisionsAttribute page in the OpenVINO Developer Guide.
-
class PrecisionSensitive : public ov::RuntimeAttribute#
- #include <precision_sensitive_attribute.hpp>
PrecisionSensitive class represents runtime info attribute that marks input to an operation as a precision sensitive and disables compression to FP16 of the subgraph before this input.
-
class PreprocessingAttribute : public ov::RuntimeAttribute#
- #include <preprocessing_attribute.hpp>
-
class PrimitivesPriority : public ov::RuntimeAttribute#
- #include <primitives_priority_attribute.hpp>
-
struct ProfilingInfo
- #include <profiling_info.hpp>
Represents basic inference profiling information per operation.
If the operation is executed using tiling, the sum time per each tile is indicated as the total execution time. Due to parallel execution, the total execution time for all nodes might be greater than the total inference time.
Public Types
-
enum class Status
Defines the general status of a node.
Values:
-
enumerator NOT_RUN
A node is not executed.
-
enumerator OPTIMIZED_OUT
A node is optimized out during graph optimization phase.
-
enumerator EXECUTED
A node is executed.
-
enumerator NOT_RUN
Public Members
-
Status status
Defines the node status.
-
std::chrono::microseconds real_time
The absolute time, in microseconds, that the node ran (in total).
-
std::chrono::microseconds cpu_time
The net host CPU time that the node ran.
-
std::string node_name
Name of a node.
-
std::string exec_type
Execution type of a unit.
-
std::string node_type
Node type.
-
enum class Status
-
template<typename T, PropertyMutability mutability_ = PropertyMutability::RW>
class Property : public util::BaseProperty<T, PropertyMutability::RW># - #include <properties.hpp>
This class is used to bind property name with value type.
- Template Parameters:
T – type of value used to set or get property
- template<typename T> RO > : public util::BaseProperty< T, PropertyMutability::RO >
- #include <properties.hpp>
This class is used to bind read-only property name with value type.
- Template Parameters:
T – type of value used to pass or get property
-
struct PropertyName : public std::string#
- #include <properties.hpp>
This class is used to return property name and its mutability attribute.
Public Functions
-
inline PropertyName(const std::string &str, PropertyMutability mutability = PropertyMutability::RW)#
Constructs property name object.
- Parameters:
str – property name
mutability – property mutability
-
inline bool is_mutable() const#
check property mutability
- Returns:
true if property is mutable
-
inline PropertyName(const std::string &str, PropertyMutability mutability = PropertyMutability::RW)#
-
class QuantizationAlignmentAttribute : public SharedAttribute<bool>
- #include <quantization_alignment_attribute.hpp>
QuantizationAlignmentAttribute defines subgraph with the same quantization alignment. FakeQuantize operations are not included. The attribute is used by quantization operations.
For more details about the attribute, refer to QuantizationAlignmentAttribute page in the OpenVINO Developer Guide.
-
class QuantizationGranularityAttribute : public ov::RuntimeAttribute
- #include <quantization_granularity_attribute.hpp>
QuantizationGranularityAttribute defines quantization granularity of operation inputs.
For more details about the attribute, refer to QuantizationGranularityAttribute page in the OpenVINO Developer Guide.
-
class QuantizationModeAttribute : public ov::RuntimeAttribute#
- #include <quantization_mode_attribute.hpp>
-
struct RawNodeOutput#
- #include <node.hpp>
-
class RemoteContext
- #include <remote_context.hpp>
This class represents an abstraction
for remote (non-CPU) accelerator device-specific inference context. Such context represents a scope on the device within which compiled models and remote memory tensors can exist, function, and exchange data.
Subclassed by ov::intel_gpu::ocl::ClContext, ov::intel_npu::level_zero::ZeroContext
Public Functions
-
RemoteContext() = default
Default constructor.
-
RemoteContext(const RemoteContext &other) = default
Default copy constructor.
- Parameters:
other – Another RemoteContext object.
-
RemoteContext &operator=(const RemoteContext &other) = default
Default copy assignment operator.
- Parameters:
other – Another RemoteContext object.
- Returns:
Reference to the current object.
-
RemoteContext(RemoteContext &&other) = default
Default move constructor.
- Parameters:
other – Another RemoteContext object.
-
RemoteContext &operator=(RemoteContext &&other) = default
Default move assignment operator.
- Parameters:
other – Another RemoteContext object.
- Returns:
Reference to the current object.
-
operator bool() const noexcept
Checks if current RemoteContext object is initialized.
- Returns:
true
if current RemoteContext object is initialized,false
- otherwise
-
~RemoteContext()
Destructor that preserves unloading order of implementation object and reference to the library.
-
template<typename T>
inline bool is() const noexcept Checks if the RemoteContext object can be cast to the type T.
- Template Parameters:
T – Type to be checked. Must represent a class derived from RemoteContext.
- Returns:
True if this object can be dynamically cast to the type T*; false, otherwise.
-
template<typename T>
inline const T as() const Casts this RemoteContext object to the type T.
- Template Parameters:
T – Type to cast to. Must represent a class derived from RemoteContext.
- Returns:
T Object.
-
RemoteTensor create_tensor(const element::Type &type, const Shape &shape, const AnyMap ¶ms = {})
Allocates memory tensor in device memory or wraps user-supplied memory handle using the specified tensor description and low-level device-specific parameters. Returns a pointer to the object that implements the RemoteTensor interface.
- Parameters:
type – Defines the element type of the tensor.
shape – Defines the shape of the tensor.
params – Map of the low-level tensor object parameters.
- Returns:
Pointer to a plugin object that implements the RemoteTensor interface.
-
AnyMap get_params() const
Returns a map of device-specific parameters required for low-level operations with the underlying object. Parameters include device/context handles, access flags, etc. Content of the returned map depends on a remote execution context that is currently set on the device (working scenario). Abstract method.
- Returns:
A map of name/parameter elements.
-
Tensor create_host_tensor(const element::Type type, const Shape &shape)
This method is used to create a host tensor object friendly for the device in current context. For example, GPU context may allocate USM host memory (if corresponding extension is available), which could be more efficient than regular host memory.
Public Static Functions
-
static void type_check(const RemoteContext &remote_context, const std::map<std::string, std::vector<std::string>> &type_info = {})
Internal method: checks remote type.
- Parameters:
remote_context – Remote context which type is checked.
type_info – Map with remote object runtime info.
- Throws:
Exception – if type check with the specified parameters failed.
-
RemoteContext() = default
-
class RemoteTensor : public ov::Tensor
- #include <remote_tensor.hpp>
Remote memory access and interoperability API.
Subclassed by ov::intel_gpu::ocl::ClBufferTensor, ov::intel_gpu::ocl::ClImage2DTensor, ov::intel_gpu::ocl::USMTensor, ov::intel_npu::level_zero::ZeroBufferTensor
Public Functions
-
RemoteTensor() = default
Default constructor.
-
RemoteTensor(const RemoteTensor &other, const Coordinate &begin, const Coordinate &end)
Constructs region of interest (ROI) tensor from another remote tensor.
Note
Does not perform memory allocation internally
Note
A Number of dimensions in
begin
andend
must match number of dimensions inother.get_shape()
- Parameters:
other – original tensor
begin – start coordinate of ROI object inside of the original object.
end – end coordinate of ROI object inside of the original object.
-
void *data(const element::Type) = delete
Access to host memory is not available for RemoteTensor. To access a device-specific memory, cast to a specific RemoteTensor derived object and work with its properties or parse device memory properties via RemoteTensor::get_params.
- Returns:
Nothing, throws an exception.
-
void copy_to(ov::Tensor &dst) const
Copies data from this RemoteTensor to the specified destination tensor.
- Parameters:
dst – The destination tensor to which data will be copied.
-
void copy_from(const ov::Tensor &src)
Copies data from the specified source tensor to this RemoteTensor.
- Parameters:
src – The source tensor from which data will be copied.
-
ov::AnyMap get_params() const
Returns a map of device-specific parameters required for low-level operations with underlying object. Parameters include device/context/surface/buffer handles, access flags, etc. Content of the returned map depends on remote execution context that is currently set on the device (working scenario). Abstract method.
- Returns:
A map of name/parameter elements.
Public Static Functions
-
static void type_check(const Tensor &tensor, const std::map<std::string, std::vector<std::string>> &type_info = {})
Checks OpenVINO remote type.
-
RemoteTensor() = default
-
template<class TShape>
struct result_shape# - #include <utils.hpp>
Get correct return type of input shape when call
shape_infer
.The input shapes are vector like std::vector<TShape>, where
TShape
can bestd::vector<const size_t>
This will provide correct return especially for static shape which can work as reference to dimension or hold them.- Template Parameters:
TShape – Type of input shape.
- template<> Shape >
- #include <utils.hpp>
Get correct result shape for ov::Shape which is same type.
-
template<>
struct result_shape<PartialShape># - #include <utils.hpp>
Get correct result shape for PartialShape which is same type.
-
class RoundingGuard#
- #include <rounding_guard.hpp>
Set current round direction for scoped block.
Round direction can be one of:
FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD see std <cfenv> header for details.
-
class RuntimeAttribute#
- #include <runtime_attribute.hpp>
Subclassed by SharedAttribute< IntervalsAlignmentSharedValue >, SharedAttribute< bool >, SharedAttribute< std::vector< ov::element::Type > >, SharedAttribute< T >, ov::BiasAttribute, ov::Decompression, ov::DequantizationNode, ov::DisableCleanupAttribute, ov::DisableFP16Compression, ov::FusedNames, ov::KeepConstPrecision, ov::LayoutAttribute, ov::NmsSelectedIndices, ov::NoTransposeSinkingAttr, ov::NonconvertibleDivide, ov::OldApiMapElementType, ov::OldApiMapOrder, ov::OriginalPrecisionAttribute, ov::PrecisionSensitive, ov::PreprocessingAttribute, ov::PrimitivesPriority, ov::QuantizationGranularityAttribute, ov::QuantizationModeAttribute, ov::ShapeSubgraph, ov::SkipInvalidation, ov::StridesPropagation, ov::frontend::GraphIterator, ov::pass::DisableConstantFolding, ov::pass::DisableFoldSubgraphEmptyInputs, ov::pass::DisableRemoveConcatZeroDimInput, ov::preprocess::TensorInfoMemoryType
-
template<class T, Direction D = Direction::FORWARD>
class SeqGen# - #include <sequence_generator.hpp>
Infinite generator of sequence increasing values.
Start value can be specified.
- Template Parameters:
T – Type of sequence values (must support
++
or ‘—’ operators).
-
class Shape : public std::vector<size_t>#
- #include <shape.hpp>
Shape for a tensor.
Public Functions
- OPENVINO_API Shape::reference operator[] (std::ptrdiff_t i)
Gets dimension at index.
- Parameters:
i – Index to shape dimension [-rank, rank).
- Returns:
A reference to i-th dimension of this shape.
- OPENVINO_API Shape::const_reference operator[] (std::ptrdiff_t i) const
Gets dimension at index.
- Parameters:
i – Index to shape dimension [-rank, rank).
- Returns:
A const reference to i-th dimension of this shape.
- OPENVINO_API Shape::reference at (std::ptrdiff_t i)
Gets dimension at index, with bounds checking.
- Parameters:
i – Index to shape dimension [-rank, rank).
- Returns:
A reference to i-th dimension of this shape.
- OPENVINO_API Shape::const_reference at (std::ptrdiff_t i) const
Gets dimension at index, with bounds checking.
- Parameters:
i – Index to shape dimension [-rank, rank).
- Returns:
A const reference to i-th dimension of this shape.
-
class ShapeSubgraph : public ov::RuntimeAttribute#
- #include <is_shape_subgraph.hpp>
ShapeSubgraph class represents runtime info attribute that marks shape subgraphs. Information whether the node belongs to the shape path or to the data path is needed during evaluate and CF.
-
class SkipInvalidation : public ov::RuntimeAttribute#
- #include <symbolic_info.hpp>
SkipInvalidation class represents runtime info attribute that instructs ov::Output objects to skip invalidation of partial values and symbols during partial value propagation.
-
template<class T>
struct SoPtr# - #include <so_ptr.hpp>
This class instantiate object using shared library.
- Template Parameters:
T – An type of object SoPtr can hold
Public Functions
-
SoPtr() = default#
Default constructor.
-
inline ~SoPtr()#
Destructor preserves unloading order of implementation object and reference to library.
Constructs an object with existing shared object reference and loaded pointer.
- Parameters:
ptr – pointer to the loaded object
so – Existing reference to library
Constructs an object with existing shared object reference.
- Parameters:
ptr – pointer to the loaded object
Constructs an object with existing shared object reference.
- Parameters:
ptr – pointer to the loaded object
-
class StridesPropagation : public ov::RuntimeAttribute#
- #include <strides_property.hpp>
-
class Symbol#
- #include <symbol.hpp>
Class representing unique symbol for the purpose of symbolic shape inference. Equality of symbols is being tracked by Disjoint-set data structure.
Public Functions
-
Symbol() = default#
Default constructs a unique symbol.
-
Symbol() = default#
-
class Tensor
- #include <tensor.hpp>
Tensor API holding host memory It can throw exceptions safely for the application, where it is properly handled.
Subclassed by ov::RemoteTensor
Public Functions
-
Tensor() = default
Default constructor.
Copy constructor with adding new shared object.
- Parameters:
other – Original tensor
so – Shared object
-
Tensor(const Tensor &other) = default
Default copy constructor.
- Parameters:
other – other Tensor object
-
Tensor &operator=(const Tensor &other) = default
Default copy assignment operator.
- Parameters:
other – other Tensor object
- Returns:
reference to the current object
-
Tensor &operator=(Tensor &&other) = default
Default move assignment operator.
- Parameters:
other – other Tensor object
- Returns:
reference to the current object
-
~Tensor()
Destructor preserves unloading order of implementation object and reference to library.
-
Tensor(const element::Type &type, const Shape &shape, const Allocator &allocator = {})
Constructs Tensor using element type and shape. Allocate internal host storage using default allocator.
-
Tensor(const element::Type &type, const Shape &shape, void *host_ptr, const Strides &strides = {})
Constructs Tensor using element type and shape. Wraps allocated host memory.
Note
Does not perform memory allocation internally
-
Tensor(const ov::Output<const ov::Node> &port, const Allocator &allocator = {})
Constructs Tensor using port from node. Allocate internal host storage using default allocator.
- Parameters:
port – port from node
allocator – allocates memory for internal tensor storage
-
Tensor(const ov::Output<const ov::Node> &port, void *host_ptr, const Strides &strides = {})
Constructs Tensor using port from node. Wraps allocated host memory.
Note
Does not perform memory allocation internally
- Parameters:
port – port from node
host_ptr – Pointer to pre-allocated host memory with initialized objects
strides – Optional strides parameters in bytes. Strides are supposed to be computed automatically based on shape and element size
-
Tensor(const Tensor &other, const Coordinate &begin, const Coordinate &end)
Constructs region of interest (ROI) tensor form another tensor.
Note
Does not perform memory allocation internally
Note
A Number of dimensions in
begin
andend
must match number of dimensions inother.get_shape()
- Parameters:
other – original tensor
begin – start coordinate of ROI object inside of the original object.
end – end coordinate of ROI object inside of the original object.
-
void set_shape(const ov::Shape &shape)
Set new shape for tensor, deallocate/allocate if new total size is bigger than previous one.
Note
Memory allocation may happen
- Parameters:
shape – A new shape
-
const Shape &get_shape() const
- Returns:
A tensor shape
-
void copy_to(ov::Tensor dst) const
Copy tensor, destination tensor should have the same element type and shape.
- Parameters:
dst – destination tensor
-
bool is_continuous() const
Reports whether the tensor is continuous or not.
- Returns:
true if tensor is continuous
-
size_t get_size() const
Returns the total number of elements (a product of all the dims or 1 for scalar)
- Returns:
The total number of elements
-
size_t get_byte_size() const
Returns the size of the current Tensor in bytes.
- Returns:
Tensor’s size in bytes
-
void *data(const element::Type &type = {}) const
Provides an access to the underlaying host memory.
Note
If type parameter is specified, the method throws an exception if specified type’s fundamental type does not match with tensor element type’s fundamental type
- Parameters:
type – Optional type parameter.
- Returns:
A host pointer to tensor memory
-
template<typename T, typename datatype = typename std::decay<T>::type>
inline T *data() const Provides an access to the underlaying host memory casted to type
T
Note
Throws exception if specified type does not match with tensor element type
- Returns:
A host pointer to tensor memory casted to specified type
T
.
-
bool operator!() const noexcept
Checks if current Tensor object is not initialized.
- Returns:
true
if current Tensor object is not initialized,false
- otherwise
-
explicit operator bool() const noexcept
Checks if current Tensor object is initialized.
- Returns:
true
if current Tensor object is initialized,false
- otherwise
-
template<typename T>
inline std::enable_if<std::is_base_of<Tensor, T>::value, bool>::type is() const noexcept Checks if the Tensor object can be cast to the type T.
- Template Parameters:
T – Type to be checked. Must represent a class derived from the Tensor
- Returns:
true if this object can be dynamically cast to the type const T*. Otherwise, false
-
Tensor() = default
-
template<class TContainer>
class TensorAccessor : public ov::ITensorAccessor# - #include <tensor_data_accessor.hpp>
Tensor data accessor functor.
Creates the ov::Tensor found in tensors container. This accessor does not take ownership of tensors container. Supports following containers:
std::unordered_map<size_t, ov::Tensor>
- Template Parameters:
TContainer – Type of tensor container.
Public Functions
-
inline constexpr TensorAccessor(const TContainer *tensors)#
Construct a new Tensor Accessor object for tensors container.
- Parameters:
tensors – Pointer to container with tensors.
-
virtual Tensor operator()(size_t port) const override#
Get tensor for given port number.
- Parameters:
port – Port number to get data.
- Returns:
Tensor to data or empty tensor if data not found.
-
virtual Tensor operator()(size_t port) const
Get tensor at port.
- Parameters:
port – Number of data port (operator input) to get tensor.
- Returns:
Tensor to data at port.
-
struct TensorTransform : public ov::element::NotSupported<void>#
- #include <utils.hpp>
-
template<typename VAT>
class ValueAccessor# - #include <attribute_adapter.hpp>
Provides access to an attribute of type AT as a value accessor type VAT.
Provides access to values via get/set methods from an m_value, typically from ValueReference.
The m_buffer holds a VAT, which may be wider than the attribute AT. For example, serializers that only support int64_t integers would use a ValueAccessor<vector<int64_t>> to reference a vector<int8_t> attribute. Destruction moves the value back to the attribute if it was changed.
- Template Parameters:
VAT – The adapter value type; may be wider than the value being accessed.
Subclassed by ov::DirectValueAccessor< bool >, ov::DirectValueAccessor< double >, ov::DirectValueAccessor< int64_t >, ov::DirectValueAccessor< op::v5::Loop::SpecialBodyPorts >, ov::DirectValueAccessor< ov::Dimension >, ov::DirectValueAccessor< ov::PartialShape >, ov::DirectValueAccessor< ov::element::TypeVector >, ov::DirectValueAccessor< ov::op::util::FrameworkNodeAttrs >, ov::DirectValueAccessor< std::set< std::string > >, ov::DirectValueAccessor< std::shared_ptr< op::util::Variable > >, ov::DirectValueAccessor< std::shared_ptr< ov::Model > >, ov::DirectValueAccessor< std::vector< double > >, ov::DirectValueAccessor< std::vector< float > >, ov::DirectValueAccessor< std::vector< int16_t > >, ov::DirectValueAccessor< std::vector< int32_t > >, ov::DirectValueAccessor< std::vector< int8_t > >, ov::DirectValueAccessor< std::vector< std::shared_ptr< op::util::MultiSubGraphOp::InputDescription > > >, ov::DirectValueAccessor< std::vector< std::shared_ptr< op::util::MultiSubGraphOp::OutputDescription > > >, ov::DirectValueAccessor< std::vector< std::string > >, ov::DirectValueAccessor< std::vector< uint16_t > >, ov::DirectValueAccessor< std::vector< uint32_t > >, ov::DirectValueAccessor< std::vector< uint64_t > >, ov::DirectValueAccessor< std::vector< uint8_t > >, ov::IndirectScalarValueAccessor< float, double >, ov::IndirectScalarValueAccessor< int16_t, int64_t >, ov::IndirectScalarValueAccessor< int32_t, int64_t >, ov::IndirectScalarValueAccessor< int8_t, int64_t >, ov::IndirectScalarValueAccessor< uint16_t, int64_t >, ov::IndirectScalarValueAccessor< uint32_t, int64_t >, ov::IndirectScalarValueAccessor< uint64_t, int64_t >, ov::IndirectScalarValueAccessor< uint8_t, int64_t >, ov::IndirectScalarValueAccessor< AT, VAT >, ov::IndirectVectorValueAccessor< AT, VAT >
-
template<>
class ValueAccessor<void*> : public ov::ValueAccessor<void># - #include <attribute_adapter.hpp>
-
template<>
class ValueAccessor<void># - #include <attribute_adapter.hpp>
ValueAccessor<void> provides an accessor for values that do not have get/set methods via AttributeVisitor.on_adapter.
All ValueAccessors must be derived from ValueAccessor<void> so that an AttributeVisitor only needs to implement a subset of the on_adapter methods.
Subclassed by ov::ValueAccessor< void * >, ov::VisitorAdapter
Public Functions
-
virtual const DiscreteTypeInfo &get_type_info() const = 0#
type info enables identification of the value accessor, as well as is_type and as_type.
-
virtual const DiscreteTypeInfo &get_type_info() const = 0#
-
class VariableState
- #include <variable_state.hpp>
VariableState class.
Public Functions
-
VariableState() = default
Default constructor.
-
~VariableState()
Destructor that preserves unloading order of implementation object and reference to the library.
-
void reset()
Resets internal variable state for relevant infer request to a value specified as default for the corresponding ReadValue node.
-
std::string get_name() const
Gets the name of the current variable state. If length of an array is not enough, the name is truncated by len, null terminator is inserted as well.
variable_id
from the correspondingReadValue
is used as variable state name.- Returns:
A string representing state name.
-
Tensor get_state() const
Returns the value of the variable state.
- Returns:
A tensor representing a state.
-
void set_state(const Tensor &state)
Sets the new state for the next inference.
- Parameters:
state – The current state to set.
-
VariableState() = default
-
struct Version#
- #include <version.hpp>
Represents version information that describes plugins and the OpemVINO library.
-
class VisitorAdapter : public ov::ValueAccessor<void>#
- #include <attribute_adapter.hpp>
Adapters will see visitor.
Subclassed by ov::AttributeAdapter< ParameterVector >, ov::AttributeAdapter< ResultVector >, ov::AttributeAdapter< op::AutoBroadcastSpec >, ov::AttributeAdapter< op::BroadcastModeSpec >, ov::AttributeAdapter< ov::NodeVector >, ov::AttributeAdapter< std::shared_ptr< ov::Node > >
-
namespace batch_util#
Functions
-
namespace cmp#
Enums
Functions
-
template<class T, class U, typename std::enable_if<((std::is_signed<T>::value || std::is_same<T, float16>::value || std::is_same<T, bfloat16>::value) && (std::is_signed<U>::value || std::is_same<U, float16>::value || std::is_same<U, bfloat16>::value)) || (std::is_unsigned<T>::value && std::is_unsigned<U>::value)>::type* = nullptr>
constexpr bool lt(T a, U b) noexcept# Compare two values (a < b) in safe way against lossy integer conversion.
- Template Parameters:
T – Type of a value.
U – Type of b value.
- Parameters:
a – Value a.
b – Value b.
- Returns:
true if a less b otherwise false.
-
template<class T, class U>
constexpr bool gt(T a, U b) noexcept# Compare two values (a > b) in safe way against lossy integer conversion.
- Template Parameters:
T – Type of a value.
U – Type of b value.
- Parameters:
a – Value a.
b – Value b.
- Returns:
true if a > b otherwise false.
-
template<class T, Bound BMode = Bound::NONE>
class Between# - #include <compare.hpp>
Compare if value is between lower and upper bounds.
The Between comparator has four modes to check value:
Bound::None (lower, upper)
Bound::LOWER [lower, upper)
Bound::UPPER (lower, upper]
Bound::BOTH [lower, upper]
- Template Parameters:
T – Value type to compare.
BMode – Compare bounds mode.
-
template<class T>
class Equal# - #include <compare.hpp>
Compare if value is equal to expected.
- Template Parameters:
T – Value type to compare.
-
template<class T>
class Less# - #include <compare.hpp>
Compare if value is less to expected.
- Template Parameters:
T – Value type to compare.
-
template<class T, class U, typename std::enable_if<((std::is_signed<T>::value || std::is_same<T, float16>::value || std::is_same<T, bfloat16>::value) && (std::is_signed<U>::value || std::is_same<U, float16>::value || std::is_same<U, bfloat16>::value)) || (std::is_unsigned<T>::value && std::is_unsigned<U>::value)>::type* = nullptr>
-
namespace coordinates#
-
namespace descriptor#
Functions
- OPENVINO_API std::ostream & operator<< (std::ostream &, const ov::descriptor::Tensor &)
-
class Input#
- #include <input.hpp>
Public Functions
-
Input(Node *node, size_t index, Output &output)#
- Parameters:
node – The node that owns this input
index – The position of this tensor in all input tensors
output – The output that supplies a value for this input
-
Input(Node *node, size_t index)#
Create an Input that is not connected to an output.
- Parameters:
node – The node that owns this input
index – The position of this tensor in all input tensors
-
inline Node *get_raw_pointer_node() const#
- Returns:
the raw pointer to the node that this is an input of
-
inline size_t get_index() const#
- Returns:
the position within all supplied tensors of this input
-
inline bool has_output() const#
- Returns:
true if an output is connected to the input.
Replace the current output that supplies a value for this input with output i of node.
-
void replace_output(Output &output)#
Replace the current output that supplies a value for this input with output.
-
void remove_output()#
Remove the output from this input. The node will not be valid until another output is supplied.
-
inline bool get_is_relevant_to_shape() const#
See Node::set_input_is_relevant_to_shape for more details.
- Returns:
true if the value of this input is relevant to the output shapes of the corresponding node. (Usually this is false.)
-
inline bool get_is_relevant_to_value() const#
See Node::set_input_is_relevant_to_value for more details.
- Returns:
true if the value of this input is relevant to the output value of the corresponding node. (Usually this is true.)
-
const PartialShape &get_partial_shape() const#
- Returns:
the partial shape of the connected output
-
Input(Node *node, size_t index, Output &output)#
-
class Output#
- #include <output.hpp>
Public Functions
- Parameters:
node – Node that owns this output.
index – Position of the output tensor in all output tensors
tensor – The tensor where the value will be written
-
const PartialShape &get_partial_shape() const#
- Returns:
the partial shape of the output
-
class Tensor#
- #include <tensor.hpp>
Compile-time descriptor of a first-class value that is a tensor.
Public Functions
-
Tensor(const element::Type &element_type, const PartialShape &pshape, const std::unordered_set<std::string> &names = {})#
Creates Tensor descriptor.
- Parameters:
element_type – Element type
pshape – Partial shape of tensor
names – Tensor names (optional default empty).
-
const std::string &get_any_name() const#
Gets any tensor name. Throws if tensor has no names.
-
const std::unordered_set<std::string> &get_names() const#
Gets tensor names.
-
void set_names(const std::unordered_set<std::string> &names)#
Set new names.
- Parameters:
names – Names to set.
-
void add_names(const std::unordered_set<std::string> &names)#
Adds new names to tensor.
- Parameters:
names – new names to be added.
-
void set_value_symbol(const TensorSymbol &value_symbol)#
sets value symbol description
-
void invalidate_values()#
unsets bound value descriptions
-
const PartialShape &get_partial_shape() const#
Gets partial shape.
-
TensorSymbol get_value_symbol() const#
gets symbol value description
-
bool has_and_set_bound() const#
checks if lower and upper bound are set and point to the same Tensor
-
RTMap &get_rt_info()#
Gets runtime informations.
- Returns:
Runtime information map which can be modified.
-
const RTMap &get_rt_info() const#
Gets runtime informations.
- Returns:
Read only runtime information map.
-
Tensor(const element::Type &element_type, const PartialShape &pshape, const std::unordered_set<std::string> &names = {})#
-
namespace detail#
Functions
- template<class T> static auto collect_attached_extensions_onnx (std::vector< ov::Extension::Ptr > &res) -> decltype(typename T::template __openvino_framework_map_helper_onnx< T >().get(), void())
- template<class T> static auto collect_attached_extensions_paddle (std::vector< ov::Extension::Ptr > &res) -> decltype(typename T::template __openvino_framework_map_helper_paddle< T >().get(), void())
- template<class T> static auto collect_attached_extensions_tensorflow (std::vector< ov::Extension::Ptr > &res) -> decltype(typename T::template __openvino_framework_map_helper_tensorflow< T >().get(), void())
- template<class T> static auto collect_attached_extensions_pytorch (std::vector< ov::Extension::Ptr > &res) -> decltype(typename T::template __openvino_framework_map_helper_pytorch< T >().get(), void())
-
namespace device#
Namespace with device properties.
Enums
Variables
-
static constexpr Property<std::string> id = {"DEVICE_ID"}#
the property for setting of required device to execute on values: device id starts from “0” - first device, “1” - second device, etc
-
static constexpr Priorities priorities = {"MULTI_DEVICE_PRIORITIES"}#
Device Priorities config option, with comma-separated devices listed in the desired priority.
-
static constexpr Properties properties = {"DEVICE_PROPERTIES"}#
Property to pass set of property values to specified device
Usage Example:
core.compile_model("HETERO" ov::device::priorities("GPU", "CPU"), ov::device::properties("CPU", ov::enable_profiling(true)), ov::device::properties("GPU", ov::enable_profiling(false)));
-
static constexpr Property<std::string, PropertyMutability::RO> full_name = {"FULL_DEVICE_NAME"}#
Read-only property to get a std::string value representing a full device name.
-
static constexpr Property<std::string, PropertyMutability::RO> architecture = {"DEVICE_ARCHITECTURE"}#
Read-only property which defines the device architecture.
-
static constexpr Property<UUID, PropertyMutability::RO> uuid = {"DEVICE_UUID"}#
Read-only property which defines the UUID of the device.
-
static constexpr Property<LUID, PropertyMutability::RO> luid = {"DEVICE_LUID"}#
Read-only property which defines the LUID of the device.
-
static constexpr Property<Type, PropertyMutability::RO> type = {"DEVICE_TYPE"}#
Read-only property to get a type of device. See Type enum definition for possible return values.
-
static constexpr Property<std::map<element::Type, float>, PropertyMutability::RO> gops = {"DEVICE_GOPS"}#
Read-only property which defines Giga OPS per second count (GFLOPS or GIOPS) for a set of precisions supported by specified device.
-
static constexpr Property<PCIInfo, PropertyMutability::RO> pci_info = {"DEVICE_PCI_INFO"}#
Read-only property to get PCI bus information of device. See PCIInfo struct definition for details.
-
static constexpr Property<float, PropertyMutability::RO> thermal = {"DEVICE_THERMAL"}#
Read-only property to get a float of device thermal.
-
static constexpr Property<std::vector<std::string>, PropertyMutability::RO> capabilities = {"OPTIMIZATION_CAPABILITIES"}#
Read-only property to get a std::vector<std::string> of capabilities options per device.
-
struct LUID
- #include <properties.hpp>
Structure which defines format of LUID.
Public Members
-
std::array<uint8_t, MAX_LUID_SIZE> luid
Array with luid for a device.
Public Static Attributes
-
static const uint64_t MAX_LUID_SIZE = 8
Max size of luid array (64 bits)
-
std::array<uint8_t, MAX_LUID_SIZE> luid
-
struct PCIInfo
- #include <properties.hpp>
Structure to store PCI bus information of device (Domain/Bus/Device/Function)
Public Members
-
uint32_t domain
PCI domain ID.
-
uint32_t bus
PCI bus ID.
-
uint32_t device
PCI device ID.
-
uint32_t function
PCI function ID.
-
uint32_t domain
-
struct Priorities : public ov::Property<std::string>
- #include <properties.hpp>
Type for device Priorities config option, with comma-separated devices listed in the desired priority.
Public Functions
-
struct Properties : public ov::Property<std::map<std::string, std::map<std::string, Any>>>
- #include <properties.hpp>
Type for property to pass set of properties to specified device.
Public Functions
-
inline std::pair<std::string, Any> operator()(const AnyMap &config) const
Constructs property.
- Parameters:
configs – set of property values with names
- Returns:
Pair of string key representation and type erased property value.
-
inline std::pair<std::string, Any> operator()(const std::string &device_name, const AnyMap &config) const
Constructs property.
- Parameters:
device_name – device plugin alias
config – set of property values with names
- Returns:
Pair of string key representation and type erased property value.
-
template<typename ...Properties>
inline util::EnableIfAllStringAny<std::pair<std::string, Any>, Properties...> operator()(const std::string &device_name, Properties&&... configs) const Constructs property.
- Template Parameters:
Properties – Should be the pack of
std::pair<std::string, ov::Any>
types- Parameters:
device_name – device plugin alias
configs – Optional pack of pairs: (config parameter name, config parameter value)
- Returns:
Pair of string key representation and type erased property value.
-
inline std::pair<std::string, Any> operator()(const AnyMap &config) const
-
struct UUID
- #include <properties.hpp>
Structure which defines format of UUID.
Public Members
-
std::array<uint8_t, MAX_UUID_SIZE> uuid
Array with uuid for a device.
Public Static Attributes
-
static const uint64_t MAX_UUID_SIZE = 16
Max size of uuid array (128 bits)
-
std::array<uint8_t, MAX_UUID_SIZE> uuid
-
namespace capability#
Namespace with possible values for ov::device::capabilities property.
Variables
-
static constexpr const auto FP32 = "FP32"#
Device supports fp32 inference.
-
static constexpr const auto BF16 = "BF16"#
Device supports bf16 inference.
-
static constexpr const auto FP16 = "FP16"#
Device supports fp16 inference.
-
static constexpr const auto INT8 = "INT8"#
Device supports int8 inference.
-
static constexpr const auto INT16 = "INT16"#
Device supports int16 inference.
-
static constexpr const auto BIN = "BIN"#
Device supports binary inference.
-
static constexpr const auto WINOGRAD = "WINOGRAD"#
Device supports winograd optimization.
-
static constexpr const auto EXPORT_IMPORT = "EXPORT_IMPORT"#
Device supports compiled model export and import.
-
static constexpr const auto FP32 = "FP32"#
-
static constexpr Property<std::string> id = {"DEVICE_ID"}#
-
namespace element#
-
Enums
-
enum class Type_t#
Enum to define possible element types.
Values:
-
enumerator undefined#
Undefined element type.
-
enumerator dynamic#
Dynamic element type.
-
enumerator boolean#
boolean element type
-
enumerator bf16#
bf16 element type
-
enumerator f16#
f16 element type
-
enumerator f32#
f32 element type
-
enumerator f64#
f64 element type
-
enumerator i4#
i4 element type
-
enumerator i8#
i8 element type
-
enumerator i16#
i16 element type
-
enumerator i32#
i32 element type
-
enumerator i64#
i64 element type
-
enumerator u1#
binary element type
-
enumerator u2#
u2 element type
-
enumerator u3#
u3 element type
-
enumerator u4#
u4 element type
-
enumerator u6#
u6 element type
-
enumerator u8#
u8 element type
-
enumerator u16#
u16 element type
-
enumerator u32#
u32 element type
-
enumerator u64#
u64 element type
-
enumerator nf4#
nf4 element type
-
enumerator f8e4m3#
f8e4m3 element type
-
enumerator f8e5m2#
f8e5m2 element type
-
enumerator string#
string element type
-
enumerator f4e2m1#
f4e2m1 element type
-
enumerator f8e8m0#
f8e8m0 element type
-
enumerator undefined#
Functions
- template<> OPENVINO_API Type from< char > ()
- template<> OPENVINO_API Type from< bool > ()
- template<> OPENVINO_API Type from< float > ()
- template<> OPENVINO_API Type from< double > ()
- template<> OPENVINO_API Type from< int8_t > ()
- template<> OPENVINO_API Type from< int16_t > ()
- template<> OPENVINO_API Type from< int32_t > ()
- template<> OPENVINO_API Type from< int64_t > ()
- template<> OPENVINO_API Type from< uint8_t > ()
- template<> OPENVINO_API Type from< uint16_t > ()
- template<> OPENVINO_API Type from< uint32_t > ()
- template<> OPENVINO_API Type from< uint64_t > ()
- template<> OPENVINO_API Type from< ov::bfloat16 > ()
- template<> OPENVINO_API Type from< ov::float16 > ()
- template<> OPENVINO_API Type from< ov::float8_e4m3 > ()
- template<> OPENVINO_API Type from< ov::float8_e5m2 > ()
- template<> OPENVINO_API Type from< std::string > ()
- template<> OPENVINO_API Type from< ov::float4_e2m1 > ()
- template<> OPENVINO_API Type from< ov::float8_e8m0 > ()
- OPENVINO_API Type fundamental_type_for (const Type &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &out, const ov::element::Type &obj)
- OPENVINO_API std::istream & operator>> (std::istream &out, ov::element::Type &obj)
-
template<class T>
bool is_max_of(const element::Type_t &type, const T &value)# Check if value has got maximum value of ov::element::Type_t.
- Template Parameters:
T – Input value type.
- Parameters:
type – ov::element type to get its maximum.
value – Input value for check.
- Returns:
True if input value has got maximum number specified by ov::element type otherwise false.
-
template<class T>
bool is_min_of(const element::Type_t type, const T &value)# Check if value has got minimum value of ov::element::Type_t.
- Template Parameters:
T – Input value type.
- Parameters:
type – ov::element type to get its minimum.
value – Input value for check.
- Returns:
True if input value has got minimum number specified by ov::element type otherwise false.
-
template<class T, class U = T>
U get_value_or_limit_of(const element::Type_t &type, const T &value)# Checks input value for element type maximum or minimum and return limit or value.
- Template Parameters:
- Parameters:
type – Type of ov::element::Type_t
value – Input value for check.
- Returns:
If value is maximum or minimum get limit of U otherwise value as U.
-
template<Type_t...>
struct IfTypeOf# Primary template defines suppoted element types.
The list of element types is used to check if runtime value of element type is one in the list. Base on this check the Visitor::visit function is called for specific element type.
- Template Parameters:
List – of supported ov::element types.
-
template<Type_t ET, Type_t... Others>
struct IfTypeOf<ET, Others...># - #include <element_visitor.hpp>
Applies visitor action for supported element type defined by template parameters.
- Template Parameters:
ET – Current ov::element type used for check with input.
Others – Others supported ov::element.
Public Static Functions
-
template<class Visitor, class ...Args>
static inline auto apply(Type_t et, Args&&... args) -> typename Visitor::result_type# Applies visitor action if input element type is same as ET.
Uses Visitor::visit<ET> function if
et == ET
, otherwise check input element type against Others.- Template Parameters:
Visitor – Visitor class implementing visit function.
Args – Types of visit parameters.
- Parameters:
et – Input element type.
args – Visitor arguments.
- Returns:
Value of result type returned by Visitor.
-
template<>
struct IfTypeOf<># - #include <element_visitor.hpp>
Applies visitor action for not supported ov::element type.
Public Static Functions
-
template<class Visitor, class ...Args>
static inline auto apply(Type_t et, Args&&... args) -> typename Visitor::result_type# Applies visitor default action if input element type is not not supported by IfTypeOf.
Uses Visitor::visit non-template function.
- Template Parameters:
Visitor – Visitor class implementing visit function.
Args – Types of visit parameters.
- Parameters:
et – Input element type.
args – Visitor arguments.
- Returns:
Value of result type returned by Visitor.
-
template<class Visitor, class ...Args>
-
template<class R, R... value>
struct NoAction# - #include <element_visitor.hpp>
Helper visitor which defines no action for not supported type.
- Template Parameters:
R – Type of return value.
value – Default value returned.
-
template<>
struct NoAction<void># - #include <element_visitor.hpp>
Helper visitor which defines no action for not supported type if result is void type.
-
template<class R>
struct NotSupported# - #include <element_visitor.hpp>
Helper visitor which throws ov::Exception for not supported element type.
- Template Parameters:
R – Type of return value.
-
class Type#
- #include <element_type.hpp>
Base class to define element type.
Public Functions
Public Static Functions
-
static bool merge(element::Type &dst, const element::Type &t1, const element::Type &t2)#
Merges two element types t1 and t2, writing the result into dst and returning true if successful, else returning false.
To “merge” two element types t1 and t2 is to find the least restrictive element type t that is no more restrictive than t1 and t2, if t exists. More simply:
merge(dst,element::Type::dynamic,t) writes t to dst and returns true
merge(dst,t,element::Type::dynamic) writes t to dst and returns true
merge(dst,t1,t2) where t1, t2 both static and equal writes t1 to dst and returns true
merge(dst,t1,t2) where t1, t2 both static and unequal does nothing to dst, and returns false
-
static bool merge(element::Type &dst, const element::Type &t1, const element::Type &t2)#
-
enum class Type_t#
-
namespace exec_model_info#
Variables
-
static const char ORIGINAL_NAMES[] = "originalLayersNames"#
Used to get a string of layer names separated by a comma from the original IR, which were fused/merged to the current executable primitive.
-
static const char IMPL_TYPE[] = "primitiveType"#
Used to get a type of the executable primitive.
-
static const char OUTPUT_PRECISIONS[] = "outputPrecisions"#
Used to get output precisions of the executable primitive.
-
static const char PERF_COUNTER[] = "execTimeMcs"#
Used to get a value of execution time of the executable primitive, where Mcs = microseconds (1μs=0.000001s).
-
static const char OUTPUT_LAYOUTS[] = "outputLayouts"#
Used to get output layouts of primitive.
-
static const char EXECUTION_ORDER[] = "execOrder"#
Used to get an execution order of primitive.
-
static const char LAYER_TYPE[] = "layerType"#
Used to get a type of primitive.
-
static const char RUNTIME_PRECISION[] = "runtimePrecision"#
Used to get runtime precision of the executable primitive.
-
class ExecutionNode : public ov::op::Op#
- #include <exec_model_info.hpp>
The Execution node which is used to represent node in execution graph.
It contains the following type of information in node runtime information:
ExecGraphInfoSerialization::ORIGINAL_NAMES
ExecGraphInfoSerialization::IMPL_TYPE
ExecGraphInfoSerialization::OUTPUT_PRECISIONS
ExecGraphInfoSerialization::PERF_COUNTER
ExecGraphInfoSerialization::OUTPUT_LAYOUTS
ExecGraphInfoSerialization::EXECUTION_ORDER
ExecGraphInfoSerialization::LAYER_TYPE
ExecGraphInfoSerialization::RUNTIME_PRECISION
Public Functions
-
ExecutionNode()#
A default constructor with no node inputs and 0 output ports.
-
ExecutionNode(const ov::OutputVector &arguments, size_t output_size = 1)#
Constructs a new execution node with a given parameters.
- Parameters:
arguments – [in] Inputs nodes
output_size – [in] A number of output ports
-
std::shared_ptr<ov::Node> clone_with_new_inputs(const ov::OutputVector &inputs) const override#
Creates a new execution node with the same state, but different input nodes.
- Parameters:
inputs – [in] The input nodes
- Returns:
A newly created execution node
-
virtual bool visit_attributes(ov::AttributeVisitor&) override#
Visits attributes of the node.
- Parameters:
visitor – [in] An attribute visitor
- Returns:
Returns
true
if an operation has completed successfully
-
static const char ORIGINAL_NAMES[] = "originalLayersNames"#
-
namespace frontend#
Typedefs
-
template<typename OVOpType = void>
using OpExtension = ov::frontend::OpExtensionBase<ov::frontend::ConversionExtension, OVOpType>#
-
using FrontEndVersion = uint64_t#
Each frontend plugin is responsible to export get_api_version function returning version of frontend API used for this plugin If version is not matched with OV_FRONTEND_API_VERSION - plugin will not be loaded by FrontEndManager.
-
using NamedOutputVector = std::vector<NamedOutput>#
-
using CreatorFunction = std::function<OutputVector(const NodeContext&)>#
-
using CreatorFunctionNamed = std::function<std::map<std::string, OutputVector>(const NodeContext&)>#
-
using CreatorFunctionNamedAndIndexed = std::function<NamedOutputVector(const NodeContext&)>#
Functions
-
inline const ov::OpSet &get_opset_by_name(const std::string &opset_name)#
The helper function to return an instance of OpSet class initialized with operations from provided opset by name.
- Parameters:
opset_name – Opset name (opsetN) to initialize OpSet class.
-
inline std::shared_ptr<ov::Node> create_ov_node_by_name(const std::string &ov_type_name)#
The helper function to create an instance of ov::Node class initialized by provided type name. Expected formats:
opsetN::OpName
opsetN.OpName
OpName
- Parameters:
ov_type_name – Type name of created ov::Node.
-
inline OutputVector indexed_from_named(const NamedOutputVector &outputs)#
-
inline NamedOutputVector named_from_indexed(const OutputVector &outputs)#
-
class ComplexTypeMark : public ov::op::util::FrameworkNode#
- #include <complex_type_mark.hpp>
Public Functions
-
inline virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
inline virtual void validate_and_infer_types() override#
-
class ConversionExtension : public ov::frontend::ConversionExtensionBase#
- #include <conversion.hpp>
-
class ConversionExtensionBase : public ov::Extension#
- #include <conversion.hpp>
Subclassed by ov::frontend::ConversionExtension
-
class DecoderBase : public ov::frontend::IDecoder#
- #include <decoder.hpp>
Public Functions
-
virtual ov::Any get_attribute(const std::string &name) const = 0#
Get attribute value by name.
- Parameters:
name – Attribute name
- Returns:
Shared pointer to appropriate value converted to openvino data type if it exists, ‘nullptr’ otherwise
-
virtual size_t get_input_size() const = 0#
Get a number of inputs.
-
virtual void get_input_node(size_t input_port_idx, std::string &producer_name, std::string &producer_output_port_name, size_t &producer_output_port_index) const = 0#
Get a producer name and its output port index.
-
virtual const std::string &get_op_type() const = 0#
Get operation type.
-
virtual const std::string &get_op_name() const = 0#
Get node name.
-
virtual ~DecoderBase()#
Destructor.
-
virtual ov::Any get_attribute(const std::string &name) const = 0#
-
class DecoderTransformationExtension : public ov::Extension#
- #include <decoder_transformation.hpp>
Holds a transformation that is applied just after the original model graph is decoded. This class is a holder for transformation. The transformation can be specified as FunctionPass or MathcerPass derivatives or as a function that can be used to build corresponding FunctionPass or MatcherPass object. The type of the extension is determined in the moment of creation by calling corresponding ctor.
Public Functions
Create a custom functional pass where code of the pass is implemented as a function.
-
explicit DecoderTransformationExtension(const std::function<void(ov::pass::MatcherPass*)> &matcher_pass_initializer)#
Create a custom matcher pass where the code of matcher pass initialization is a given function.
-
template<typename Transformation, typename std::enable_if<std::is_base_of<ov::pass::PassBase, Transformation>::value, bool>::type = true>
inline explicit DecoderTransformationExtension(const Transformation &transformation)# Register existing transformation object which will be copied and kept for further registration.
-
struct ExtensionHolder#
- #include <holder.hpp>
-
class FrontEnd#
- #include <frontend.hpp>
An interface for identifying a frontend for a particular framework. Provides an ability to load and convert of input model.
Unnamed Group
-
void add_extension(const std::string &library_path)#
Registers extension.
- Parameters:
library_path – path to library with ov::Extension
Public Functions
-
FrontEnd()#
Default constructor.
-
template<typename ...Types>
inline bool supported(const Types&... vars) const# Validates if FrontEnd can recognize model with parameters specified. Same parameters should be used to load model.
- Parameters:
vars – Any number of parameters of any type. What kind of parameters are accepted is determined by each FrontEnd individually, typically it is std::string containing path to the model file. For more information please refer to specific FrontEnd documentation.
- Returns:
true if model recognized, false - otherwise.
-
template<typename ...Types>
inline InputModel::Ptr load(const Types&... vars) const# Loads an input model by any specified arguments. Each FrontEnd separately defines what arguments it can accept.
- Parameters:
vars – Any number of parameters of any type. What kind of parameters are accepted is determined by each FrontEnd individually, typically it is std::string containing path to the model file. For more information please refer to specific FrontEnd documentation.
- Returns:
Loaded input model.
-
virtual std::shared_ptr<ov::Model> convert(const InputModel::Ptr &model) const#
Completely convert and normalize entire Model, throws if it is not possible.
Completely convert the remaining, not converted part of a Model.
- Parameters:
partiallyConverted – partially converted OV Model
-
virtual std::shared_ptr<ov::Model> convert_partially(const InputModel::Ptr &model) const#
Convert only those parts of the model that can be converted leaving others as-is wrapped by FrameworkNode. Converted parts are normalized by additional transformations like it is done in convert method. If part of the graph cannot be converted, it is not guaranteed that the converted regions are completely normalized. Normalize should be called for each completely converted parts individually in this case.
-
virtual std::shared_ptr<ov::Model> decode(const InputModel::Ptr &model) const#
Convert operations with one-to-one mapping with decoding nodes. Each decoding node is an OV node representing a single FW operation node with all attributes represented in FW-independent way.
Runs normalization passes on Model that was loaded with partial conversion.
- Parameters:
Model – partially converted OV Model
-
virtual std::string get_name() const#
Gets name of this FrontEnd. Can be used by clients if frontend is selected automatically by FrontEndManager::load_by_model.
- Returns:
Current frontend name. Empty string if not implemented
Register base extension in the FrontEnd.
- Parameters:
extension – base extension
Register base extensions in the FrontEnd.
- Parameters:
extensions – vector of extensions
-
void add_extension(const std::string &library_path)#
-
class FrontEndManager#
- #include <manager.hpp>
Frontend management class, loads available frontend plugins on construction Allows load of frontends for particular framework, register new and list available frontends This is a main frontend entry point for client applications.
Public Functions
-
FrontEndManager()#
Default constructor. Searches and loads of available frontends.
-
FrontEndManager(FrontEndManager&&) noexcept#
Default move constructor.
-
FrontEndManager &operator=(FrontEndManager&&) noexcept#
Default move assignment operator.
-
~FrontEndManager()#
Default destructor.
-
FrontEnd::Ptr load_by_framework(const std::string &framework)#
Loads frontend by name of framework and capabilities.
- Parameters:
framework – Framework name. Throws exception if name is not in list of available frontends
- Returns:
Frontend interface for further loading of models
-
template<typename ...Types>
inline FrontEnd::Ptr load_by_model(const Types&... vars)# Loads frontend by model fragments described by each FrontEnd documentation. Selects and loads appropriate frontend depending on model file extension and other file info (header)
- Parameters:
vars – Any number of parameters of any type. What kind of parameters are accepted is determined by each FrontEnd individually, typically it is std::string containing path to the model file. For more information please refer to specific FrontEnd documentation.
- Returns:
Frontend interface for further loading of model. Returns ‘nullptr’ if no suitable frontend is found
-
std::vector<std::string> get_available_front_ends()#
Gets list of registered frontends. Any not loaded frontends will be loaded by this call.
-
void register_front_end(const std::string &name, FrontEndFactory creator)#
Register frontend with name and factory creation method.
- Parameters:
name – Name of front end
creator – Creation factory callback. Will be called when frontend is about to be created
-
void register_front_end(const std::string &name, const std::string &library_path)#
Register frontend with name and factory loaded from provided library.
- Parameters:
name – Name of front end
library_path – Path (absolute or relative) or name of a frontend library. If name is provided, depending on platform, it will be wrapped with shared library suffix and prefix to identify library full name
-
FrontEndManager()#
-
struct FrontEndPluginInfo#
- #include <manager.hpp>
Each frontend plugin is responsible to export get_front_end_data function returning heap-allocated pointer to this structure. Will be used by FrontEndManager during loading of plugins.
-
class FWVisitor : public ov::AttributeVisitor#
- #include <op.hpp>
Public Functions
-
inline virtual void on_adapter(const std::string &name, ValueAccessor<void> &adapter) override#
handles all specialized on_adapter methods implemented by the visitor.
The adapter implements get_type_info(), which can be used to determine the adapter directly or via is_type and as_type on any platform
-
inline virtual void on_adapter(const std::string &name, ValueAccessor<void> &adapter) override#
-
class FWVisitorInputAttributes : public ov::AttributeVisitor#
- #include <op.hpp>
Public Functions
-
inline virtual void on_adapter(const std::string &name, ValueAccessor<void> &adapter) override#
handles all specialized on_adapter methods implemented by the visitor.
The adapter implements get_type_info(), which can be used to determine the adapter directly or via is_type and as_type on any platform
-
inline virtual void on_adapter(const std::string &name, ValueAccessor<void> &adapter) override#
-
class GeneralFailure : public ov::AssertFailure#
- #include <exception.hpp>
-
class GraphIterator : private ov::RuntimeAttribute#
- #include <graph_iterator.hpp>
Abstract representation for an input model graph that gives nodes in topologically sorted order.
Public Functions
-
virtual size_t size() const = 0#
Get a number of operation nodes in the graph.
-
virtual void reset() = 0#
Set iterator to the start position.
-
virtual void next() = 0#
Move to the next node in the graph.
-
virtual bool is_end() const = 0#
Returns true if iterator goes out of the range of available nodes.
-
virtual std::shared_ptr<DecoderBase> get_decoder() const = 0#
Return a pointer to a decoder of the current node.
-
virtual std::shared_ptr<GraphIterator> get_body_graph_iterator(const std::string &func_name) const = 0#
Checks if the main model graph contains a function of the requested name in the library Returns GraphIterator to this function and nullptr, if it does not exist.
-
virtual std::vector<std::string> get_input_names() const = 0#
Returns a vector of input names in the original order.
-
virtual std::vector<std::string> get_output_names() const = 0#
Returns a vector of output names in the original order.
-
virtual std::map<std::string, std::string> get_input_names_map() const#
Returns a map from internal tensor name to (user-defined) external name for inputs.
-
virtual std::map<std::string, std::string> get_output_names_map() const#
Returns a map from internal tensor name to (user-defined) external name for outputs.
-
virtual size_t size() const = 0#
-
class HashTable : public ov::frontend::Variable#
- #include <hash_table.hpp>
HashTable is a special type of Variable that has a complex value including keys and values. Keys and values are represented with two separate graph at each time step.
Public Functions
-
inline virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
inline virtual void validate_and_infer_types() override#
-
class IDecoder#
- #include <decoder.hpp>
Plays a role of node, block and module decoder.
Subclassed by ov::frontend::DecoderBase
-
class InitializationFailure : public ov::AssertFailure#
- #include <exception.hpp>
-
class InputModel#
- #include <input_model.hpp>
InputModel class represents an original, not yet converted model graph in a framework format given services to find places of interest in a graph or specialize/edit the model before conversion.
Editing requests may affect ability to convert the original model to OV Model. Aim to provide these editing capabilities is to unlock conversion for models that are not natively supported “as-is” because of undefined shapes, types or operations.
Specific front-end implementation is supposed to have a lazy implementation for all methods, not doing a complete load of a model without an explicit method call. For example, the list of all inputs are not pre-fetched by InputModel derived class instance creation, but only when get_inputs method is called. But it is not an obligation, the most convenient way should be chosen depending on the framework model representation.
All editing requests affect the model representation that is held behind the scene successive method calls observe a new graph structure.
Note
Class methods are divided into several groups: searching for places, naming and annotation, topology editing, setting tensor properties.
Public Functions
-
virtual std::vector<Place::Ptr> get_inputs() const#
Returns all inputs for a model An input is a place in a graph where data is supposed to flow inside graph from outside. It can be a tensor, port, operation; which kind of place can be an output is FW dependent. Usually framework models have a dedicated artifact to code model input, it can be a tensor without producer, that writes to it in ONNX, or a special operation like Placeholder in TensorFlow.
- Returns:
A vector of input place references
-
virtual std::vector<Place::Ptr> get_outputs() const#
Returns all output for a model An output is a terminal place in a graph where data escapes the flow. It can be a tensor, port, operation; which kind of place can be an output is FW dependent. In comparison to a graph input, the output is less formally defined thing and determination of initial list of outputs may include some conventions defined by a frontend itself, not a framework. For example, all output ports without consumers may be considered as outputs.
- Returns:
A vector of output place references
-
virtual Place::Ptr get_place_by_tensor_name(const std::string &tensor_name) const#
Returns a tensor place by a tensor name following framework conventions, or nullptr if a tensor with this name doesn’t exist.
- Parameters:
tensor_name – Name of tensor
- Returns:
Tensor place corresponding to specified tensor name or nullptr if not exists
-
virtual Place::Ptr get_place_by_input_index(size_t input_idx) const#
Returns a tensor place by an input index.
- Parameters:
input_idx – Index of model input
- Returns:
Tensor place corresponding to specified input index or nullptr
-
virtual Place::Ptr get_place_by_operation_name(const std::string &operation_name) const#
Returns an operation place by an operation name following framework conventions, or nullptr if an operation with this name doesn’t exist.
- Parameters:
operation_name – Name of operation
- Returns:
Place representing operation or nullptr if not exists
-
virtual Place::Ptr get_place_by_operation_name_and_input_port(const std::string &operation_name, int input_port_index)#
Returns an input port place by operation name and appropriate port index.
- Parameters:
operation_name – Name of operation
input_port_index – Index of input port for this operation
- Returns:
Place representing input port of operation or nullptr if not exists
-
virtual Place::Ptr get_place_by_operation_name_and_output_port(const std::string &operation_name, int output_port_index)#
Returns an output port place by operation name and appropriate port index.
- Parameters:
operation_name – Name of operation
output_port_index – Index of output port for this operation
- Returns:
Place representing output port of operation or nullptr if not exists
-
virtual void set_name_for_tensor(const Place::Ptr &tensor, const std::string &new_name)#
Sets name for tensor. Overwrites existing names of this place.
- Parameters:
tensor – Tensor place
new_name – New name for this tensor
-
virtual void add_name_for_tensor(const Place::Ptr &tensor, const std::string &new_name)#
Adds new name for tensor.
- Parameters:
tensor – Tensor place
new_name – New name to be added to this place
-
virtual void set_name_for_operation(const Place::Ptr &operation, const std::string &new_name)#
Sets name for operation. Overwrites existing names of this place.
- Parameters:
operation – Operation place
new_name – New name for this operation
-
virtual void free_name_for_tensor(const std::string &name)#
Unassign specified name from tensor place(s)
- Parameters:
name – Name of tensor
-
virtual void free_name_for_operation(const std::string &name)#
Unassign specified name from operation place(s)
- Parameters:
name – Name of operation
-
virtual void set_name_for_dimension(const Place::Ptr &place, size_t shape_dim_index, const std::string &dim_name)#
Set name for a particular dimension of a place (e.g. batch dimension)
-
virtual void cut_and_add_new_input(const Place::Ptr &place, const std::string &new_name_optional = "")#
Cut immediately before this place and assign this place as new input; prune all nodes that don’t contribute to any output.
- Parameters:
place – New place to be assigned as input
new_name_optional – Optional new name assigned to this input place
-
virtual void cut_and_add_new_output(const Place::Ptr &place, const std::string &new_name_optional = "")#
Cut immediately after this place and assign this place as new output; prune all nodes that don’t contribute to any output.
- Parameters:
place – New place to be assigned as output
new_name_optional – Optional new name assigned to this output place
-
virtual Place::Ptr add_output(const Place::Ptr &place)#
Assign this place as new output or add necessary nodes to represent a new output.
- Parameters:
place – Anchor point to add an output
- Returns:
new output place, may be the same as a given place
-
virtual void remove_output(const Place::Ptr &place)#
Removes any sinks directly attached to this place with all inbound data flow if it is not required by any other output.
- Parameters:
place – Model place
-
virtual void override_all_outputs(const std::vector<Place::Ptr> &outputs)#
Replaces all existing outputs with new ones removing all data flow that is not required for new outputs.
- Parameters:
outputs – Vector with places that will become new outputs; may intersect existing outputs.
outputs – Array of new output places
-
virtual void override_all_inputs(const std::vector<Place::Ptr> &inputs)#
Modifies the graph to use new inputs instead of existing ones. New inputs should completely satisfy all existing outputs.
- Parameters:
inputs – Array of new input places
-
virtual void extract_subgraph(const std::vector<Place::Ptr> &inputs, const std::vector<Place::Ptr> &outputs)#
Leaves only subgraph that are defined by new inputs and new outputs.
- Parameters:
inputs – Array of new input places
outputs – Array of new output places
-
virtual void set_partial_shape(const Place::Ptr &place, const ov::PartialShape &shape)#
Defines all possible shape that may be used for this place; place should be uniquely refer to some data. This partial shape will be converted to corresponding shape of results OV nodes and will define shape inference when the model is converted to OV.
- Parameters:
place – Model place
shape – Partial shape for this place
-
virtual ov::PartialShape get_partial_shape(const Place::Ptr &place) const#
Returns current partial shape used for this place.
- Parameters:
place – Model place
- Returns:
Partial shape for this place
-
virtual void set_element_type(const Place::Ptr &place, const ov::element::Type &type)#
Sets new element type for a place.
- Parameters:
place – Model place
type – New element type
-
virtual ov::element::Type get_element_type(const Place::Ptr &place) const#
Returns current element type used for this place.
- Parameters:
place – Model place
- Returns:
Element type for this place
-
virtual void set_tensor_value(const Place::Ptr &place, const void *value)#
Freezes a tensor with statically defined value or replace existing value for already constant node or tensor.
- Parameters:
place – Tensor place
value – Value for tensor place representing a memory buffer
-
virtual void set_tensor_partial_value(const Place::Ptr &place, const void *min_value, const void *max_value)#
Defines partial value (lower bound and upper bound) for a tensor place TODO: more details for min_value and max_value format; who defines shape?
- Parameters:
place – Tensor place
min_value – Lower bound of partial value for tensor place
max_value – Upper bound of partial value for tensor place
-
virtual std::vector<Place::Ptr> get_inputs() const#
-
struct NamedOutput#
- #include <node_context.hpp>
-
class NodeContext#
- #include <node_context.hpp>
Public Functions
-
inline virtual size_t get_input_size() const#
Returns a number of inputs.
-
inline virtual size_t get_input_size(const std::string &port_name) const#
Returns a number of inputs.
-
inline virtual Output<Node> get_input(int idx) const#
Returns exactly one input with a given idx; throws if there is no inputs or there are more than one input.
-
inline virtual Output<Node> get_input(const std::string &name, int idx) const#
Returns exactly one input with a given name and idx; throws if there is no inputs or there are more than one input.
-
inline virtual Output<Node> get_input(const std::string &name) const#
Returns exactly one input with a given name; throws if there is no inputs or there are more than one input.
-
inline virtual Output<Node> get_input_by_reference(int idx) const#
Returns output of Variable node (or Variable value). Variable is a special node that stores a value represented with a sub-graph. Variable has a concrete value at each conversion step. The current (consuming) operation node can change its value so consumers of this Variable will have a new value at next conversion steps. See ov::frontend::Variable class for more details.
-
inline virtual Any get_values_from_const_input(int idx) const#
Returns values from Constant input with the given index as ov::Any. Throws an exception if the input cannot be represented as Constant.
-
template<class T>
inline T get_attribute(const std::string &name) const# Returns node attribute by name.
-
template<class T>
inline T get_attribute(const std::string &name, const T &def) const# Returns node attribute by name. Returns ‘def’ value if attribute does not exist.
-
inline bool has_attribute(const std::string &name) const#
Check if an attribute of a given name exist.
-
virtual ov::Any get_attribute_as_any(const std::string &name) const = 0#
Returns node attribute by name as ov::Any.
-
inline virtual size_t get_subgraph_size() const#
Returns the number of sub-graphs that can be enumerated with get_subgraph.
-
inline virtual std::shared_ptr<Model> get_subgraph(int idx) const#
Returns subgraph converted on demand by the first access If there is no query for specific sub-graph it shouldn’t be converted idx should be in range 0..get_subgraph_size()-1.
-
inline virtual size_t get_input_size() const#
-
class NotImplementedFailure : public ov::AssertFailure#
- #include <exception.hpp>
-
class OpConversionFailure : public ov::AssertFailure#
- #include <exception.hpp>
-
class OpConversionFunction#
- #include <op.hpp>
-
class OpConversionFunctionInputAttributes#
- #include <op.hpp>
-
class OpConversionFunctionNamed#
- #include <op.hpp>
-
template<typename BaseConversionType, typename OVOpType = void>
class OpExtensionBase : public BaseConversionType# - #include <op.hpp>
-
template<typename BaseConversionType>
class OpExtensionBase<BaseConversionType, void> : public BaseConversionType# - #include <op.hpp>
-
class OpValidationFailure : public ov::AssertFailure#
- #include <exception.hpp>
-
class Place#
- #include <place.hpp>
An interface for identifying a place in a graph and iterate over it; can refer to an operation node, tensor, port etc.
Place can refer to Tensor, Input Edge, Input Port, Operation, Output Port, Output Edge
[Tensor A] | | [Input Edge] | V ------------------- [ [Input Port 0] ] [ ] [ Operation A ] [ ] [ [Output Port 0] ] ------------------- | | [Output Edge] | V [Tensor B] | | [Input Edge] | V ------------------- [ [Input Port 0] ] [ ] [ Operation B ] [ ] [ [Output Port 0] ] ------------------- | | [Output Edge] | V [Tensor C]
Note
Each front end implementation provides specialization of this interface to represent a place in a model graph. Various methods in the front end classes accept and retrieve instances of Place to point to particular node part which should be modified or satisfies some criteria. For example, this class is used to report model inputs and outputs, for searching operations and tensors by name, for setting shape etc.
Public Functions
-
virtual std::vector<std::string> get_names() const#
All associated names (synonyms) that identify this place in the graph in a framework specific way.
- Returns:
A vector of strings each representing a name that identifies this place in the graph. Can be empty if there are no names associated with this place or name cannot be attached.
-
virtual std::vector<Ptr> get_consuming_operations() const#
Returns references to all operation nodes that consume data from this place.
Note
It can be called for any kind of graph place searching for the first consuming operations. It is optional if place has only one output port
- Returns:
A vector with all operation node references that consumes data from this place
-
virtual std::vector<Ptr> get_consuming_operations(int output_port_index) const#
Returns references to all operation nodes that consume data from this place for specified output port.
Note
It can be called for any kind of graph place searching for the first consuming operations.
- Parameters:
output_port_index – If place is an operational node it specifies which output port should be considered.
- Returns:
A vector with all operation node references that consumes data from this place
-
virtual std::vector<Ptr> get_consuming_operations(const std::string &outputName) const#
Returns references to all operation nodes that consume data from this place for specified output port.
Note
It can be called for any kind of graph place searching for the first consuming operations.
- Parameters:
outputName – If a given place is itself an operation node, this specifies name of output port group
- Returns:
A vector with all operation node references that consumes data from this place
-
virtual std::vector<Ptr> get_consuming_operations(const std::string &outputName, int outputPortIndex) const#
Returns references to all operation nodes that consume data from this place for specified output port.
Note
It can be called for any kind of graph place searching for the first consuming operations.
- Parameters:
outputName – If a given place is itself an operation node, this specifies name of output port group, each group can have multiple ports
outputPortIndex – If place is an operational node it specifies which output port should be considered.
- Returns:
A vector with all operation node references that consumes data from this place
-
virtual Ptr get_target_tensor() const#
Returns a tensor place that gets data from this place; applicable for operations, output ports and output edges which have only one output port.
- Returns:
A tensor place which hold the resulting value for this place
-
virtual Ptr get_target_tensor(const std::string &outputName) const#
Returns a tensor place that gets data from this place; applicable for operations.
- Parameters:
outputName – Name of output port group
- Returns:
A tensor place which hold the resulting value for this place
-
virtual Ptr get_target_tensor(const std::string &outputName, int outputPortIndex) const#
Returns a tensor place that gets data from this place; applicable for operations.
- Parameters:
outputName – Name of output port group, each group can have multiple ports
outputPortIndex – Output port index if the current place is an operation node and has multiple output ports
- Returns:
A tensor place which hold the resulting value for this place
-
virtual Ptr get_target_tensor(int output_port_index) const#
Returns a tensor place that gets data from this place; applicable for operations.
- Parameters:
output_port_index – Output port index if the current place is an operation node and has multiple output ports
- Returns:
A tensor place which hold the resulting value for this place
-
virtual Ptr get_source_tensor() const#
Returns a tensor place that supplies data for this place; applicable for operations, input ports and input edges which have only one input port.
- Returns:
A tensor place which supplies data for this place
-
virtual Ptr get_source_tensor(int input_port_index) const#
Returns a tensor place that supplies data for this place; applicable for operations.
- Parameters:
input_port_index – Input port index for operational nodes.
- Returns:
A tensor place which supplies data for this place
-
virtual Ptr get_source_tensor(const std::string &inputName) const#
Returns a tensor place that supplies data for this place; applicable for operations.
- Parameters:
inputName – Name of input port group
- Returns:
A tensor place which supplies data for this place
-
virtual Ptr get_source_tensor(const std::string &inputName, int inputPortIndex) const#
Returns a tensor place that supplies data for this place; applicable for operations.
- Parameters:
inputName – If a given place is itself an operation node, this specifies name of output port group, each group can have multiple ports
inputPortIndex – Input port index for operational nodes.
- Returns:
A tensor place which supplies data for this place
-
virtual Ptr get_producing_operation() const#
Get an operation node place that immediately produces data for this place; applicable if place has only one input port.
- Returns:
An operation place that produces data for this place
-
virtual Ptr get_producing_operation(int input_port_index) const#
Get an operation node place that immediately produces data for this place.
- Parameters:
input_port_index – If a given place is itself an operation node, this specifies a port index
- Returns:
An operation place that produces data for this place
-
virtual Ptr get_producing_operation(const std::string &inputName) const#
Get an operation node place that immediately produces data for this place.
- Parameters:
inputName – If a given place is itself an operation node, this specifies name of output port group
- Returns:
An operation place that produces data for this place
-
virtual Ptr get_producing_operation(const std::string &inputName, int inputPortIndex) const#
Get an operation node place that immediately produces data for this place.
- Parameters:
inputName – If a given place is itself an operation node, this specifies name of output port group, each group can have multiple ports
inputPortIndex – If a given place is itself an operation node, this specifies a port index
- Returns:
An operation place that produces data for this place
-
virtual Ptr get_producing_port() const#
Returns a port that produces data for this place.
-
virtual Ptr get_input_port() const#
For operation node returns reference to an input port; applicable if operation node has only one input port.
- Returns:
Input port place or nullptr if not exists
-
virtual Ptr get_input_port(int input_port_index) const#
For operation node returns reference to an input port with specified index.
- Parameters:
input_port_index – Input port index
- Returns:
Appropriate input port place or nullptr if not exists
-
virtual Ptr get_input_port(const std::string &input_name) const#
For operation node returns reference to an input port with specified name; applicable if port group has only one input port.
- Parameters:
input_name – Name of port group
- Returns:
Appropriate input port place or nullptr if not exists
-
virtual Ptr get_input_port(const std::string &input_name, int input_port_index) const#
For operation node returns reference to an input port with specified name and index.
- Parameters:
input_name – Name of port group, each group can have multiple ports
input_port_index – Input port index in a group
- Returns:
Appropriate input port place or nullptr if not exists
-
virtual Ptr get_output_port() const#
For operation node returns reference to an output port; applicable for operations with only one output port.
- Returns:
Appropriate output port place or nullptr if not exists
-
virtual Ptr get_output_port(int output_port_index) const#
For operation node returns reference to an output port with specified index.
- Parameters:
output_port_index – Output port index
- Returns:
Appropriate output port place or nullptr if not exists
-
virtual Ptr get_output_port(const std::string &output_name) const#
For operation node returns reference to an output port with specified name; applicable if port group has only one output port.
- Parameters:
output_name – Name of output port group
- Returns:
Appropriate output port place or nullptr if not exists
-
virtual Ptr get_output_port(const std::string &output_name, int output_port_index) const#
For operation node returns reference to an output port with specified name and index.
- Parameters:
output_name – Name of output port group, each group can have multiple ports
output_port_index – Output port index
- Returns:
Appropriate output port place or nullptr if not exists
-
virtual std::vector<Place::Ptr> get_consuming_ports() const#
Returns all input ports that consume data flows through this place.
-
virtual bool is_input() const#
Returns true if this place is input for a model.
-
virtual bool is_output() const#
Returns true if this place is output for a model.
-
virtual bool is_equal(const Ptr &another) const#
Returns true if another place is the same as this place.
- Parameters:
another – Another place object
-
virtual bool is_equal_data(const Ptr &another) const#
Returns true if another place points to the same data.
Note
The same data means all places on path: output port -> output edge -> tensor -> input edge -> input port.
- Parameters:
another – Another place object
-
virtual std::vector<std::string> get_names() const#
-
class ProgressReporterExtension : public ov::Extension#
- #include <progress_reporter.hpp>
Public Types
-
using progress_notifier_callback = std::function<void(float, unsigned int, unsigned int)>#
A progress reporting callback signature. A FunctionObject that matches this signature should be passed to the constructor of this extension. The extension will then invoke this as a callback each time the progress needs to be reported. The callback itself is responsible for consuming the reported values.
- Param progress:
A float value in the range [0.0, 1.0] indicating the total progress of an operation.
- Param total_steps:
The total number of steps that a given instance of this extension is tracking
- Param completed_completed:
The current number of completed steps (out of the total number of steps to take)
Public Functions
-
inline ProgressReporterExtension()#
The default constructor which creates a reporter that doesn’t report progress.
-
void report_progress(float progress, unsigned int total_steps, unsigned int completed_steps) const#
The main method of this extension used to report the progress. This method forwards its arguments to the callback stored in this class.
- Parameters:
progress – A float value in the range [0.0, 1.0] indicating the total progress of an operation.
total_steps – The total number of steps that a given instance of this extension is tracking
completed_steps – The current number of completed steps (out of the total number of steps to take)
-
using progress_notifier_callback = std::function<void(float, unsigned int, unsigned int)>#
-
class TelemetryExtension : public ov::Extension#
- #include <telemetry.hpp>
Provides callback to report telemetry information back to Python code.
-
class Variable : public ov::op::util::FrameworkNode#
- #include <variable.hpp>
Variable is a special node used in a conversion step It can have several values (or states) during the conversion. Variable value at some time step is represented with a graph.
Subclassed by ov::frontend::HashTable
Public Functions
-
inline virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
inline bool is_initialized() const#
Checks if variable is initialized with some value.
-
inline uint64_t get_init_counter() const#
Returns a counter value (a number of values that have assigned to this variable)
-
inline virtual void validate_and_infer_types() override#
-
template<typename OVOpType = void>
-
namespace gen_pattern#
Functions
-
static bool matcher_verbose_enabled()#
-
inline std::shared_ptr<Node> GenInput(values_info vt = nullptr)#
-
inline std::shared_ptr<Node> makePattern(values_info vt)#
-
inline std::shared_ptr<Node> makeConst(const ov::element::Type &type, const ov::PartialShape &pshape, std::function<bool(ov::op::v0::Constant &node)> pred)#
-
inline std::shared_ptr<Node> GenStridedSlice(detail::PatternNode data, detail::PatternNode start, detail::PatternNode stop, detail::PatternNode step, size_t axis, int line_no = -1, const char *file = "")#
-
class PatternValidator#
- #include <gen_pattern.hpp>
-
class Symbol#
- #include <gen_pattern.hpp>
-
struct values_info#
- #include <gen_pattern.hpp>
-
namespace detail#
Typedefs
Functions
-
inline std::vector<std::string> split_string(const std::string &s, const std::string &delimiter)#
-
template<typename T>
void add_symbol_observed(SymbolObservationVector &sov, const Symbol &sym, const T &value)#
-
struct AttrAny#
- #include <gen_pattern.hpp>
-
class AttrMatcher : public ov::AttributeVisitor#
- #include <gen_pattern.hpp>
Public Functions
-
inline virtual void on_adapter(const std::string &name, ov::ValueAccessor<void> &adapter) override#
handles all specialized on_adapter methods implemented by the visitor.
The adapter implements get_type_info(), which can be used to determine the adapter directly or via is_type and as_type on any platform
-
inline virtual void on_adapter(const std::string &name, ov::ValueAccessor<void> &adapter) override#
-
class AttrSetter : public ov::AttributeVisitor#
- #include <gen_pattern.hpp>
Public Functions
-
inline virtual void on_adapter(const std::string &name, ov::ValueAccessor<void> &adapter) override#
handles all specialized on_adapter methods implemented by the visitor.
The adapter implements get_type_info(), which can be used to determine the adapter directly or via is_type and as_type on any platform
-
inline virtual void on_adapter(const std::string &name, ov::ValueAccessor<void> &adapter) override#
-
struct PatternNode#
- #include <gen_pattern.hpp>
-
inline std::vector<std::string> split_string(const std::string &s, const std::string &delimiter)#
-
static bool matcher_verbose_enabled()#
-
namespace helpers#
Functions
-
template<typename ACT, typename ...T, size_t N_ARGS = NumOfLambdaArgs<ACT>::value>
std::enable_if<N_ARGS == sizeof...(T) + 2, void>::type call_with_args(const ACT &body, size_t g_id, size_t iwork, T... arg)#
-
template<typename T>
struct NumOfLambdaArgs# - #include <parallel.hpp>
- template<typename C, typename R, typename... Args> *)(Args...) const >
- #include <parallel.hpp>
-
template<typename ACT, typename ...T, size_t N_ARGS = NumOfLambdaArgs<ACT>::value>
-
namespace hint#
Namespace with hint properties.
Enums
-
enum class Priority#
Enum to define possible priorities hints.
Values:
-
enumerator LOW#
Low priority.
-
enumerator MEDIUM#
Medium priority.
-
enumerator HIGH#
High priority.
-
enumerator DEFAULT#
Default priority is MEDIUM.
-
enumerator LOW#
-
enum class PerformanceMode#
Enum to define possible performance mode hints.
Values:
-
enumerator LATENCY#
Optimize for latency.
-
enumerator THROUGHPUT#
Optimize for throughput.
-
enumerator CUMULATIVE_THROUGHPUT#
Optimize for cumulative throughput.
-
enumerator LATENCY#
-
enum class SchedulingCoreType#
This enum contains definition of core type can be used for CPU tasks on different devices.
Values:
-
enumerator PCORE_ONLY#
Only processors of performance-cores can be used.
-
enumerator ECORE_ONLY#
Only processors of efficient-cores can be used.
-
enumerator PCORE_ONLY#
Variables
-
static constexpr Property<element::Type, PropertyMutability::RW> inference_precision = {"INFERENCE_PRECISION_HINT"}#
Hint for device to use specified precision for inference.
-
static constexpr Property<Priority> model_priority = {"MODEL_PRIORITY"}#
High-level OpenVINO model priority hint Defines what model should be provided with more performant bounded resource first.
-
static constexpr Property<PerformanceMode> performance_mode = {"PERFORMANCE_HINT"}#
High-level OpenVINO Performance Hints unlike low-level properties that are individual (per-device), the hints are something that every device accepts and turns into device-specific settings.
-
static constexpr Property<SchedulingCoreType> scheduling_core_type = {"SCHEDULING_CORE_TYPE"}#
This property defines CPU core type which can be used during inference.
Developer can use this property to select specific CPU cores for inference. Please refer SchedulingCoreType for all definition of core type.
The following code is an example to only use efficient-cores for inference on hybrid CPU. If user sets this configuration on a platform with only performance-cores, CPU inference will still run on the performance-cores.
ie.set_property(ov::hint::scheduling_core_type(ov::hint::SchedulingCoreType::ECORE_ONLY));
-
static constexpr Property<std::set<ModelDistributionPolicy>> model_distribution_policy = {"MODEL_DISTRIBUTION_POLICY"}#
This property defines model distribution policy for inference with multiple sockets/devices.
This property can be used to select model distribution policy between execution units (e.g. between CPU sockets/NUMA nodes or between different GPUs). — TENSOR_PARALLEL : Distribute tensor to multiple sockets/devices during model compilation. At inference time, sockets/devices process individual tensor in parallel. — PIPELINE_PARALLEL : Distribute tensor to multiple sockets/devices during model compilation. At inference time, sockets/devices process individual tensor one by one. And each socket/device processes a portion of a different tensor in parallel.
The following code is an example how TENSOR_PARALLEL or PIPELINE_PARALLEL model distribution policy might be enabled.
ie.set_property(ov::hint::model_distribution_policy({ov::hint::ModelDistributionPolicy::TENSOR_PARALLEL})); ie.set_property(ov::hint::model_distribution_policy({ov::hint::ModelDistributionPolicy::PIPELINE_PARALLEL}));
-
static constexpr Property<bool> enable_cpu_pinning = {"ENABLE_CPU_PINNING"}#
This property allows CPU pinning during inference.
Developer can use this property to enable or disable CPU pinning during inference on Windows and Linux. MacOS does not support CPU pinning, and this property is always disabled. If user does not explicitly set value for this property, OpenVINO may choose any desired value based on internal logic.
The following is an example of CPU fixed behavior on a hybrid CPU (8 performance cores and 16 efficiency cores). For stream with 4 threads on performance cores, if CPU pinning is enabled, each thread is bound to a specific performance core. If CPU pinning is disabled, OS will schedule 4 threads on performance cores only. For stream with 24 threads on all cores, if CPU pinning is enabled, each thread is bound to a specific performance core. If CPU pinning is disabled, OS will schedule 24 threads on both performance cores and efficiency cores.
The following code is example to use this property.
ie.set_property(ov::hint::enable_cpu_pinning(true)); ie.set_property(ov::hint::enable_cpu_pinning(false));
-
static constexpr Property<bool> enable_hyper_threading = {"ENABLE_HYPER_THREADING"}#
This property define if using hyper threading during inference.
Developer can use this property to use or not use CPU pinning during inference. If user does not explicitly set value for this property, OpenVINO may choose any desired value based on internal logic.
The following code is example to use this property.
ie.set_property(ov::hint::enable_hyper_threading(true)); ie.set_property(ov::hint::enable_hyper_threading(false));
-
static constexpr Property<uint32_t> num_requests = {"PERFORMANCE_HINT_NUM_REQUESTS"}#
(Optional) property that backs the (above) Performance Hints by giving additional information on how many inference requests the application will be keeping in flight usually this value comes from the actual use-case (e.g. number of video-cameras, or other sources of inputs)
-
static constexpr Property<std::shared_ptr<ov::Model>> model = {"MODEL_PTR"}#
This key identifies shared pointer to the ov::Model, required for some properties (ov::max_batch_size and ov::optimal_batch_size)
-
static constexpr Property<bool, PropertyMutability::RW> allow_auto_batching = {"ALLOW_AUTO_BATCHING"}#
Special key for auto batching feature configuration. Enabled by default.
-
static constexpr Property<ExecutionMode> execution_mode = {"EXECUTION_MODE_HINT"}#
High-level OpenVINO Execution hint unlike low-level properties that are individual (per-device), the hints are something that every device accepts and turns into device-specific settings Execution mode hint controls preferred optimization targets (performance or accuracy) for given model.
-
static constexpr Property<uint64_t, PropertyMutability::RW> dynamic_quantization_group_size{"DYNAMIC_QUANTIZATION_GROUP_SIZE"}#
This property defines group size for dynamic quantization optimization.
Dynamic quantization optimization provides an ability to get performance benefit from int8 compute. In contrast with static quantization dynamic approach assumes activations are quantized during inference. Despite the fact dynamic quantization has some runtime overheads, it might provide better accuracy metrics. This property defines granularity (aka block size) for dynamic quantization algorithms. Lower group size values might result in better accuracy, but the drawback is worse performance. Group size equal 0 means dynamic quantization optimization is disabled.
-
static constexpr Property<element::Type, PropertyMutability::RW> kv_cache_precision = {"KV_CACHE_PRECISION"}#
Hint for device to use specified precision for kv cache compression.
-
static constexpr Property<float, PropertyMutability::RW> activations_scale_factor = {"ACTIVATIONS_SCALE_FACTOR"}#
This property scales down activations to prevent overflows when inference precision is f16.
-
enum class Priority#
-
namespace intel_auto#
Namespace with Intel AUTO specific properties.
Enums
Variables
-
static constexpr Property<bool> enable_startup_fallback = {"ENABLE_STARTUP_FALLBACK"}#
auto device setting that enable/disable CPU as acceleration (or helper device) at the beginning
-
static constexpr Property<bool> enable_runtime_fallback = {"ENABLE_RUNTIME_FALLBACK"}#
auto device setting that enable/disable runtime fallback to other devices when infer fails on current selected device
-
static constexpr Property<SchedulePolicy> schedule_policy = {"SCHEDULE_POLICY"}#
High-level OpenVINO model policy hint Defines what scheduling policy should be used in AUTO CUMULATIVE_THROUGHPUT or MULTI case.
-
static constexpr Property<bool> enable_startup_fallback = {"ENABLE_STARTUP_FALLBACK"}#
-
namespace intel_cpu#
Namespace with Intel CPU specific properties.
Variables
-
static constexpr Property<bool> denormals_optimization = {"CPU_DENORMALS_OPTIMIZATION"}#
This property define whether to perform denormals optimization.
Computation with denormals is very time consuming. FTZ(Flushing denormals to zero) and DAZ(Denormals as zero) could significantly improve the performance, but it does not comply with IEEE standard. In most cases, this behavior has little impact on model accuracy. Users could enable this optimization if no or acceptable accuracy drop is seen. The following code enables denormals optimization
ie.set_property(ov::denormals_optimization(true)); // enable denormals optimization
The following code disables denormals optimization
ie.set_property(ov::denormals_optimization(false)); // disable denormals optimization
-
static constexpr Property<float> sparse_weights_decompression_rate = {"CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE"}#
This property defines threshold for sparse weights decompression feature activation.
Sparse weights decompression feature allows to pack weights for Matrix Multiplication operations directly in the CPU plugin at the model compilation stage and store non-zero values in a special packed format. Then, during the execution of the model, the weights are unpacked and used in the computational kernel. Since the weights are loaded from DDR/L3 cache in the packed format this significantly decreases memory consumption and as a consequence improve inference performance. The following code allows to set the sparse rate value.
core.set_property(ov::intel_cpu::sparse_weights_decompression_rate(0.8));
-
static constexpr Property<bool> denormals_optimization = {"CPU_DENORMALS_OPTIMIZATION"}#
-
namespace intel_gpu#
Namespace with Intel GPU specific properties.
Typedefs
-
using gpu_handle_param = void*#
Enums
-
enum class ContextType#
Enum to define the type of the shared context.
Values:
-
enumerator OCL#
Pure OpenCL context.
-
enumerator VA_SHARED#
Context shared with a video decoding device.
-
enumerator OCL#
Enum to define the type of the shared memory buffer.
Values:
Shared OpenCL buffer blob.
Shared OpenCL 2D image blob.
Shared USM pointer allocated by user.
Shared USM pointer type with host allocation type allocated by plugin.
Shared USM pointer type with device allocation type allocated by plugin.
Shared video decoder surface or D3D 2D texture blob.
Shared D3D buffer blob.
Variables
-
static constexpr Property<uint64_t, PropertyMutability::RO> device_total_mem_size = {"GPU_DEVICE_TOTAL_MEM_SIZE"}#
Read-only property which defines size of memory in bytes available for the device. For iGPU it returns host memory size, for dGPU - dedicated gpu memory size.
-
static constexpr Property<std::string, PropertyMutability::RO> uarch_version = {"GPU_UARCH_VERSION"}#
Read-only property to get microarchitecture identifier in major.minor.revision format.
-
static constexpr Property<int32_t, PropertyMutability::RO> execution_units_count = {"GPU_EXECUTION_UNITS_COUNT"}#
Read-only property to get count of execution units for current GPU.
-
static constexpr Property<std::map<std::string, uint64_t>, PropertyMutability::RO> memory_statistics{"GPU_MEMORY_STATISTICS"}#
Read-only property to get statistics of GPU memory allocated by engine for each allocation type It contains information about current memory usage.
-
static constexpr Property<bool> enable_loop_unrolling = {"GPU_ENABLE_LOOP_UNROLLING"}#
Turning on this key enables to unroll recurrent layers such as TensorIterator or Loop with fixed iteration count. This key is turned on by default. Turning this key on will achieve better inference performance for loops with not too many iteration counts (less than 16, as a rule of thumb). Turning this key off will achieve better performance for both graph loading time and inference time with many iteration counts (greater than 16). Note that turning this key on will increase the graph loading time in proportion to the iteration counts. Thus, this key should be turned off if graph loading time is considered to be most important target to optimize.
-
static constexpr Property<bool> disable_winograd_convolution = {"GPU_DISABLE_WINOGRAD_CONVOLUTION"}#
Turning on this key disables winograd convolution. Winograd convolution has different characteristics for accuracy and performance compared to other convolution implementations.
-
static constexpr Property<ContextType> context_type = {"CONTEXT_TYPE"}#
Shared device context type: can be either pure OpenCL (OCL) or shared video decoder (VA_SHARED) context.
-
static constexpr Property<gpu_handle_param> ocl_context = {"OCL_CONTEXT"}#
This key identifies OpenCL context handle in a shared context or shared memory blob parameter map.
-
static constexpr Property<int> ocl_context_device_id = {"OCL_CONTEXT_DEVICE_ID"}#
This key identifies ID of device in OpenCL context if multiple devices are present in the context.
-
static constexpr Property<int> tile_id = {"TILE_ID"}#
In case of multi-tile system, this key identifies tile within given context.
-
static constexpr Property<gpu_handle_param> ocl_queue = {"OCL_QUEUE"}#
This key identifies OpenCL queue handle in a shared context.
-
static constexpr Property<gpu_handle_param> va_device = {"VA_DEVICE"}#
This key identifies video acceleration device/display handle in a shared context or shared memory blob parameter map.
This key identifies type of internal shared memory in a shared memory blob parameter map.
-
static constexpr Property<gpu_handle_param> mem_handle = {"MEM_HANDLE"}#
This key identifies OpenCL memory handle in a shared memory blob parameter map.
-
static constexpr Property<gpu_handle_param> dev_object_handle = {"DEV_OBJECT_HANDLE"}#
This key identifies video decoder surface handle in a shared memory blob parameter map.
-
static constexpr Property<uint32_t> va_plane = {"VA_PLANE"}#
This key identifies video decoder surface plane in a shared memory blob parameter map.
-
namespace capability#
Possible return value for ov::device::capabilities property.
Variables
-
static constexpr const auto HW_MATMUL = "GPU_HW_MATMUL"#
Device has hardware block for matrix multiplication.
-
static constexpr const auto HW_MATMUL = "GPU_HW_MATMUL"#
-
namespace hint#
Typedefs
-
using ThrottleLevel = ov::hint::Priority#
This enum represents the possible value of ov::intel_gpu::hint::queue_throttle property:
LOW is used for CL_QUEUE_THROTTLE_LOW_KHR OpenCL throttle hint
MEDIUM (DEFAULT) is used for CL_QUEUE_THROTTLE_MED_KHR OpenCL throttle hint
HIGH is used for CL_QUEUE_THROTTLE_HIGH_KHR OpenCL throttle hint
Variables
-
static constexpr Property<ThrottleLevel> queue_throttle = {"GPU_QUEUE_THROTTLE"}#
This key instructs the GPU plugin to use OpenCL queue throttle hints as defined in https://www.khronos.org/registry/OpenCL/specs/opencl-2.1-extensions.pdf, chapter 9.19. This option should be used with ov::intel_gpu::hint::ThrottleLevel values.
-
static constexpr Property<ov::hint::Priority> queue_priority = {"GPU_QUEUE_PRIORITY"}#
This key instructs the GPU plugin to use the OpenCL queue priority hint as defined in https://www.khronos.org/registry/OpenCL/specs/opencl-2.1-extensions.pdf. This option should be used with ov::hint::Priority:
LOW is used for CL_QUEUE_PRIORITY_LOW_KHR OpenCL priority hint
MEDIUM (DEFAULT) is used for CL_QUEUE_PRIORITY_MED_KHR OpenCL priority hint
HIGH is used for CL_QUEUE_PRIORITY_HIGH_KHR OpenCL priority hint
-
static constexpr Property<ov::hint::Priority> host_task_priority = {"GPU_HOST_TASK_PRIORITY"}#
This key instructs the GPU plugin which cpu core type of TBB affinity used in load network. This option has 3 types of levels: HIGH, LOW, and ANY. It is only affected on Hybrid CPUs.
LOW - instructs the GPU Plugin to use LITTLE cores if they are available
MEDIUM (DEFAULT) - instructs the GPU Plugin to use any available cores (BIG or LITTLE cores)
HIGH - instructs the GPU Plugin to use BIG cores if they are available
-
static constexpr Property<int64_t> available_device_mem = {"AVAILABLE_DEVICE_MEM_SIZE"}#
This key identifies available device memory size in bytes.
-
static constexpr Property<bool> enable_sdpa_optimization = {"GPU_ENABLE_SDPA_OPTIMIZATION"}#
Turning on this key disables SDPA operation decomposition and keeps SDPA operation in the graph. Enabling SDPA optimization may provide performance improvements and memory usage reduction. This key serves as a recommendation and may be ignored in known sub-optimal cases.
-
static constexpr Property<bool> enable_kernels_reuse = {"GPU_ENABLE_KERNELS_REUSE"}#
Turning on this property enables kernels reuse between implementations, resulting in a lower memory footprint. However, as a drawback, OpenCL set_arguments() call will be made more often, resulting in higher host pressure and slower execution in some host-bottleneck cases. This property is available only for single-stream scenarios and will be ignored in other cases.
-
using ThrottleLevel = ov::hint::Priority#
-
namespace memory_type#
These keys instruct the GPU plugin to use surface/buffer memory type.
Variables
-
static constexpr auto surface = "GPU_SURFACE"#
Native video decoder surface.
-
static constexpr auto surface = "GPU_SURFACE"#
-
namespace ocl#
Namespace with Intel GPU OpenCL specific remote objects.
Typedefs
-
using gpu_handle_param = void*#
Shortcut for defining a handle parameter.
-
class ClBufferTensor : public ov::RemoteTensor
- #include <ocl.hpp>
This class represents an abstraction for GPU plugin remote tensor which can be shared with user-supplied OpenCL buffer. The plugin object derived from this class can be obtained with ClContext::create_tensor() call.
Note
User can obtain OpenCL buffer handle from this class.
Subclassed by ov::intel_gpu::ocl::D3DBufferTensor
Public Functions
-
inline cl_mem get()
Returns the underlying OpenCL memory object handle.
- Returns:
underlying OpenCL memory object handle
-
inline operator cl_mem()
OpenCL memory handle conversion operator.
- Returns:
cl_mem
-
inline operator cl::Buffer()
Standard Khronos cl::Buffer wrapper conversion operator.
- Returns:
cl::Buffer
object
Public Static Functions
-
static inline void type_check(const Tensor &tensor)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
tensor – a tensor to check
-
inline cl_mem get()
-
class ClContext : public ov::RemoteContext
- #include <ocl.hpp>
This class represents an abstraction for GPU plugin remote context which is shared with OpenCL context object. The plugin object derived from this class can be obtained either with CompiledModel::get_context() or Core::create_context() calls.
Subclassed by ov::intel_gpu::ocl::D3DContext, ov::intel_gpu::ocl::VAContext
Public Functions
-
inline ClContext(Core &core, cl_context ctx, int ctx_device_id = 0)
Constructs context object from user-supplied OpenCL context handle.
- Parameters:
core – A reference to OpenVINO Runtime Core object
ctx – A OpenCL context to be used to create shared remote context
ctx_device_id – An ID of device to be used from ctx
-
inline ClContext(Core &core, cl_command_queue queue)
Constructs context object from user-supplied OpenCL context handle.
Note
Only latency mode is supported for such context sharing case.
- Parameters:
core – A reference to OpenVINO Runtime Core object
queue – An OpenCL queue to be used to create shared remote context. Queue will be reused inside the plugin.
-
inline cl_context get()
Returns the underlying OpenCL context handle.
- Returns:
cl_context
-
inline operator cl_context()
OpenCL context handle conversion operator for the ClContext object.
- Returns:
cl_context
-
inline operator cl::Context()
Standard Khronos cl::Context wrapper conversion operator for the ClContext object.
- Returns:
cl::Context
object
-
inline std::pair<ClImage2DTensor, ClImage2DTensor> create_tensor_nv12(const cl::Image2D &nv12_image_plane_y, const cl::Image2D &nv12_image_plane_uv)
This function is used to construct a NV12 compound tensor object from two cl::Image2D wrapper objects. The resulting compound contains two remote tensors for Y and UV planes of the surface.
- Parameters:
nv12_image_plane_y – cl::Image2D object containing Y plane data.
nv12_image_plane_uv – cl::Image2D object containing UV plane data.
- Returns:
A pair of remote tensors for each plane
-
inline ClBufferTensor create_tensor(const element::Type type, const Shape &shape, const cl_mem buffer)
This function is used to obtain remote tensor object from user-supplied cl_mem object.
-
inline ClBufferTensor create_tensor(const element::Type type, const Shape &shape, const cl::Buffer &buffer)
This function is used to obtain remote tensor object from user-supplied cl::Buffer object.
-
inline ClImage2DTensor create_tensor(const element::Type type, const Shape &shape, const cl::Image2D &image)
This function is used to obtain remote tensor object from user-supplied cl::Image2D object.
-
inline USMTensor create_tensor(const element::Type type, const Shape &shape, void *usm_ptr)
This function is used to obtain remote tensor object from user-supplied USM pointer.
-
inline USMTensor create_usm_host_tensor(const element::Type type, const Shape &shape)
This function is used to allocate USM tensor with host allocation type.
-
inline USMTensor create_usm_device_tensor(const element::Type type, const Shape &shape)
This function is used to allocate USM tensor with device allocation type.
-
RemoteTensor create_tensor(const element::Type &type, const Shape &shape, const AnyMap ¶ms = {})
Allocates memory tensor in device memory or wraps user-supplied memory handle using the specified tensor description and low-level device-specific parameters. Returns a pointer to the object that implements the RemoteTensor interface.
- Parameters:
type – Defines the element type of the tensor.
shape – Defines the shape of the tensor.
params – Map of the low-level tensor object parameters.
- Returns:
Pointer to a plugin object that implements the RemoteTensor interface.
Public Static Functions
-
static inline void type_check(const RemoteContext &remote_context)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
remote_context – A remote context to check
-
inline ClContext(Core &core, cl_context ctx, int ctx_device_id = 0)
-
class ClImage2DTensor : public ov::RemoteTensor
- #include <ocl.hpp>
This class represents an abstraction for GPU plugin remote tensor which can be shared with user-supplied OpenCL 2D Image. The plugin object derived from this class can be obtained with ClContext::create_tensor() call.
Note
User can obtain OpenCL image handle from this class.
Subclassed by ov::intel_gpu::ocl::D3DSurface2DTensor, ov::intel_gpu::ocl::VASurfaceTensor
Public Functions
-
inline cl_mem get()
Returns the underlying OpenCL memory object handle.
- Returns:
underlying OpenCL memory object handle
-
inline operator cl_mem()
OpenCL memory handle conversion operator.
- Returns:
cl_mem
-
inline operator cl::Image2D()
Standard Khronos cl::Image2D wrapper conversion operator for the ClContext object.
- Returns:
cl::Image2D
object
Public Static Functions
-
static inline void type_check(const Tensor &tensor)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
tensor – a tensor to check
-
inline cl_mem get()
-
class D3DBufferTensor : public ov::intel_gpu::ocl::ClBufferTensor
- #include <dx.hpp>
This class represents an abstraction for GPU plugin remote tensor which is shared with Direct3D 11 buffer. The plugin object derived from this class can be obtained with D3DContext::create_tensor() call.
Note
User can also obtain OpenCL buffer handle from this class.
Public Functions
-
inline operator ID3D11Buffer*()
ID3D11Buffer conversion operator for the D3DContext object.
- Returns:
Pointer to underlying ID3D11Buffer interface
Public Static Functions
-
static inline void type_check(const Tensor &tensor)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
tensor – a tensor to check
-
inline operator ID3D11Buffer*()
-
class D3DContext : public ov::intel_gpu::ocl::ClContext
- #include <dx.hpp>
This class represents an abstraction for GPU plugin remote context which is shared with Direct3D 11 device. The plugin object derived from this class can be obtained either with CompiledModel::get_context() or Core::create_context() calls.
Note
User can also obtain OpenCL context handle from this class.
Public Functions
-
inline operator ID3D11Device*()
ID3D11Device conversion operator for the D3DContext object.
- Returns:
Pointer to underlying ID3D11Device interface
-
inline D3DContext(Core &core, ID3D11Device *device, int target_tile_id = -1)
Constructs D3DContext remote context object from ID3D11Device.
- Parameters:
core – OpenVINO Runtime Core object instance
device – A pointer to ID3D11Device to be used to create a remote context
target_tile_id – Desired tile id within given context for multi-tile system. Default value (-1) means that root device should be used
-
inline std::pair<D3DSurface2DTensor, D3DSurface2DTensor> create_tensor_nv12(const size_t height, const size_t width, ID3D11Texture2D *nv12_surf)
This function is used to obtain a NV12 tensor from NV12 DXGI video decoder output. The resulting tensor contains two remote tensors for Y and UV planes of the surface.
- Parameters:
height – Height of Y plane
width – Width of Y plane
nv12_surf – A ID3D11Texture2D instance to create NV12 tensor from
- Returns:
A pair of remote tensors for each plane
-
inline D3DBufferTensor create_tensor(const element::Type type, const Shape &shape, ID3D11Buffer *buffer)
This function is used to obtain remote tensor object from ID3D11Buffer.
-
inline D3DSurface2DTensor create_tensor(const element::Type type, const Shape &shape, ID3D11Texture2D *surface, uint32_t plane = 0)
This function is used to obtain remote tensor object from ID3D11Texture2D.
Note
The underlying ID3D11Texture2D can also be a plane of output surface of DXGI video decoder
- Parameters:
- Returns:
D3DSurface2DTensor tensor
-
inline ClBufferTensor create_tensor(const element::Type type, const Shape &shape, const cl_mem buffer)
This function is used to obtain remote tensor object from user-supplied cl_mem object.
-
inline ClBufferTensor create_tensor(const element::Type type, const Shape &shape, const cl::Buffer &buffer)
This function is used to obtain remote tensor object from user-supplied cl::Buffer object.
-
inline ClImage2DTensor create_tensor(const element::Type type, const Shape &shape, const cl::Image2D &image)
This function is used to obtain remote tensor object from user-supplied cl::Image2D object.
Public Static Functions
-
static inline void type_check(const RemoteContext &remote_context)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
remote_context – A remote context to check
-
inline operator ID3D11Device*()
-
class D3DSurface2DTensor : public ov::intel_gpu::ocl::ClImage2DTensor
- #include <dx.hpp>
This class represents an abstraction for GPU plugin remote tensor which is shared with Direct3D 11 2D texture. The plugin object derived from this class can be obtained with D3DContext::create_tensor() call.
Note
User can also obtain OpenCL 2D image handle from this class.
Public Functions
-
inline operator ID3D11Texture2D*()
ID3D11Texture2D conversion operator for the D3DContext object.
- Returns:
Pointer to underlying ID3D11Texture2D interface
-
inline uint32_t plane()
Returns plane ID of underlying video decoder surface, or 0 if no video surface was shared.
- Returns:
Plane ID
Public Static Functions
-
static inline void type_check(const Tensor &remote_tensor)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
remote_tensor – remote tensor to check
-
inline operator ID3D11Texture2D*()
-
class USMTensor : public ov::RemoteTensor
- #include <ocl.hpp>
This class represents an abstraction for GPU plugin remote tensor which can be shared with user-supplied USM device pointer. The plugin object derived from this class can be obtained with ClContext::create_tensor() call.
Note
User can obtain USM pointer from this class.
Public Functions
-
inline void *get()
Returns the underlying USM pointer.
- Returns:
underlying USM pointer
Public Static Functions
-
static inline void type_check(const Tensor &tensor)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
tensor – a tensor to check
-
inline void *get()
-
class VAContext : public ov::intel_gpu::ocl::ClContext
- #include <va.hpp>
This class represents an abstraction for GPU plugin remote context which is shared with VA display object. The plugin object derived from this class can be obtained either with CompiledModel::get_context() or Core::create_context() calls.
Note
User can also obtain OpenCL context handle from this class.
Public Functions
-
inline operator VADisplay()
VADisplay
conversion operator for the VAContext object.- Returns:
Underlying
VADisplay
object handle
-
inline VAContext(Core &core, VADisplay device, int target_tile_id = -1)
Constructs remote context object from VA display handle.
- Parameters:
core – OpenVINO Runtime Core object
device – A
VADisplay
to create remote context fromtarget_tile_id – Desired tile id within given context for multi-tile system. Default value (-1) means that root device should be used
-
inline std::pair<VASurfaceTensor, VASurfaceTensor> create_tensor_nv12(const size_t height, const size_t width, const VASurfaceID nv12_surf)
This function is used to obtain a NV12 tensor from NV12 VA decoder output. The resulting tensor contains two remote tensors for Y and UV planes of the surface.
- Parameters:
height – A height of Y plane
width – A width of Y plane
nv12_surf – NV12
VASurfaceID
to create NV12 from
- Returns:
A pair of remote tensors for each plane
-
inline VASurfaceTensor create_tensor(const element::Type type, const Shape &shape, const VASurfaceID surface, const uint32_t plane = 0)
This function is used to create remote tensor from VA surface handle.
-
inline ClBufferTensor create_tensor(const element::Type type, const Shape &shape, const cl_mem buffer)
This function is used to obtain remote tensor object from user-supplied cl_mem object.
-
inline ClBufferTensor create_tensor(const element::Type type, const Shape &shape, const cl::Buffer &buffer)
This function is used to obtain remote tensor object from user-supplied cl::Buffer object.
-
inline ClImage2DTensor create_tensor(const element::Type type, const Shape &shape, const cl::Image2D &image)
This function is used to obtain remote tensor object from user-supplied cl::Image2D object.
-
inline USMTensor create_tensor(const element::Type type, const Shape &shape, void *usm_ptr)
This function is used to obtain remote tensor object from user-supplied USM pointer.
-
RemoteTensor create_tensor(const element::Type &type, const Shape &shape, const AnyMap ¶ms = {})
Allocates memory tensor in device memory or wraps user-supplied memory handle using the specified tensor description and low-level device-specific parameters. Returns a pointer to the object that implements the RemoteTensor interface.
- Parameters:
type – Defines the element type of the tensor.
shape – Defines the shape of the tensor.
params – Map of the low-level tensor object parameters.
- Returns:
Pointer to a plugin object that implements the RemoteTensor interface.
Public Static Functions
-
static inline void type_check(const RemoteContext &remote_context)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
remote_context – A remote context to check
-
inline operator VADisplay()
-
class VASurfaceTensor : public ov::intel_gpu::ocl::ClImage2DTensor
- #include <va.hpp>
This class represents an abstraction for GPU plugin remote tensor which is shared with VA output surface. The plugin object derived from this class can be obtained with VAContext::create_tensor() call.
Note
User can also obtain OpenCL 2D image handle from this class.
Public Functions
-
inline operator VASurfaceID()
VASurfaceID conversion operator for the VASurfaceTensor object.
- Returns:
VASurfaceID
handle
-
inline uint32_t plane()
Returns plane ID of underlying video decoder surface.
- Returns:
Plane ID
Public Static Functions
-
static inline void type_check(const Tensor &tensor)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
tensor – a tensor to check
-
inline operator VASurfaceID()
-
using gpu_handle_param = void*#
-
using gpu_handle_param = void*#
-
namespace intel_npu#
Namespace with Intel NPU specific properties.
Typedefs
-
using npu_handle_param = void*#
Enums
Variables
-
static constexpr ov::Property<uint64_t, ov::PropertyMutability::RO> device_alloc_mem_size = {"NPU_DEVICE_ALLOC_MEM_SIZE"}#
[Only for NPU plugin] Type: uint64_t Read-only property to get size of already allocated NPU DDR memory (both for discrete/integrated NPU devices)
Note: Queries driver both for discrete/integrated NPU devices
-
static constexpr ov::Property<uint64_t, ov::PropertyMutability::RO> device_total_mem_size = {"NPU_DEVICE_TOTAL_MEM_SIZE"}#
[Only for NPU plugin] Type: uint64_t Read-only property to get size of available NPU DDR memory (both for discrete/integrated NPU devices)
Note: Queries driver both for discrete/integrated NPU devices
-
static constexpr ov::Property<uint32_t, ov::PropertyMutability::RO> driver_version = {"NPU_DRIVER_VERSION"}#
[Only for NPU plugin] Type: uint32_t Read-only property to get NPU driver version (for both discrete/integrated NPU devices)
-
static constexpr ov::Property<uint32_t, ov::PropertyMutability::RO> compiler_version = {"NPU_COMPILER_VERSION"}#
[Only for NPU plugin] Type: uint32_t Read-only property to get NPU compiler version. Composite of Major (16bit MSB) and Minor (16bit LSB)
-
static constexpr ov::Property<std::string> compilation_mode_params = {"NPU_COMPILATION_MODE_PARAMS"}#
[Only for NPU compiler] Type: std::string Set various parameters supported by the NPU compiler.
-
static constexpr ov::Property<bool> compiler_dynamic_quantization = {"NPU_COMPILER_DYNAMIC_QUANTIZATION"}#
[Only for NPU compiler] Type: boolean Set or verify state of dynamic quantization in the NPU compiler
-
static constexpr ov::Property<bool> turbo = {"NPU_TURBO"}#
[Only for NPU plugin] Type: std::bool Set turbo on or off. The turbo mode, where available, provides a hint to the system to maintain the maximum NPU frequency and memory throughput within the platform TDP limits. Turbo mode is not recommended for sustainable workloads due to higher power consumption and potential impact on other compute resources.
-
static constexpr ov::Property<int64_t> tiles = {"NPU_TILES"}#
[Only for NPU Compiler] Type: integer, default is -1 Sets the number of npu tiles to compile the model for.
-
static constexpr ov::Property<int64_t> max_tiles = {"NPU_MAX_TILES"}#
Type: integer, default is -1 Maximum number of tiles supported by the device we compile for. Can be set for offline compilation. If not set, it will be populated by driver.
-
static constexpr ov::Property<bool> bypass_umd_caching = {"NPU_BYPASS_UMD_CACHING"}#
[Only for NPU plugin] Type: std::bool Bypass caching of the compiled model by UMD cache.
-
static constexpr ov::Property<bool> defer_weights_load = {"NPU_DEFER_WEIGHTS_LOAD"}#
[Only for NPU Plugin] Type: boolean, default is false This option allows to delay loading the weights until inference is created
-
static constexpr Property<MemType> mem_type = {"MEM_TYPE"}#
This key identifies type of internal shared memory in a shared memory tensor parameter map.
-
static constexpr Property<npu_handle_param> mem_handle = {"MEM_HANDLE"}#
This key identifies memory handle in a shared memory tensor parameter map.
-
static constexpr Property<npu_handle_param> l0_context = {"L0_CONTEXT"}#
This key identifies LevelZero context handle in a shared context parameter map.
-
static constexpr Property<TensorType> tensor_type = {"TENSOR_TYPE"}#
This key sets the type of the internal Level Zero buffer allocated by the plugin in a shared memory tensor parameter map.
-
namespace level_zero#
Namespace with Intel NPU LevelZero specific remote objects.
-
class ZeroBufferTensor : public ov::RemoteTensor
- #include <level_zero.hpp>
This class represents an abstraction for NPU plugin remote tensor which can be shared with user-supplied LevelZero buffer. The plugin object derived from this class can be obtained with ZeroContext::create_tensor() call.
Note
User can obtain Level Zero buffer handle from this class.
Public Functions
-
inline void *get()
Returns the underlying LevelZero memory object handle.
- Returns:
underlying void* memory object handle
Public Static Functions
-
static inline void type_check(const Tensor &tensor)
Checks that type defined runtime parameters are presented in remote object.
- Parameters:
tensor – a tensor to check
-
inline void *get()
-
class ZeroContext : public ov::RemoteContext
- #include <level_zero.hpp>
This class represents an abstraction for NPU plugin remote context which is shared with LevelZero context object. The plugin object derived from this class can be obtained either with CompiledModel::get_context() or Core::create_context() calls.
Public Functions
-
inline ZeroContext(Core &core)
Constructs context object from user-supplied LevelZero context handle.
- Parameters:
core – A reference to OpenVINO Runtime Core object
-
inline void *get()
Returns the underlying LevelZero context handle.
- Returns:
void*
-
inline ZeroBufferTensor create_tensor(const element::Type type, const Shape &shape, void *buffer)
This function is used to obtain remote tensor object from user-supplied NT handle object.
-
inline ZeroBufferTensor create_tensor(const element::Type type, const Shape &shape, int fd)
This function is used to obtain remote tensor object from user-supplied DMA-BUF System Heap object.
-
inline ZeroBufferTensor create_l0_host_tensor(const element::Type type, const Shape &shape, const TensorType tensor_type = TensorType::BINDED)
This function is used to obtain remote tensor object.
-
RemoteTensor create_tensor(const element::Type &type, const Shape &shape, const AnyMap ¶ms = {})
Allocates memory tensor in device memory or wraps user-supplied memory handle using the specified tensor description and low-level device-specific parameters. Returns a pointer to the object that implements the RemoteTensor interface.
- Parameters:
type – Defines the element type of the tensor.
shape – Defines the shape of the tensor.
params – Map of the low-level tensor object parameters.
- Returns:
Pointer to a plugin object that implements the RemoteTensor interface.
-
inline ZeroContext(Core &core)
-
class ZeroBufferTensor : public ov::RemoteTensor
-
using npu_handle_param = void*#
-
namespace internal#
Variables
-
static constexpr Property<std::vector<PropertyName>, PropertyMutability::RO> supported_properties{"INTERNAL_SUPPORTED_PROPERTIES"}#
Read-only property to get a std::vector<PropertyName> of supported internal properties.
-
static constexpr Property<std::vector<PropertyName>, PropertyMutability::RO> caching_properties = {"CACHING_PROPERTIES"}#
Read-only property to get a std::vector<PropertyName> of properties which should affect the hash calculation for model cache.
-
static constexpr Property<bool, PropertyMutability::RO> caching_with_mmap = {"CACHING_WITH_MMAP"}#
Read-only property to get a std::vector<PropertyName> of properties which should affect the loading time from cache.
-
static constexpr Property<bool, PropertyMutability::RW> exclusive_async_requests = {"EXCLUSIVE_ASYNC_REQUESTS"}#
Allow to create exclusive_async_requests with one executor.
-
static constexpr Property<std::string, PropertyMutability::WO> config_device_id = {"CONFIG_DEVICE_ID"}#
the property for setting of required device for which config to be updated values: device id starts from “0” - first device, “1” - second device, etc note: plugin may have different devices naming convention
-
static constexpr Property<int32_t, PropertyMutability::RW> threads_per_stream = {"THREADS_PER_STREAM"}#
Limit #threads that are used by IStreamsExecutor to execute
parallel_for
calls.
-
static constexpr Property<std::string, PropertyMutability::RO> compiled_model_runtime_properties{"COMPILED_MODEL_RUNTIME_PROPERTIES"}#
It contains compiled_model_runtime_properties information to make plugin runtime can check whether it is compatible with the cached compiled model, the result is returned by get_property() calling.
The information details are defined by plugin itself, each plugin may require different runtime contents. For example, CPU plugin will contain OV version, while GPU plugin will contain OV and GPU driver version, etc. Core doesn’t understand its content and only read it from plugin and write it into blob header.
-
static constexpr Property<bool, PropertyMutability::RO> compiled_model_runtime_properties_supported{"COMPILED_MODEL_RUNTIME_PROPERTIES_SUPPORTED"}#
Check whether the attached compiled_model_runtime_properties is supported by this device runtime.
-
static constexpr Property<float, PropertyMutability::RW> query_model_ratio = {"QUERY_MODEL_RATIO"}#
Read-write property to set the percentage of the estimated model size which is used to determine the query model results for further processing.
-
static constexpr Property<std::vector<PropertyName>, PropertyMutability::RO> supported_properties{"INTERNAL_SUPPORTED_PROPERTIES"}#
-
namespace layout#
Functions
- OPENVINO_API bool has_batch (const Layout &layout)
Checks if layout has ‘batch’ dimension.
- OPENVINO_API std::int64_t batch_idx (const Layout &layout)
Returns ‘batch’ dimension index.
- Throws:
ov::AssertFailure – if dimension doesn’t exist.
- OPENVINO_API bool has_channels (const Layout &layout)
Checks if layout has ‘channels’ dimension.
- Throws:
ov::AssertFailure – if dimension doesn’t exist.
- OPENVINO_API std::int64_t channels_idx (const Layout &layout)
Returns ‘channels’ dimension index.
- Throws:
ov::AssertFailure – if dimension doesn’t exist.
- OPENVINO_API bool has_depth (const Layout &layout)
Checks if layout has ‘depth’ dimension.
- OPENVINO_API std::int64_t depth_idx (const Layout &layout)
Returns ‘depth’ dimension index.
- Throws:
ov::AssertFailure – if dimension doesn’t exist.
- OPENVINO_API bool has_height (const Layout &layout)
Checks if layout has ‘height’ dimension.
- OPENVINO_API std::int64_t height_idx (const Layout &layout)
Returns ‘height’ dimension index.
- Throws:
ov::AssertFailure – if dimension doesn’t exist.
- OPENVINO_API bool has_width (const Layout &layout)
Checks if layout has ‘width’ dimension.
- OPENVINO_API std::int64_t width_idx (const Layout &layout)
Returns ‘width’ dimension index.
- Throws:
ov::AssertFailure – if dimension doesn’t exist.
- OPENVINO_API void set_layout (ov::Output< ov::Node > output, const ov::Layout &layout)
Sets Layout of port.
- OPENVINO_API ov::Layout get_layout (const ov::Output< ov::Node > &output)
Gets Layout of port.
- Returns:
layout from port and empty layout in other case
- OPENVINO_API ov::Layout get_layout (const ov::Output< const ov::Node > &output)
Gets Layout of port.
- Returns:
layout from port and empty layout in other case
-
namespace log#
Namespace with log level property and its possible values.
Enums
-
enum class Level#
Enum to define possible log levels.
Values:
-
enumerator NO#
disable any logging
-
enumerator ERR#
error events that might still allow the application to continue running
-
enumerator WARNING#
potentially harmful situations which may further lead to ERROR
-
enumerator INFO#
informational messages that display the progress of the application at coarse-grained level
-
enumerator DEBUG#
fine-grained events that are most useful to debug an application.
-
enumerator TRACE#
finer-grained informational events than the DEBUG
-
enumerator NO#
-
enum class Level#
-
namespace op#
Enums
-
enum class GeluApproximationMode#
Specifies the approximation to calculate Gelu.
Values:
-
enumerator TANH#
-
enumerator ERF#
-
enumerator TANH#
-
enum class LSTMWeightsFormat#
Values:
-
enumerator FICO#
-
enumerator ICOF#
-
enumerator IFCO#
-
enumerator IFOC#
-
enumerator IOFC#
-
enumerator FICO#
-
enum class MVNEpsMode#
Specifies how eps is applied in MVN.
Values:
-
enumerator INSIDE_SQRT#
-
enumerator OUTSIDE_SQRT#
-
enumerator INSIDE_SQRT#
-
enum class PadMode#
Modes for the
Pad
operator.Values:
-
enumerator CONSTANT#
-
enumerator EDGE#
-
enumerator REFLECT#
-
enumerator SYMMETRIC#
-
enumerator CONSTANT#
-
enum class PadType#
Padding Type used for
Convolution
andPooling
Follows ONNX padding type definitions EXPLICIT - Pad dimensions are explicity specified SAME_LOWER - Pad dimensions computed to match input shape Ceil(num_dims/2) at the beginning and Floor(num_dims/2) at the end SAME_UPPER - Pad dimensions computed to match input shape Floor(num_dims/2) at the beginning and Ceil(num_dims/2) at the end VALID - No padding AUTO - Deprecated. User should not use it in the future NOTSET - Deprecated. User should not use it in the future
Values:
-
enumerator EXPLICIT#
-
enumerator SAME_LOWER#
-
enumerator SAME_UPPER#
-
enumerator VALID#
-
enumerator AUTO#
-
enumerator NOTSET#
-
enumerator EXPLICIT#
-
enum class RoundingType#
Rounding Type used for
Pooling
operators.Values:
-
enumerator FLOOR#
-
enumerator CEIL#
-
enumerator CEIL_TORCH#
-
enumerator FLOOR#
-
enum class AutoBroadcastType#
Specifies the algorithm to use for implicit broadcasting of a tensor to align with another tensor.
NONE - No implicit broadcasting of tensor NUMPY - Numpy-style implicit broadcasting (https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Right-align dimensions of the two tensors, with missing dimensions treated as size 1 dimensions. After alignment, for each dimension, their sizes should either match or one of them should be of size 1. Size 1 dimension will be implicitly broadcast to match the other size.
E.g., A: Shape(2, 1, 6) B: Shape( 3, 1) Result: Shape(2, 3, 6)
Result: Shape(2, 3, 6) PDPD - PaddlePaddle-style implicit broadcasting (PaddlePaddle/Paddle fluid/operators/elementwise/elementwise_op.h#L126) Broadcast B to match the shape of A, where axis is the start dimension index to align B with A. If axis is -1 (default), i axis = rank(A) - rank(B). The trailing dimensions of size 1 for B will be ignored.A: Shape(2, 1, 6) B: Shape( 3, 1)
E.g., A: Shape(2, 3, 4, 5) B: Shape( 3, 4 ) with axis =1 Result: Shape(2, 3, 4, 5)
Result: Shape(2, 3, 4, 5)A: Shape(2, 3, 4, 5) B: Shape( 3, 1 ) with axis = 1
Values:
-
enumerator NONE#
-
enumerator EXPLICIT#
-
enumerator NUMPY#
-
enumerator PDPD#
-
enumerator NONE#
-
enum class BroadcastType#
BroadcastType specifies rules used for mapping of input tensor axes to output shape axes.
EXPLICIT - Mapping of the input data shape to output shape based on axes_mapping input. NUMPY - Numpy broadcasting rules, aligned with ONNX Broadcasting. (onnx/onnx) PDPD - PaddlePaddle-style implicit broadcasting. For more informaction see AutoBroadcastType documentation. BIDIRECTIONAL - The broadcast rule is similar to numpy.array(input) * numpy.ones(target_shape). Dimensions are right alignment.
Note
Broadcasting rules are different for Broadcast op and for element-wise ops. AutoBroadcastType::NUMPY is equivalent of BroadcastType::BIDIRECTIONAL according to spec.
Values:
-
enumerator NONE#
-
enumerator EXPLICIT#
-
enumerator NUMPY#
-
enumerator PDPD#
-
enumerator BIDIRECTIONAL#
-
enumerator NONE#
Functions
- std::unordered_map< size_t, std::pair< ov::Tensor, ov::Tensor > > OPENVINO_API convert_input_types (OutputVector &inputs, const element::TypeVector &types)
- ov::TensorVector OPENVINO_API get_output_tensors_of_original_type (const ov::TensorVector &fake_output_tensors, const element::TypeVector &types)
- void OPENVINO_API reset_input_types (const std::unordered_map< size_t, std::pair< ov::Tensor, ov::Tensor > > &original_input_vals, OutputVector &inputs)
- bool OPENVINO_API convert_outputs_to_fake_type (ov::TensorVector &outputs, ov::TensorVector &original_outputs, bool is_upper)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const GeluApproximationMode &type)
-
ov::op::util::LSTMWeightsFormat convert_lstm_weights_enums(LSTMWeightsFormat format)#
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const MVNEpsMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const v12::ScatterElementsUpdate::Reduction &reduction)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const PadMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const PadType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const RoundingType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const AutoBroadcastType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const BroadcastType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const EpsMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const TopKSortType &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const TopKMode &type)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const PhiloxAlignment &alignment)
- OPENVINO_API std::ostream & operator<< (std::ostream &s, const RecurrentSequenceDirection &direction)
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> copy_shape_infer(const Node *op, const std::vector<TShape> &input_shapes)#
-
template<class OpType, class T, class TRShape = result_shape_t<T>>
std::vector<TRShape> eltwise_shape_infer(const OpType *op, const std::vector<T> &input_shapes)#
-
template<class T, class TRShape = result_shape_t<T>>
std::vector<TRShape> shape_infer(const util::FFTBase *op, const std::vector<T> &input_shapes, const ITensorAccessor &ta = make_tensor_accessor())#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::GatherBase *op, const std::vector<TShape> &input_shapes, const ITensorAccessor &tensor_accessor = make_tensor_accessor())#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::ConvertColorI420Base *op, const std::vector<TShape> &input_shapes)#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::MulticlassNmsBase *op, const std::vector<TShape> &input_shapes, const bool static_output = !std::is_same<PartialShape, TShape>::value, const bool ignore_bg_class = false)#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::ConvertColorNV12Base *op, const std::vector<TShape> &input_shapes)#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::PadBase *op, const std::vector<TShape> &input_shapes, const ITensorAccessor &tensor_accessor = make_tensor_accessor())#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> reduce_shape_infer(const util::ReductionBase *op, bool keep_dims, const std::vector<TShape> &input_shapes, const ITensorAccessor &tensor_accessor = make_tensor_accessor())#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::ArithmeticReductionKeepDims *op, const std::vector<TShape> &input_shapes, const ITensorAccessor &tensor_accessor = make_tensor_accessor())#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::LogicalReductionKeepDims *op, const std::vector<TShape> &input_shapes, const ITensorAccessor &tensor_accessor = make_tensor_accessor())#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::ScatterElementsUpdateBase *op, const std::vector<TShape> &input_shapes, const ITensorAccessor &ta = make_tensor_accessor())#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::ScatterNDBase *op, const std::vector<TShape> &input_shapes)#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const util::TopKBase *op, const std::vector<TShape> &input_shapes, const ITensorAccessor &tensor_accessor = make_tensor_accessor())# TopK shape inference.
- Template Parameters:
TShape – Type of shape.
- Parameters:
op – Pointer to TopK operator.
input_shapes – Input shapes of TopK.
constant_data – Map of constant data. DEfault empty.
- Returns:
Vector of output shapes for
-
template<class TShape, class TData, class TRes = std::vector<TData>, class UnaryOperation = ov::util::Cast<TData>, typename std::enable_if<!std::is_same<TShape, ov::PartialShape>::value>::type* = nullptr>
ov::optional<TRes> get_input_const_data_as(const ov::Node *op, size_t idx, const ITensorAccessor &tensor_accessor, UnaryOperation &&func = ov::util::Cast<TData>())# Get the operator’s input const as pointer to vector of specified type.
The behaviour depends on shape type. The default output type is std::vector<TData> can be replace by other type which if is possible to construct it from constant data vector.
The behaviour depends on shape type. The default output type is std::vector<TData> can be replace by other type which if is possible to construct it from constant data vector.
- Template Parameters:
TShape – Shape type which enabled this version (not ov::PartialShape)
TData – Type use to cast input’s data.
TRes – Result type which has got default type as std::vector<TData>.
UnaryOperation – Unary function object applied on data with signature (Ret f(const TData &a)).
TShape – Shape type which enabled this version (ov::PartialShape)
TData – Type use to cast input’s data.
TRes – Result type which has got default type as std::vector<TData>.
UnaryOperation – Unary function object applied on data with signature (Ret f(const TData &a)).
- Parameters:
- Returns:
Pointer to constant data or nullptr if input has no constant data.
- Returns:
Pointer to constant data or nullptr if input has no constant data.
-
template<class TShape, class TDimValue = typename TShape::value_type::value_type, class UnaryOperation = ov::util::InTypeRange<TDimValue>, typename std::enable_if<!std::is_same<TShape, ov::PartialShape>::value>::type* = nullptr>
ov::optional<TShape> get_input_const_data_as_shape(const ov::Node *op, size_t port, const ITensorAccessor &tensor_accessor, UnaryOperation &&func = ov::util::InTypeRange<TDimValue>())# Get the input const data as shape object.
The input data can be processed by unary operation. By default is validated and casted to shape’s dimension type.
- Template Parameters:
- Parameters:
- Returns:
Unique pointer to shape created from input data.
-
inline element::Type get_input_const_element_type(const ov::Node *const op, size_t port, const ITensorAccessor &ta)#
-
template<class TShape, class TData, class TResult = std::vector<std::pair<TData, TData>>>
ov::optional<TResult> get_input_bounds(const ov::Node *op, size_t port, const ITensorAccessor &ta)# Get the input bounds from constant input or try evaluate bunds and return them as vector of pairs (lower, upper).
-
ov::Shape infer_broadcast_shape(const ov::Node *const op, const ov::Shape &first, const ov::Shape &second)#
Inference broadcast shape for element wise operator according to broadcast specification stored in operator.
- Parameters:
op – Pointer to operator.
first – First input shape.
second – Second input shape.
- Returns:
Result shape from inputs with applied broadcast specification.
-
ov::Shape infer_broadcast_shape(const ov::Node *const op, const ov::TensorVector &inputs)#
Inference broadcast shape from input tensor shapes for element wise operator according to broadcast specification stored in operator.
- Parameters:
op – Pointer to operator.
inputs – Tensors vector to get theirs shapes.
- Returns:
Result shape from input tensors shape with applied broadcast specification.
-
struct AutoBroadcastSpec#
- #include <attr_types.hpp>
Implicit broadcast specification.
-
struct BroadcastModeSpec#
- #include <attr_types.hpp>
Implicit broadcast specification.
-
class Op : public ov::Node#
- #include <op.hpp>
Root of all actual ops.
Subclassed by ov::exec_model_info::ExecutionNode, ov::op::Sink, ov::op::internal::DynamicQuantize, ov::op::internal::FullyConnected, ov::op::internal::GLU, ov::op::internal::NonMaxSuppressionIEInternal, ov::op::internal::RMS, ov::op::internal::RoPE, ov::op::util::AvgPoolBase, ov::op::util::BinaryElementwiseArithmetic, ov::op::util::BinaryElementwiseBitwise, ov::op::util::BinaryElementwiseComparison, ov::op::util::BinaryElementwiseLogical, ov::op::util::BroadcastBase, ov::op::util::ConvertColorI420Base, ov::op::util::ConvertColorNV12Base, ov::op::util::ConvolutionBase, ov::op::util::DetectionOutputBase, ov::op::util::EmbeddingBagOffsetsBase, ov::op::util::EmbeddingBagPackedBase, ov::op::util::FFTBase, ov::op::util::GatherBase, ov::op::util::GatherNDBase, ov::op::util::IndexReduction, ov::op::util::InterpolateBase, ov::op::util::MaxPoolBase, ov::op::util::MulticlassNmsBase, ov::op::util::PadBase, ov::op::util::RNNCellBase, ov::op::util::ROIAlignBase, ov::op::util::ReadValueBase, ov::op::util::ReductionBase, ov::op::util::ScatterBase, ov::op::util::ScatterElementsUpdateBase, ov::op::util::ScatterNDBase, ov::op::util::ShapeOfBase, ov::op::util::SqueezeBase, ov::op::util::TopKBase, ov::op::util::UnaryElementwiseArithmetic, ov::op::v0::BatchNormInference, ov::op::v0::CTCGreedyDecoder, ov::op::v0::Concat, ov::op::v0::Constant, ov::op::v0::Convert, ov::op::v0::CumSum, ov::op::v0::DepthToSpace, ov::op::v0::FakeQuantize, ov::op::v0::HardSigmoid, ov::op::v0::Interpolate, ov::op::v0::LRN, ov::op::v0::MVN, ov::op::v0::MatMul, ov::op::v0::NormalizeL2, ov::op::v0::PRelu, ov::op::v0::PSROIPooling, ov::op::v0::Parameter, ov::op::v0::PriorBox, ov::op::v0::PriorBoxClustered, ov::op::v0::Proposal, ov::op::v0::ROIPooling, ov::op::v0::Range, ov::op::v0::RegionYolo, ov::op::v0::ReorgYolo, ov::op::v0::Result, ov::op::v0::ReverseSequence, ov::op::v0::Selu, ov::op::v0::ShuffleChannels, ov::op::v0::SpaceToDepth, ov::op::v0::Tile, ov::op::v0::Unsqueeze, ov::op::v10::IsFinite, ov::op::v10::IsInf, ov::op::v10::IsNaN, ov::op::v10::Unique, ov::op::v12::GroupNormalization, ov::op::v13::BitwiseNot, ov::op::v13::FakeConvert, ov::op::v13::Multinomial, ov::op::v13::NMSRotated, ov::op::v13::ScaledDotProductAttention, ov::op::v14::ConvertPromoteTypes, ov::op::v14::Inverse, ov::op::v15::Col2Im, ov::op::v15::STFT, ov::op::v15::SearchSorted, ov::op::v15::SliceScatter, ov::op::v15::StringTensorPack, ov::op::v15::StringTensorUnpack, ov::op::v16::Identity, ov::op::v1::BatchToSpace, ov::op::v1::ConvertLike, ov::op::v1::DeformablePSROIPooling, ov::op::v1::GatherTree, ov::op::v1::LogicalNot, ov::op::v1::NonMaxSuppression, ov::op::v1::OneHot, ov::op::v1::Reshape, ov::op::v1::Reverse, ov::op::v1::Select, ov::op::v1::Softmax, ov::op::v1::SpaceToBatch, ov::op::v1::Split, ov::op::v1::StridedSlice, ov::op::v1::Transpose, ov::op::v1::VariadicSplit, ov::op::v3::Bucketize, ov::op::v3::EmbeddingSegmentsSum, ov::op::v3::ExtractImagePatches, ov::op::v3::NonMaxSuppression, ov::op::v3::NonZero, ov::op::v4::CTCLoss, ov::op::v4::Range, ov::op::v4::Swish, ov::op::v5::BatchNormInference, ov::op::v5::LogSoftmax, ov::op::v5::NonMaxSuppression, ov::op::v6::CTCGreedyDecoderSeqLen, ov::op::v6::ExperimentalDetectronDetectionOutput, ov::op::v6::ExperimentalDetectronGenerateProposalsSingleImage, ov::op::v6::ExperimentalDetectronPriorGridGenerator, ov::op::v6::ExperimentalDetectronROIFeatureExtractor, ov::op::v6::ExperimentalDetectronTopKROIs, ov::op::v6::GatherElements, ov::op::v6::MVN, ov::op::v7::Einsum, ov::op::v7::Roll, ov::op::v8::AdaptiveAvgPool, ov::op::v8::AdaptiveMaxPool, ov::op::v8::MatrixNms, ov::op::v8::PriorBox, ov::op::v8::RandomUniform, ov::op::v8::Slice, ov::op::v8::Softmax, ov::op::v9::Eye, ov::op::v9::GenerateProposals, ov::op::v9::GridSample, ov::op::v9::NonMaxSuppression
-
class Sink : public ov::op::Op#
- #include <sink.hpp>
Root of nodes that can be sink nodes.
Subclassed by ov::op::util::AssignBase, ov::op::util::MultiSubGraphOp
-
class TemporaryReplaceOutputType#
- #include <type_relaxed.hpp>
Set another type for a specified output for the period of time when an instance of the class exists. When the execution leaves the scope where an onject of TemporaryReplaceOutputType is defined, the type of the output is set to its original value. Used when initialized TypeRelaxed<BaseOp> operation in case when inputs have types that are not compatible with BaseOp infer function. In this case before TypeRelaxed is constructed the BaseOp contructor requires modified data types. So it should be
-
template<typename BaseOp>
class TypeRelaxed : public BaseOp, public ov::op::TypeRelaxedBase# - #include <type_relaxed.hpp>
Relaxes tensor element type requirements for BaseOp inputs and outputs This class template should be used with Node descendant class. Defines a new operation by extending the original BaseOp operation with ability to accept inputs and provide outputs with element type that is unusual for BaseOp. For example, TypeRelaxed<opset1::Add> can accept mixed-precision inputs and provide another type of output. New types are provided as inputs attributes for TypeRelaxed template and fixed. There is no any deduction logic for types are provided as a part of this class and it should be implemented outside if required.
Public Functions
-
template<typename ...Args>
inline TypeRelaxed(const element::TypeVector &_input_data_types, const element::TypeVector &_output_data_types, Args&&... args)# Creating a new TypeRelaxed operation by calling one of the original op ctors forwarding arguments directly.
-
template<typename ...Args>
-
class TypeRelaxedBase#
- #include <type_relaxed.hpp>
A base class for templated TypeRelaxed that maintains overridden input types and output types for an operation.
Subclassed by ov::op::TypeRelaxed< BaseOp >
Public Functions
-
inline const element::Type &get_overridden_output_type(size_t outputIndex = 0) const#
This method may look similar to Node::get_output_element_type, but it is not the same thing, because get_output_element_type returns the result of type inference, so it is completely deduced from an operation inputs and attributes, and get_overridden_output_type returns value of the attribute that is used to deduce output type. In some cases they don’t match: get_overridden_output_type may return element::undefined for some index i, and get_output_element_type will return some real type for the same index i.
- Returns:
Data type that will be set for output with a given index outputIndex. If output with a specified index outputIndex hasn’t been set before, element::undefined will returned. Undefined means no type override happens for a given outputIndex and it will deduced as original operation defineds in its infer function.
-
inline void set_overridden_output_type(const element::Type &element_type, size_t outputIndex = 0)#
Set data type that overrides the original data type for output port with outputIndex index In case if outputIndex is out of range of known outputs (and this class cannot detect the real number of outputs for original operation), the number of overridden outputs is changed according to a given outputIndex value.
-
inline const element::Type &get_origin_input_type(size_t inputIndex = 0) const#
- Returns:
Data type that will be set for input when original shape/type inference function is called. If index inputIndex hasn’t been set before, element::undefined will returned. Undefined means that the type from input tensor descriptor is used for a given index.
-
inline void set_origin_input_type(const element::Type &element_type, size_t inputIndex = 0)#
Set data type that overrides the original data type for input port with inputIndex index. In case if inputIndex is out of range of known inputs (and this class cannot detect the real number of inputs for original operation), the number of overridden inputs is changed according to a given inputIndex value. All new entries except one added at inputIndex position are undefined.
-
inline const element::Type &get_overridden_output_type(size_t outputIndex = 0) const#
-
namespace batch_norm#
-
namespace convolution#
Functions
-
template<class TOp, class TShape, typename std::enable_if<std::is_base_of<util::ConvolutionBackPropBase, TOp>::value>::type* = nullptr>
size_t calculate_num_spatial(const TOp *op, const std::vector<TShape> &input_shapes, const result_shape_t<TShape> &out_spatial_shape)#
-
template<class TOp, class TShape, class TIter>
void apply_auto_pad(const TOp *op, const TShape &data_shape, const TShape &filters_shape, const result_shape_t<TShape> &out_spatial_shape, TIter pads_begin, TIter pads_end)# Apply auto padding for backward convolution.
The auto padding can be applied only if inputs and attributes of operator are validated. The input shapes must have got static ranks.
- Parameters:
-
template<class TShape>
void apply_padding(const util::ConvolutionBackPropBase *op, const std::vector<TShape> &input_shapes, const result_shape_t<TShape> &out_spatial_shape, CoordinateDiff &pads_begin, CoordinateDiff &pads_end)# Apply auto padding for back propagation convolutions.
-
template<class TOp, class TShape, class TContainer, typename std::enable_if<std::is_base_of<ov::op::util::ConvolutionBackPropBase, TOp>::value>::type* = nullptr>
void append_spatial_shape(const TOp *op, const TShape &data_shape, const TShape &filters_shape, const TContainer &pads_begin, const TContainer &pads_end, result_shape_t<TShape> &out_shape)# Append spatial dimension at end of output shape of back propagation convolution.
-
template<class TConv>
constexpr size_t filter_non_spatial_dims_count()# Provides convolution filter non spatial dimension count.
Note
If specific convolution operator requires different value provide specialization for this operator.
- Template Parameters:
TConv – Type of convolution operator.
- Returns:
Default value for convolution operators (2).
-
template<class TOp>
bool is_auto_pad(const TOp *op)# Checks if Op property auto_pad is set to same lower or upper.
- Template Parameters:
TOp – Type of operator (must have get_auto_pad member function).
- Parameters:
op – Pointer to operator.
- Returns:
True if auto pad enabled.
-
inline void resize_empty_padding(const size_t num_spatial, CoordinateDiff &pads_begin, CoordinateDiff &pads_end)#
Resize paddings if empty to number of spatial dimensions.
- Parameters:
num_spatial – Number of spatial dimensions.
pads_begin – Begin padding to resize.
pads_end – End padding to resize.
-
inline size_t num_spatial_from_attr(const util::ConvolutionBase *op)#
-
template<class TOp, class TShape, typename std::enable_if<std::is_base_of<util::ConvolutionFwdPropBase, TOp>::value>::type* = nullptr>
size_t calculate_num_spatial(const TOp *op, const std::vector<TShape> &input_shapes)#
-
template<class TOp, class TShape, class TIter, typename std::enable_if<std::is_base_of<util::ConvolutionFwdPropBase, TOp>::value || std::is_base_of<util::DeformableConvolutionBase, TOp>::value>::type* = nullptr>
void apply_auto_pad(const TOp *op, const TShape &data_shape, const TShape &filters_shape, TIter pads_begin, TIter pads_end)# Apply auto padding for forward convolution.
The auto padding can be applied only if inputs and attributes of operator are validated. The input shapes must have got static ranks.
-
template<class TOp, class TShape, typename std::enable_if<std::is_base_of<util::ConvolutionFwdPropBase, TOp>::value || std::is_base_of<util::DeformableConvolutionBase, TOp>::value>::type* = nullptr>
void apply_padding(const TOp *op, const TShape &data_shape, const TShape &filters_shape, CoordinateDiff &pads_begin, CoordinateDiff &pads_end)# Apply padding to forward propagation convolution besed on padding.
-
template<class TOp, class TShape, class TRShape = result_shape_t<TShape>, typename std::enable_if<std::is_base_of<util::ConvolutionFwdPropBase, TOp>::value || std::is_base_of<util::DeformableConvolutionBase, TOp>::value>::type* = nullptr>
void append_spatial_shape(const TOp *op, const TShape &data_shape, const TShape &filters_shape, CoordinateDiff &pads_begin, CoordinateDiff &pads_end, TRShape &out_shape)# Append spatial dimension at end of output shape of forward propagation convolution.
-
template<>
constexpr size_t filter_non_spatial_dims_count<v1::GroupConvolutionBackpropData>()# Defines non-spatial dimension for filters for group convolution back propagation operator.
- Returns:
Value of non-spatial filter dimensions (3).
-
template<>
constexpr size_t filter_non_spatial_dims_count<v1::GroupConvolution>()# Defines non-spatial dimension for filters for group convolution operator.
- Returns:
Value of non-spatial filter dimensions (3).
Variables
-
constexpr auto num_spatial_undefined = util::num_spatial_undefined#
-
constexpr size_t spatial_dim_offset = 2#
-
namespace validate#
Functions
-
template<class TShape>
void data_shape(const v1::BinaryConvolution *op, const TShape &data_shape)# Specific check of data shape for binary convolution data shape must be rank 4.
The shape_infer is same as for Convolution operator except this check.
See also
convolution_shape_inference.hpp
-
template<class TShape>
void filter_shape(const ov::op::util::ConvolutionBackPropBase *op, const TShape &filters_shape, const TShape &data_shape)#
-
template<class TShape>
void data_shape(const ov::op::util::ConvolutionBase *op, const TShape &data_shape)#
-
template<class TShape>
void filter_shape(const ov::op::util::ConvolutionBase *op, const TShape &filters_shape, const TShape &data_shape)#
-
inline void common_attributes(const util::ConvolutionBase *op, const size_t num_spatial, const CoordinateDiff &pads_begin, const CoordinateDiff &pads_end)#
-
inline void common_attributes(const util::ConvolutionBackPropBase *op, const size_t num_spatial, const CoordinateDiff &pads_begin, const CoordinateDiff &pads_end)#
-
template<class TShape>
-
template<class TOp, class TShape, typename std::enable_if<std::is_base_of<util::ConvolutionBackPropBase, TOp>::value>::type* = nullptr>
-
namespace deformable_conv#
Functions
-
template<class TShape>
size_t calculate_num_spatial(const util::DeformableConvolutionBase *op, const std::vector<TShape> &input_shapes)#
-
namespace validate#
Functions
-
template<class TDeformableConv>
void group_attribute(const TDeformableConv *op, int64_t group, const std::string &name)#
-
template<class TDeformableConv, class TDim>
void group_divisible_dimension(const TDeformableConv *op, const TDim &dim, const std::string name)#
-
template<class TDeformableConv, class TDim>
void deformable_group_divisible_dimension(const TDeformableConv *op, const TDim &dim, const std::string name)#
-
template<class TDeformableConv>
-
template<class TShape>
-
namespace eye#
Variables
-
constexpr std::array<char const*, 4> shape_names = {"'num_rows'", "'num_columns'", "'diagonal_index'", "'batch_shape'"}#
-
constexpr std::array<char const*, 4> shape_names = {"'num_rows'", "'num_columns'", "'diagonal_index'", "'batch_shape'"}#
-
namespace fft#
Functions
-
template<class TRShape, typename std::enable_if<std::is_same<TRShape, PartialShape>::value>::type* = nullptr>
void apply_dims_from_sizes(const util::FFTBase *op, TRShape &output_shape, const std::vector<int64_t> &axes, const ITensorAccessor &ta)#
-
template<class TRShape, typename std::enable_if<std::is_same<TRShape, PartialShape>::value>::type* = nullptr>
-
namespace gather_nd#
-
namespace internal#
Functions
-
template<class ShapeType, class TRShape = result_shape_t<ShapeType>>
std::vector<TRShape> shape_infer(const ov::op::internal::AUGRUCell *op, const std::vector<ShapeType> &input_shapes)#
-
template<class ShapeType, class TRShape = result_shape_t<ShapeType>>
std::vector<TRShape> shape_infer(const ov::op::internal::AUGRUSequence *op, const std::vector<ShapeType> &input_shapes)#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const GLU *op, const std::vector<TShape> &input_shapes)#
-
template<class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const RMSNorm *op, const std::vector<TShape> &input_shapes, const ITensorAccessor &tensor_accessor = make_tensor_accessor())#
-
class AUGRUCell : public ov::op::util::RNNCellBase#
- #include <augru_cell.hpp>
AUGRUCell operation.
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class AUGRUSequence : public ov::op::util::RNNCellBase#
- #include <augru_sequence.hpp>
AUGRUSequence operation.
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class DynamicQuantize : public ov::op::Op#
- #include <dynamic_quantize.hpp>
Operator performing Dynamic Quantize.
Public Types
-
enum class QuantizationType#
Configuration for the type of quantization applied to the data:
Symmetric: Quantization where the zero point is fixed at zero, and the range is symmetric around zero.
Asymmetric: Quantization where the zero point is not fixed at zero.
Values:
-
enumerator Symmetric#
-
enumerator Asymmetric#
-
enum class OutputStorageType#
Configuration for how Activations, Scales and Zero Points will be stored in output buffers:
Planar: Activations, Scales, and Zero Points are stored in independent buffers.
InterleavedScalesZP: Activations are stored in an independent buffer, while Scales and Zero Points (if any) are combined in a separate buffer.
Values:
-
enumerator Planar#
-
enumerator InterleavedScalesZP#
Public Functions
-
DynamicQuantize(const Output<Node> &data, const Attributes &attrs)#
Constructs an DynamicQuantize operation.
- Parameters:
data – Input tensor with data
config – Dynamic quantization configuration
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
struct Attributes#
- #include <dynamic_quantize.hpp>
Structure that specifies attributes for interpolation.
-
enum class QuantizationType#
-
class FullyConnected : public ov::op::Op#
- #include <fully_connected.hpp>
Subclassed by ov::op::internal::FullyConnectedCompressed, ov::op::internal::FullyConnectedQuantized, ov::op::internal::FullyConnectedQuantizedLegacy
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class FullyConnectedCompressed : public ov::op::internal::FullyConnected#
- #include <fully_connected_compressed.hpp>
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class FullyConnectedQuantized : public ov::op::internal::FullyConnected#
- #include <fully_connected_quantized.hpp>
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class FullyConnectedQuantizedLegacy : public ov::op::internal::FullyConnected#
- #include <fully_connected_quantized_legacy.hpp>
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class GatherCompressed : public ov::op::v8::Gather#
- #include <gather_compressed.hpp>
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class GenerateProposalsIEInternal : public ov::op::v9::GenerateProposals#
- #include <generate_proposals_ie_internal.hpp>
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class GLU : public ov::op::Op#
- #include <glu.hpp>
Operator performing Gated Linear Unit Activation This operation performs gated linear unit activation that combines swish or gelu activation function.
Public Functions
-
GLU(const Output<Node> &data, int64_t axis, int64_t split_lengths, const GluType glu_type, const size_t split_to_glu_idx, const ov::element::Type output_type = ov::element::undefined)#
Constructs an GLU operation.
- Parameters:
data – Input tensor with data
axis – The index of an axis in “data” along which to perform the split
split_lenghts – A list containing the sizes of each output tensor along the split “axis”
glu_type – GLU type, one of Swish, Gelu and Gelu_Tanh
split_to_glu_idx – Output index of variadic split, which is connected to GLU
output_type – Output element type
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
GLU(const Output<Node> &data, int64_t axis, int64_t split_lengths, const GluType glu_type, const size_t split_to_glu_idx, const ov::element::Type output_type = ov::element::undefined)#
-
interface LoraSubgraph : public ov::op::util::SubGraphOp#
- #include <lora_subgraph.hpp>
LoraSubgraph operation, which is used for LoRA subgraphs fusion. It always has only 1 output, and the following inputs, whose order is fixed:
main_flow_input: input from original model.
LoRA_input: input to which the Low-Rank adaptation is applied. The adapted input is combined with
main_flow_input
.LoRA_matrices: 3 Low-Rank adaptation matrices applied to
LoRA_input
. The fused subgraph can be optimized in runtime based on LoRA semantic. For instance,main_flow_input
can be fast-forwarded to output in case of emptyLoRA_matrices
.
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
class MulticlassNmsIEInternal : public ov::op::v9::MulticlassNms#
- #include <multiclass_nms_ie_internal.hpp>
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
template<typename BaseNmsOp>
class NmsStaticShapeIE : public BaseNmsOp# - #include <nms_static_shape_ie.hpp>
-
class NonMaxSuppressionIEInternal : public ov::op::Op#
- #include <nms_ie_internal.hpp>
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
virtual void validate_and_infer_types() override#
-
class RMS : public ov::op::Op#
- #include <rms.hpp>
Operator performing Root Mean Square Normalization.
Note
Performs re-scaling invariance and regularizes the summed input according to RMS statistics
Public Functions
-
RMS(const Output<Node> &data, const Output<Node> &gamma, double epsilson, const ov::element::Type output_type = ov::element::undefined)#
Constructs an RMS operation.
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
RMS(const Output<Node> &data, const Output<Node> &gamma, double epsilson, const ov::element::Type output_type = ov::element::undefined)#
-
class RoPE : public ov::op::Op#
- #include <rotary_positional_embeddings.hpp>
Rotary Positional Embeddings operation Internal operation which may change in the future.
Public Functions
-
virtual void validate_and_infer_types() override#
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.
-
struct Config#
- #include <rotary_positional_embeddings.hpp>
-
virtual void validate_and_infer_types() override#
-
template<class ShapeType, class TRShape = result_shape_t<ShapeType>>
-
namespace interpolate#
Functions
-
template<class T, class U, typename std::enable_if<std::is_same<T, U>::value>::type* = nullptr>
constexpr bool is_same_instance(const T &lhs, const U &rhs)#
-
template<class TContainer>
void resize_padding(const ov::op::util::InterpolateBase *op, size_t input_rank, TContainer &pads_begin, TContainer &pads_end)# Resize padding to input rank.
- Template Parameters:
TContainer – Pads container type.
- Parameters:
op – Pointer to base of interpolate.
input_rank – Expected padding size.
pads_begin – Begin padding container.
pads_end – End padding container.
-
template<class TShape, class TInputIter, class TRShape = result_shape_t<TShape>>
TRShape make_padded_shape(const TShape &input, TInputIter pads_begin, TInputIter pads_end)# Makes padded shape from input shapes and padding values.
Note
The input shape must be static rank and padding count must match input shape rank.
-
template<class TShape, class TRes = std::vector<int64_t>>
ov::optional<TRes> get_axes(const Node *const op, size_t port, bool has_axes, size_t rank, const ITensorAccessor &ta)# Get the axes for interpolate from constant input or default value if op has no axes input.
- Parameters:
op – Pointer to operator.
port – Axes input port number.
has_axes – Flag if op has input with axes.
rank – input shape used for axes values validation.
ta – Tensor accessor for input data.
- Returns:
Not null pointer with axes values or null pointer if can’t get axes from input.
-
template<class TShape, class TContainer>
void set_undefined_dim_on_axes(TShape &out, TContainer &axes)# Set the undefined dimensions on specified axes.
- Parameters:
out – Output shape to update.
axes – List of axes for update.
-
template<class TShape, class TContainer>
void update_dims_with_sizes_on_axes(TShape &out_shape, const TContainer &axes, const Node *const op, const size_t port, const ITensorAccessor &ta)# Update output shape with dimension size from input on specified axes.
-
template<class TShape>
void update_dims_with_scales_on_axes(TShape &out_shape, const std::vector<int64_t> &axes, const Node *const op, const size_t port, const ITensorAccessor &ta)# Update output shape by scaling dimensions on axes.
-
namespace validate#
Functions
-
template<class TShape>
void input_rank_1d(const Node *const op, const std::vector<TShape> &shapes, size_t port)# Validates that input at port number from is 1-D rank.
- Template Parameters:
TShape –
- Parameters:
op – Pointer to operator.
shapes – Vector of op’s input shapes.
port – Port number.
-
template<class TShape>
void are_inputs_except_first_1d(const Node *const op, const std::vector<TShape> &shapes)# Validates that inputs from 2nd to last are compatible 1-D rank.
- Template Parameters:
TShape –
- Parameters:
op – Pointer to operator.
shapes – Vector of op’s input shapes.
-
template<class TContainer>
void axes_values(const Node *const op, const TContainer &axes, size_t rank)# Check if axes values in range [0,rank].
- Template Parameters:
TContainer – Type of axes container.
- Parameters:
op – Pointer to operator.
axes – Container with axes to check.
rank – Maximum value for axes values.
-
inline void input_elements_num(const Node *const op, const std::string &input_name, size_t element_count, size_t exp_count)#
Check if number of elements in input is same as expected.
- Parameters:
op – Pointer to operator.
input_name – Input name.
element_count – Element count in tested input.
exp_count – Expected element count on tested input.
-
template<class TShape>
-
template<class T, class U, typename std::enable_if<std::is_same<T, U>::value>::type* = nullptr>
-
namespace nms#
Functions
-
template<class T, class TRShape = result_shape_t<T>>
std::vector<TRShape> shape_infer(const Node *op, const std::vector<T> &input_shapes, const ITensorAccessor &ta = make_tensor_accessor())#
-
namespace validate#
Functions
-
template<class TShape>
void boxes_shape(const Node *const op, const std::vector<TShape> &input_shapes)#
-
template<class TShape>
void scores_shape(const Node *const op, const std::vector<TShape> &input_shapes)#
-
template<class TShape>
void num_batches(const Node *const op, const std::vector<TShape> &input_shapes)#
-
template<class TShape>
void num_boxes(const Node *const op, const std::vector<TShape> &input_shapes)#
-
template<class TShape>
-
template<class T, class TRShape = result_shape_t<T>>
-
namespace pad#
Functions
-
constexpr bool is_inf_padding(const std::pair<int64_t, int64_t> &pad_bounds)#
-
constexpr bool is_inf_padding(const std::pair<int64_t, int64_t> &pad_bounds)#
-
namespace pooling#
Functions
-
template<>
inline void valid_dilated_kernel_with_padding(const v1::AvgPool *op, const size_t kernel, const size_t pad_begin, const size_t pad_end, const size_t axis)#
-
template<>
inline void valid_dilated_kernel_with_padding(const v14::AvgPool *op, const size_t kernel, const size_t pad_begin, const size_t pad_end, const size_t axis)#
-
template<class TOp, class TShape, class TContainer, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> avg_pool_shape_infer_util(const TOp *op, const std::vector<TShape> &input_shapes, TContainer &pads_begin, TContainer &pads_end)#
-
template<class TOp, class TShape, class TContainer, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> max_pool_shape_infer_util(const TOp *op, const std::vector<TShape> &input_shapes, TContainer &pads_begin, TContainer &pads_end)#
-
template<class TContainer>
void resize_empty_padding(const size_t num_spatial, TContainer &pads_begin, TContainer &pads_end)# Resize paddings if empty to number of spatial dimensions.
- Parameters:
num_spatial – Number of spatial dimensions.
pads_begin – Begin padding to resize.
pads_end – End padding to resize.
-
template<class TOp, class TShape, class TContainer>
void apply_padding(const TOp *op, const TShape &data_shape, const Strides &dilations, TContainer &pads_begin, TContainer &pads_end)# Apply pooling operator padding depends on auto pad value.
- Parameters:
op – Pointer to Pooling operator to apply padding.
data_shape – Shape infer data input shape.
dilations – Kernel dilations.
pads_begin – Padding begin to update.
pads_end – Padding end to update.
-
template<class TOp, class TDim>
void valid_dilated_kernel_with_dim(const TOp *op, const size_t kernel, const TDim &dim, const size_t axis)#
-
template<class TOp>
void valid_dilated_kernel_with_padding(const TOp *op, const size_t kernel, const size_t pad_begin, const size_t pad_end, const size_t axis)#
-
template<class TDim>
void align_ceil_torch_dimension_size(TDim &dim, const size_t last_pooling_start_index, const size_t data_dim_length, const size_t pads_begin)#
-
template<class TDim>
TDim disallow_pooling_start_in_padding(const TDim &dim, const size_t stride, const TDim *data_dim, const size_t pads_begin)#
-
template<class TDim>
TDim allow_pooling_start_in_padding(const TDim &dim, const size_t, const TDim*, const size_t)#
-
template<class TOp, class TShape, class TContainer, class TRShape>
void append_spatial_shape(const TOp *op, const TShape &data_shape, const TContainer &pads_begin, const TContainer &pads_end, const Strides &dilations, TRShape &out_shape)# Append spatial shape to the end of output shape for pooling operator shape inference result.
-
template<class TOp, class TShape, class TContainer, class TRShape = result_shape_t<TShape>>
TRShape out_shape_infer(const TOp *op, const TShape &data_shape, const TContainer &pads_begin, const TContainer &pads_end, const Strides &dilations)# Shape inference helper used for pooling operators such Max Pool, Avg Pool.
-
template<class TShape, class TOp, class TRShape = result_shape_t<TShape>, typename std::enable_if<std::is_same<TOp, v8::AdaptiveAvgPool>::value || std::is_same<TOp, v8::AdaptiveMaxPool>::value>::type* = nullptr>
TRShape out_shape_infer(const TOp *op, const std::vector<TShape> &input_shapes, const ITensorAccessor &ta)# Shape inference helper used for adaptive pooling operators.
Variables
-
constexpr size_t spatial_dim_offset = 2#
-
namespace validate#
Functions
-
template<class TOp, class TContainer>
void padding(const TOp *op, const TContainer &pads_begin, const TContainer &pads_end)#
-
template<class TOp>
constexpr bool has_torch_ceil_mode()#
-
template<class TOp, class TContainer>
-
template<>
-
namespace prior_box#
Functions
-
template<class TDim, class TOp, typename std::enable_if<std::is_same<v0::PriorBox, TOp>::value || std::is_same<v8::PriorBox, TOp>::value>::type* = nullptr>
TDim number_of_priors(const TOp *const op)#
-
template<class TDim>
TDim number_of_priors(const v0::PriorBoxClustered *const op)#
-
template<class TOp, class TShape, class TRShape = result_shape_t<TShape>>
std::vector<TRShape> shape_infer(const TOp *const op, const std::vector<TShape> &input_shapes, const ITensorAccessor &ta = make_tensor_accessor())#
Variables
-
constexpr std::array<char const*, 2> input_names = {"output size", "image"}#
-
namespace validate#
Functions
-
inline std::vector<PartialShape> inputs_et(const Node *const op)#
-
inline std::vector<PartialShape> inputs_et(const Node *const op)#
-
template<class TDim, class TOp, typename std::enable_if<std::is_same<v0::PriorBox, TOp>::value || std::is_same<v8::PriorBox, TOp>::value>::type* = nullptr>
-
namespace proposal#
-
namespace psroi_pooling#
-
namespace validate#
Functions
-
template<class TROIPooling, class TShape>
void feat_input_shape(const TROIPooling *op, const TShape feat_shape)#
-
template<class TROIPooling>
void output_group_attr(const TROIPooling *op)#
-
template<class TROIPooling>
void bins_attr(const TROIPooling *op)#
-
template<class TROIPooling>
void mode_attr(const TROIPooling *op)#
-
template<class TROIPooling, class TShape>
-
namespace validate#
-
namespace reshape#
Functions
-
template<class TDim, typename std::enable_if<std::is_same<typename std::decay<TDim>::type, Dimension>::value>::type* = nullptr>
TDim resolve_minus_one_dim(const Product<TDim> &product)#
-
template<class TShape>
std::pair<TShape, int64_t> get_pattern_and_minus_one_idx(const Node *const op, const std::vector<std::pair<int64_t, int64_t>> &bounds)# Get the pattern and minus one idx from input bounds.
- Parameters:
op – Pointer to reshape node.
bounds – Vector of reshape pattern bounds.
- Returns:
Pair which got bounds converted to shape and
minus_one
index in pattern (-1 if not found).
-
template<class TShape, typename std::enable_if<std::is_same<TShape, PartialShape>::value>::type* = nullptr>
void set_pattern_symbols(const Node *const op, TShape &shape)# Set the pattern symbols on pattern shape if this input has symbols.
Shapes other than PartialShape have no symbols.
- Parameters:
op – Pointer to reshape node.
shape – Pointer to shape for symbols set.
-
template<class TDim, typename std::enable_if<std::is_same<typename std::decay<TDim>::type, Dimension>::value>::type* = nullptr>
void deduce_symbol_relations(const Product<TDim> &product)# Deducing symbol relations: number of elements in the tensor doesn’t change after the Reshape operation.
Shapes other than PartialShape have no symbols.
-
template<class T, class U = void>
struct Product# - #include <reshape_shape_inference.hpp>
- template<class T> type >
- #include <reshape_shape_inference.hpp>
Helper to resolve the input and output product for ov::Dimension (dynamic) dimensions.
- template<class T> type >
- #include <reshape_shape_inference.hpp>
Helper to resolve the input and output product for static dimensions.
-
template<class TDim, typename std::enable_if<std::is_same<typename std::decay<TDim>::type, Dimension>::value>::type* = nullptr>
-
namespace rnn#
Functions
-
template<class TShape>
void validate_inputs_rank(const op::util::RNNCellBase *op, const std::vector<TShape> &input_shapes, const std::vector<Rank> &expected_ranks)#
-
template<class TShape>
-
namespace roi_pooling#
-
namespace validate#
Functions
-
template<class TROIPooling, class TShape>
void feat_intput_shape(const TROIPooling *op, const TShape &feat_shape)#
-
template<class TROIPooling, class TShape>
void rois_input_shape(const TROIPooling *op, const TShape rois_shape)#
-
template<class TROIPooling>
void output_roi_attr(const TROIPooling *op)#
-
template<class TROIPooling>
void scale_attr(const TROIPooling *op)#
-
template<class TROIPooling>
void method_attr(const TROIPooling *op)#
-
template<class TROIPooling, class TShape>
-
namespace validate#
-
namespace shape_of#
-
namespace ShapeInferRange#
Functions
-
template<class TRShape, typename std::enable_if<std::is_same<TRShape, PartialShape>::value>::type* = nullptr>
void symbol_propagation(const Node *op, std::vector<TRShape> &output_shapes, const double &start, const double &step, bool start_val, bool step_val)#
-
template<class TRShape, typename std::enable_if<std::is_same<TRShape, PartialShape>::value>::type* = nullptr>
-
namespace slice#
Typedefs
-
using Bounds = std::pair<int64_t, int64_t>#
Alias to dimension bounds for slice.
Functions
-
inline int64_t get_sliced_value(const int64_t dim, const int64_t start, const int64_t stop, const int64_t step)#
Get sliced value in step for given dimension value and start, stop, step.
Note
This function cannot be use for step 0 (division by 0)
- Parameters:
dim – Dimension value.
start – Start of slice.
stop – Stop of slice.
step – Step of slice.
- Returns:
-1 for infinite number otherwise [0..int64_max] for finit step.
-
constexpr bool is_bounds_zero_crossing(const Bounds b)#
Check if bounds can cross 0 value (rising edge).
- Parameters:
b – Input interval bounds for check.
- Returns:
True if lower bound is negative and upper is not negative, otherwise false.
-
template<class TDim>
constexpr bool is_lb_within_dim(const int64_t lb, const TDim &dim)# Check if lower bound is within dimension.
Check valid only if bounds can cross zero value (lb is negative).
- Parameters:
lb – Lower bound for check.
dim – Dimension used to check lower bound.
- Returns:
True if lower bound is within dimension length, otherwise false.
-
template<class TDim>
constexpr bool is_ub_within_dim(const int64_t ub, const TDim &dim)# Check if upper bound is within dimension.
Check valid only if bounds can cross zero value (up is not negative).
- Parameters:
ub – Upper bound for check.
dim – Dimension used to check upper bound.
- Returns:
True if upper bound is within dimension length, otherwise false.
Variables
-
constexpr std::array<char const*, 4> shape_names = {"start", "stop", "step", "axes"}#
-
struct AxesMap#
- #include <slice_shape_inference.hpp>
-
using Bounds = std::pair<int64_t, int64_t>#
-
namespace util#
Typedefs
-
using ActivationFunctionType = std::shared_ptr<Node> (*)(const std::shared_ptr<Node>&, float, float)#
-
using InputDescriptionVector = std::vector<util::SubGraphOp::InputDescription::Ptr>#
-
using OutputDescriptionVector = std::vector<util::SubGraphOp::OutputDescription::Ptr>#
-
using VariableMap = std::unordered_map<Variable::Ptr, VariableValue::Ptr>#
Enums
Functions
-
template<class T>
bool normalize_single_value(std::vector<T> vec, float &value, bool check_value_range = true)#
-
float cast_eps_to_float(double eps_d)#
Convert epsilon value from double to float type.
If the value is too large, the epsilon is converted to std::numeric_limits<float>::min() or std::numeric_limits<float>::min(), otherwise static cast to float is called. The adjustment is made for positive values only, for negative it works as static cast.
- Parameters:
eps – Original value of the epsilon (double).
- Returns:
Epsilon value as float.
-
bool check_for_broadcast(const PartialShape &ref_shape, const PartialShape &other_shape)#
Check if ‘other_shape’ can be broadcasted to ‘ref_shape’.
- Parameters:
ref_shape – The target shape we use as reference we are trying to broadcast to.
other_shape – The shape we use to check if it can be broadcasted to ‘ref_shape’.
-
bool shapes_equal_except_dynamic_expected_batch(const PartialShape &expected, const PartialShape &actual)#
-
void visit_path(ov::Node *node, std::unordered_set<ov::Node*> &visited, std::function<void(ov::Node*)> func, std::function<bool(ov::Node*)> skip_node_predicate)#
Traverses path starting from
node
, and calls “func” for each ov::Node.- Parameters:
node – The node from which path is started.
visited – Set of nodes which were visited.
func – The function which is called for each visited node.
skip_node_predicate – predicte to skip nodes.
-
void visit_shape_path(ov::Node *node, std::unordered_set<ov::Node*> &visited, std::function<void(ov::Node*)> func)#
Traverses a shapeOf subgraph starting from the node and not including the ShapeOf nodes, and calls “func” for each ov::Node.
- Parameters:
node – The node from which constant path is started.
visited – Set of nodes which were visited.
func – The function which is called for each visited node.
-
void visit_constant_path(ov::Node *node, std::unordered_set<ov::Node*> &visited, std::function<void(ov::Node*)> func)#
Traverses a constant path starting from “node”, and calls “func” for each ov::Node. If the function was called for non-constant subgraph, exception is thrown.
- Parameters:
node – The node from which constant path is started.
visited – Set of nodes which were visited.
func – The function which is called for each visited node.
-
template<typename T>
ov::pass::pattern::op::ValuePredicate constant_predicate(std::function<bool(const std::vector<T>&)> predicate)#
-
ActivationFunction get_activation_func_by_name(const std::string &func_name)#
Gets the activation function by name.
- Parameters:
func_name – [in] The function name
- Throws:
UnknownActivationFunction – When provided func_name is unknown.
- Returns:
The activation function object.
-
std::tuple<element::Type, PartialShape> validate_and_infer_elementwise_args(Node *node)#
- OPENVINO_API bool is_unary_elementwise_arithmetic (const Node *node)
- OPENVINO_API bool is_binary_elementwise_arithmetic (const Node *node)
-
using ActivationFunctionType = std::shared_ptr<Node> (*)(const std::shared_ptr<Node>&, float, float)#
-
enum class GeluApproximationMode#
-
class AddTransformation : public ov::pass::low_precision::EltwiseBaseTransformation#